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Abstract

The purpose of this paper is to develop a set of quantified temporal alethic
boulesic deontic systems. Every system in this class consists of five parts: a ‘quan-
tified’ part, a temporal part, a modal part (an alethic part), a boulesic part and a
deontic part. Separately, all these parts, except the boulesic part, have been studied
extensively, but there are no systems in the literature that combine them all. So,
all systems in this paper are new. The ‘quantified part’ consists of relational pred-
icate logic with identity, where the quantifiers are, in effect, a kind of possibilist
quantifiers that vary over every object in the domain. The alethic part includes
two types of modal operators, for absolute and historical necessity and possibility.
By ‘boulesic logic’, | mean the logic of the will; it treats ‘willing’ (‘consenting’,
‘rejecting’, ‘indifference’ and ‘non-indifference’) as a kind of modal operator. De-
ontic logic is the logic of norms; it deals with such concepts as ought, permitted
and forbidden. | will investigate some possible relationships between these differ-
ent parts, and consider various principles that include more than one type of logical
expression. Every system is described both semantically and proof theoretically. |
use a kind ofT x W semantics to describe the systems semantically, and semantic
tableaux to describe them proof theoretically. | prove that every tableau system in
the paper is sound and complete with respect to its semantics. Finally, | consider
some examples of valid and invalid sentences and arguments, show how one can
use semantic tableaux to prove their validity or invalidity, and try to illustrate the
philosophical usefulness of the systems developed in the paper.

Keywords: Quantified modal logic, Modal logic, Temporal logic, Deontic
logic, Boulesic logic, Semantic tableaux.

1 Introduction

In this paper, | will introduce a set of quantified temporal alethic boulesic deontic
systems. Every system in this class includes five parts: a ‘quantified’ part, a temporal
part, a modal part (an alethic part), a boulesic part and a deontic part. Separately,
each of these parts, except the boulesic part, has been investigated thoroughly. Some
interactions between them have also been explored. Connections between alethic and
deontic logic, between temporal, alethic and deontic logic, and between predicate and
modal logic have, for example, been investigated (see below for references). However,
as far as | know, there are no systems in the literature that combine them all. Hence,
all systems in this paper are new. Since the different parts, except the boulesic part, are
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well-known, | will focus on the combination of the various componeBtgery system

will be characterised semantically using a kindlot W semantics. According to this
approach, both worlds and times are basic and truth is relativised to world-moment
pairs. Consequently, a sentence may be true at some world-moment pairs and false at
others. Thel x W approach is mentioned by [123], [152] and [157], among others.

| will develop a set of semantic tableau systems and prove that they are sound and
complete with respect to their semantics.

The alethic part of our systems includes two types of modal operators for abso-
lute and historical necessity and possibility, respectivély(absolute necessityiM
(absolute possibility)n (historical necessity) ang (historical possibility). For intro-
ductions to (alethic) modal logic, see, for example, [25], [26], [44], [54], [59], [61],
[64], [84], [85], [94], [96], [129], [147], [148], [149] and [164].

Every system includes several temporal operators, for exampl@lways), S
(sometimes) (always in the future)F (sometime in the future) (always in the
past) and® (sometime in the past). For more on temporal logic, see, for example, [20],
[40], [55], [68], [95], [119], [122] and [112].

Deontic logic is the logic of norms. Every system in this paper includes deontic
operators such a (ought) andP (permitted) that can be used to symbolise various
normative propositions. For some introductions to deontic logic, see, for example, [5],
[71,[62], [67], [71], [76], [77], [LO5] and [153].

By ‘boulesic logic’ | mean a new kind of logic, the logic of the will; it treats ‘will-
ing’ (‘consenting’, ‘rejecting’, ‘indifference’ and ‘non-indifference’) as a kind of modal
operator. Every system includes five boulesic operatoys4d, R, Z and N. W, A,

R, Z and are sentential operators that take individual terms and formulas as argu-
ments and give formulas as values. The sentéfgB reads ‘individuald wants it to

be the case tha®', the sentencedyB reads ‘daccepts that (it is the case th&) or

‘d consents to the state of aiffs (the idea) thaB’, the sentenc&yB reads ‘drejects
(disapproves, objects to, condemns) (the state airafthat)B’, the sentenc&yB reads

‘d is indifferent towards (the state of aifs that)B’, and the sentenc#/yB reads ‘dis
non-indifferent towards (the state ofaif that)B'. Even though boulesic logic is new,
there have been some vaguely similar attempts to develop a kind of ‘intentional’ logic,
see, for example, [28], [29], [46], [100], [102] and [131]; see also [66], Chapter 10, [92]
and [101]. The approach in this paper is, however, quite different. According to this
approach, almost nothing of interest follows from the proposition that someone wants
something (or has some other boulesic attitude towards something), unless we assume
that this individual is (perfectly) rational or wise. Howeviérwe assume that some
individual is (perfectly) rational, we can derive all sorts of interesting consequences
from the claim that this individual wants something (or has some other boulesic atti-
tude towards something). Exactly what follows will depend on the interpretation of the
concept of rationality and on what conditions we choose to impose on the so-called
boulesic accessibility relation in our semantic models (see Section 3.3). For more on
non-temporal boulesic logic, see [124]. For more on the concept of rationality, see, for
example, [107] and [31].

The ‘quantified part’ of the systems consists of relational predicate logic with iden-
tity. The quantifiers are, in effect, a kind of ‘possibilist’ quantifiers that vary over every
object in the domain and the domain is the same in every world-moment pair. Every
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system includes a universal quantififlr(‘everything’), and a particular quantifiex,
(‘something’). In every system, we can also define a pair of ‘actualist’ quantifiers in
terms of the possibilist quantifiers and an existence predicate. Intuitively, the actualist
quantifiers vary over everything that exists in a world-moment pair, that is, that exists
in a world at a particular moment in time. For some views on how to combine modal
logic and predicate logic, see, for example, [17], [41], [47], [59], [63], [64], [78], [84],
[85], [97], [98], [114], [118], [137], [142] and [141].

I will investigate some possible relationships between these different parts of our
systems, and consider various principles that include more than one type of logical ex-
pression. Some interactions of this kind have been explored before. Logicians have, for
example, developed systems that combine alethic and deontic logic, temporal, alethic
and deontic logic, and predicate and modal logic. Some of the first attempts to combine
deontic logic and alethic modal logic can be found in several essays by Anderson (see
[1]1, [2], [3], [4])- Another early contribution is [58]; see also [87].

Many philosophers and logicians have developed logical systems that include tem-
poral, alethic and deontic elements, see, for example, [43], [11], [12], [13], [14], [150],
[143], [144], [10] and [9]. Chellas ([43]) also adds a modal logic of action to his sys-
tems. For more ideas on how to combine deontic logic with temporal logic, see, for
example, [15], [27], [33], [34], [35], [36], [37], [38], [42], [44], Chapter 6, [52], [53],
[146] and [8]. See also [18], [19], [32], [70] and [83].

Systems that combine modal and temporal logic with a kind of action logic have
been developed by researchers within the stit-paradigm. Sometimes these systems are
combined with deontic logic. For more on stit-logic, see, for example, [16], [22], [73],
[79], [80], [81], [110], [113], [131], [158], [159], [160], [161] and [162]. For more
on how to combine modal and temporal logic, see, for example, [45], [50], [145] and
[165]. See [108] for an early attempt to combine various systems.

There are many good reasons, both technical and philosophical, to be interested
in the results in this paper. Since all systems are new, there are good logical reasons
to be interested in them. | use semantic tableau in this paper. Most logicians who
have tried to combine different branches of logic, such as, for example, temporal logic
and deontic logic, have used axiomatic techniques. Tableau systems are often more
user-friendly. It is often easier to prove theorems, establish the validity or invalidity
of various principles and arguments, and find countermodels in tableau systems. Our
symbolic apparatus might also be useful in linguistics and computer science.

I cannot discuss all the philosophical reasons to be interested in our systems in
detail, but let me mention five points to illustrate the usefulness of our technical results.

First, we appear to need systems of this kind to prove that certain statements that
are intuitively valid are valid. Consider the following example:

E1. Itis (absolutely) necessary that if a perfectly rational individuatnts it to be
the case thaf sometime in the future and it is (historically) necessary that it is always
going to be the case thatAfthenB, thenx wants it to be the case thBtsometime in
the future.

This sentence is intuitively valid. If it will be the case thfasometime in the future
and it is historically necessary that it is always going to be the case thahi&n B,
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then it is inevitable that it will sometime in the future be the cts B. Hence, if
someone is perfectly rational and she wants it to be the casétbametime in the
future, she also wants it to be the case tAatometime in the future given that it is
historically necessary that it is always going to be the case tathénB. In Section
7, I will show that we can prove this sentence in every system that includes the tableau
rule T — oW. However, we cannot prove this proposition in any other system in the
literature (at least not without assuming some implicit premises).

Second, we can use the systems to find countermodels to some propositions that
are intuitively invalid. Consider the following sentence:

E2. If an individual x wants it to be the case thatsometime in the future will be
a citizen of Great Britain and it is (historically) necessary that it is always going to be
the case that ik is a citizen of Great Britain theris a citizen of Europe, thenwants
it to be the case thatsometime in the future will be a citizen of Europe.

Even thoughELl is intuitively valid, E2 is intuitively invalid. If someone isot
perfectly rational, she may wart even though she does not want every necessary
condition forA. In Section 7, | will show how we can prove th&e is invalid in the
class of all models and how one can use semantic tableaux to construct countermodels
to invalid sentences.

Third, we appear to need systems of the kind in this paper to prove that certain
arguments that are intuitively valid indeed are valid.

Consider the following example:

E3. P1. Itis (absolutely) necessary that if no perfectly rational individual accepts
that you will rape someone in the future, then it ought to be (the case) that it is always
going to be the case that you do not rape someone.

P2. Everyone who is perfectly rational wants it to be the case that it is never going
to be the case that you rape someone.

C. Hence, it is not permitted that you will rape someone in the future.

This argument is intuitively valid. It appears to be necessary that the conclusion is
true if the premises are true. However, we cannot establish this in any systems in the
literature. In Section 7, | will show how we can use a semantic tableau to prove that
this argument is valid in the class of all models. To be able to prove this, we need to use
all parts of our systems. Note that the argument includes an alethic expression (‘abso-
lutely necessary’), quantifier expressions (‘no’ and ‘everyone’), boulesic expressions
(‘accepts’ and ‘wants’), temporal expressions (‘will in the future’ and ‘it is always go-

INotethat when we say that some individualants (or accepts or.) A, we usually mean thatwants
(accepts, etc.Ain an all-things-considered sense in this paper. For exaropieght not feel like going to
the dentist; nevertheless, all-things-considered she wants to go. Going to the dentist is a means to an end,
namely, healthy teeth. Accordingly, when we say thatants (or accepts, etcA, we do not necessarily
mean that wants (or accepts, etch ‘in itself’; in fact, c might dislikeA, even though she war#sto be the
case becausd is a necessary means to or conditions for something else that she wants ‘in itself’. In other
words, it is possible foc to want (accept, etc.j\ in an all-things-considered sense even thoagloes not
like every aspect oA or every consequence #&f and even ifc has some desire (a prima facie desire) for
not-A. For more on this, see [124].
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ing to be the case that’) and deontic expressions (‘permittad’‘ought’). Hence, to

prove that the argument is valid, we need a system that includes all of these parts.
Fourth, our systems can be used to analyse and prove some interesting principles in

ethics and metaethics, for example, the principle of internalism. There are many kinds

of internalism, but according to one version of this principle the following proposition

is true:

(). It is absolutely necessary that if someodis perfectly rational, then if it ought
to be the case tha@ thenx wants it to be the case that

This principle can be symbolised in the following way in our systebiEx(Rx —

(OA - W,A)). This formula can be proved in every system that includes the tableau
rule T — OW. Consequently, it is valid in the class of &l- OWW-models (by the
soundness results in Section 6). For more on internalism, see, for example, [23], [24]
and [151]. See also Section 5.

Fifth, our systems can be used in the development of whole ethical systems. Our
logical systems seem to be particularly well suited to developing a kind of Kantian
ethics, but they might also be interesting to, for example, various ideal observer the-
orists (see Section 5 for more on this), constructivists, moral idealists, contractualists
and divine will theorists.

Let me briefly illustrate how the systems in this paper can be used to analyse several
Kantian theses, for example, the so-called ought implies can principle, the hypothetical
imperative, and the idea that for a perfectly rational individual ‘| ought’ and ‘I will’ are
equivalent. In some systems we can even prove that these principles are valid. These
examples clearly illustrate that our systems can be used in the development of a kind
of Kantian ethics.

It is generally agreed that Kant thought that ought implies can. He expresses this
idea in several places in his works, see, for example, [89] 6:47 (‘duty commands noth-
ing but what we can do’) and [89] 6:62 ("Weughtto conform to it, and therefore
we must alsde ableto’). So, someone ought to do something only if she can do it
according to Kant; we do not have any obligations that are impossible to fulfil. Ac-
cording to one interpretation of this principle, this means (or at least entails) that it is
absolutely necessary that ought implies (historical) possibility. Hence, it is absolutely
necessary that if it ought to be the case thahen it is (historically) possible thak.

This principle can be symbolised in the following way in our systeti@OA — GA),
and this schema can be proved in every system that includes the tabledu-rGle.
Consequently, it is valid in the class of &l O<&-models (by the soundness results in
Section 6

Kant introduced the concept of a hypothetical imperative.Ghundlegung zur
Metaphysik der Sitten, he defines this concept in the following way:

2SinceKant many other philosophers and logicians have accepted the ought implies can principle. Kant
is probably the most famous defender of this thesis, but he was not the first to accept it, see, for example,
[120], Book |, Chapter V, VIII: ‘impossibilities are incapable of Obligation; ... no Man can be conceiv'd to
have enjoin’d impossible Duties in a Law.... For more on the ought-can principle, see, for example, [49],
[57], [82], [91], [99], [104], [109], [111], [133], [134], [138], [139], [140], [154] and [163].
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‘Who wills the end, wills (so far as reason has decisive influemte
his actions) also the means which are indispensably necessary and in his
power’ and “If | fully will the effect, | also will the action required for it”
is analytic’. ([88], p. 45; English translation in [115], pp. &)

Since Kant, there has been debate about what is the logical form of a hypothetical
imperative. | will not enter into this debate in the present paper; | just want to point
out that it is possible to symbolise several different interpretations of the concept in
our systems and mention one of the most plausible. According to this interpretation,
it is universally necessary that, for evexyif x is perfectly rational, then ik wants
it to be the case thaA and it is necessary that & then B, then x wants it to be
the case thaB. This reading can be symbolised in the following wayTIx(Rx —
(WxA A O(A - B)) - WxB)). This formula can be proved in every system that
includesT —-OoW. Since a system that includ&€s-oW is sound with respect to the class
of all C — oWW-models, the sentence is valid in this class of models (by the soundness
results in Section 6). | discuss this principle in more detail in [124]. Universal necessity
implies historical necessity. Hence, we can also prove the following version of the
hypothetical imperativelUIIX(Rx - ((WxAA U(A - B)) — WxB)). In fact, this
sentence can be proved in every system in this paper and hence it is valid in the class
of all models?

According to [116], p. 223, “l ought” is equivalent to “I will” for a rational agent
as such’ for a Kantian (see also [115], p. 26). This idea can be symbolised in our
systems in the following wayUIIX(Rx - (OA < WxA)), which can be read as ‘It
is absolutely necessary that for evetyif x is perfectly rational then it ought to be
the case thad if and only if (iff) x wants it to be the case that.* This schema is a
theorem in every system that includes the tableau rile®WW andT - WO, and it is
valid in the class of models that sati€®y OV andC-WO. Itis not obvious that Kant
himself would accept this principle—he seems to think that there are no ‘oughts’ for a
perfectly rational individual ([115], p. 78)—but the difference between these positions
is not great. For if ‘l ought’ is equivalent to ‘I will’ for a rational agent, then every ‘I
ought’ can, in principle, be ‘eliminated’. In any case, the principle is clearly Kantian
in spirit.

Consequently, we can symbolise and prove at least three versions of three important
Kantian ethical principles. Of course, these principles are not the only ones that would
be included in a more fully developed Kantian ethical system and much more could be
said about them, but the discussion above is sufficient for our purposes in this paper
and clearly shows the usefulness of our systems.

I conclude that we have very good reasons to be interested in the systems in this
paper.

The paper consists of seven main sections. Section 2 deals with the syntax and
Section 3 with the semantics of our systems. In Section 4, | describe the proof theory
of our logics, while Section 5 includes some examples of theorems. Section 6 contains

3For more information about the hypothetical imperative, see, for example, [21], [30], [39], [51], [52],
Chapter 5, [60], [65], [69], [72], [74], [75], [93], [103], [132], [125], [126], [127], [128], [155] and [156].
“Note that this formula entaild) above, that is, it entails a kind of internalism.
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soundness and completeness proofs for every system. Fing8gction 7, | consider
some examples of valid and invalid sentences and arguments.

2 Syntax
2.1 Alphabet

Terms: (i) A set of variablesx;, Xp, X3 .... (i) A set of constants (rigid designators)
Ka,, Ka,, Kg,, - ... Predicates: (iii) For every natural numben > 0, n-place predicate
symbolsP}, P2, P2 .... (iv) The monadic existence predicae and the monadic
rationality predicatdR. (v) The dyadic identity predicate (necessary identityCon-
nectives: (vi) The primitive truth-functional connectives(negation) (conjunction),

v (disjunction),— (material implication) and- (material equivalence)Operators:
(vii) The alethic operator®J, M, o and<. (viii) The temporal operators, S, G, F,

H andP. (ix) The deontic operator® andP. (x) The boulesic operatoid/’, A, R, Z
and. Quantifiers: (xi) The (possibilist) quantifierBl andX. Parentheses{(xii) The
brackets ) and (.

X, yandz... stand for arbitrary variables, b, c ... for arbitrary constants, ansl
andt for arbitrary terms (with or without primes or subscripts). For more on the set of
constants, see Section 3.1. | will Usg G, Hy, ... for arbitraryn-place predicates and
I will omit the subscript if it can be read ofifom the context.

2.2 Language

The languag€ is defined in the following way: (i) Any constant or variable is a term.
(i) If t1,...,t, are any terms an@ is any n-place predicatePt; ...ty is an atomic
formula. (iii) If t is a term,Et (‘t exists’) is an atomic formula an@8t ('t is perfectly
rational’) is an atomic formula. (iv) Ifandt are terms, thes = t (* sis identical witht’)

is an atomic formula. (v) IA andB are formulas, so areA, (AAB), (AvB), (A— B)
and (A < B). (vi) If Ais a formula, so ardUA (‘it is universally [or absolutely]
necessary thad’), MA (‘it is universally [or absolutely] possible that'), oA (it is
[historically] necessary thak’) and GA (‘itis [historically] possible thai"). (vii) If B

is a formula, so ard\B (it is always the case th&), SB (it is sometimes the case that
B), GB (it is always going to be the case tHajt, FB (it will some time [in the future]
be the case thd), HB (it has always been the case tlgtandPB (it was some time
[in the past] the case th&). (viii) If Bis any formula and is any term, thetV;B (‘t
wants it to be the case that (desires thzl}) A;:B ('t accepts that (consents to the idea
that, approves that, tolerates that, is willing that) (it is the case Biat)R:B ('t rejects
(disapproves, objects to, condemns) (the state afrafthat)B’), Z;B (‘t is indifferent
towards (the state of afifs that)B’) and \V;B (‘t is non-indifferent towards (the state of
affairs that)B’) are formulas. (ix) IfAis any formula and is any variable, thellxA
(‘for every [possible]x: A’) andXxA (‘for some [possiblek: A’) are formulas. (x) If
Ais a formula, therDA (‘it ought to be the case th#t') andPA (‘it is permitted that
A") are formulas. (xi) Nothing else is a formula.
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The concepts of bound and free variables, and open and closed foriendaig-
fined in the usual way.A, B, C ... stand for arbitrary formulas, ang, @ ... for
finite sets of closed formulasA[ay,...,an/Xs,...,X,] is the result of replacing ev-
ery free occurrence of; by a;, and..., and every free occurrence &f by a, in A.
Alay....,a0/X1. ..., %] will be abbreviated af\[a;....,a,/ X]. Alt/x] is the formula
obtained by substitutingfor every free occurrence aofin A. The definitions are stan-
dard. Brackets around formulas are usually dropped if the result is not ambiguous.

Definition 1 The definitions below should be treated as pure metalogical abbrevia-
tions. However, in parentheses | will indicate how the new symbols might be inter-
preted informally.Deontic operatorsFA (‘itis forbidden that A)=q; -PA; KA (‘itis
optional that A’)=4¢ (PAAP-A); NA ('itis non-optional that A')=4¢ -K A. Temporal
operators:GA (itis and it is always going to be the case that Aj: (AA GA); HA

(it is and it has always been the case that Aj) (AA HA); FA (itis or it will some
timein the future be the case that A%y: (Av FA); PA (‘itis or it has some time in

the past been the case that A% (A v PA). Actualist quantifiers: VxA (‘for every
existing x A')=q¢ IIX(Ex — A) and 3xA (‘for some existing x A¥q;Zx(ExA A).

3 Semantics

3.1 Models

Definition 2 (Models) A model M is a relational structure(D,W.T,<,R,2, S, V),
where D is a hon-empty set of individuals (the domain), W is a non-empty set of pos-
sible worlds, T is a non-empty set of timeds a binary relation on T (<is a subset

of T x T), R is a ternary alethic accessibility relation (9% a subset of W« W x T),

2 is a four-place boulesic accessibility relation (8la subset of W x W x T), &

is a ternary deontic accessibility relation (& a subset of W« W x T), and v is an
interpretation function.

R is used in the definition of the truth conditions for sentences that begin with
the alethic operators and ¢, & is used in the definition of the truth conditions for
sentences that begin with the deontic opera®endP, 2 is used in the definition of
the truth conditions for sentences that begin with the boulesic opefdtord, R, Z
andN, and< is used to define the truth conditions for sentences that begin with the
temporal operators. Intuitively,< ' says that the time is before the time’, Rww'r
says that the possible world is alethically (historically) accessible from the possible
world w at the timer, Sww't says that the possible world is deontically accessible
from the possible world at the timer, and2léww’t says that the possible world
is boulesically accessible (acceptable) to the individual(or relative to) the possible
world w at the timer, or thats acceptsy’ in (or relative to)w atr.>

5In this paper, we tredl as primitive. However, it might in principle be possible to define this relation.
Here are some possible definitions’ is acceptable t6 in w at iff the utility of o’ for § atr is positive,
or above a certain threshold or as high as possible, érdfies not prefer any other possible worlddb
in w atr, or.... The important thing for our purposes in this paper is that all definitions of this kind are
compatible with the semantics we use. The models are also consistent with the proposition that different
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The valuation functiorv assignsevery constant an element/(c) of D, and each
world-moment pair{w, 7), andn-place predicate?, a subsety,.(P) (the extension
of P in w at7), of D". In other wordsy,.(P) is the set ofn-tuples that satisfy
in the worldw at timer (in the world-moment paifw,7)). Hence, every constant
is a kind of rigid designator: it refers to the same individual in every world-moment
pair. Nonetheless, the extension of a predicate may change from world-moment pair
to world-moment pair and it may be empty in a world-moment pair. Mtbe a
model. Then the language #fl, £(M), is obtained by adding a constadqt such that
v(kq) = d, to the language for every memlmkbe D. Hence, every object in the domain
of a model has at least one name in our language, but several different constants may
refer to one and the same object.

The predicateR has a special interpretation in our systems. ‘Rc’ says ¢hat
perfectly rational,perfectly reasonabler perfectly wise. Ifv(c) is in the extension
of Rin the possible worldv at the timer, this means that(c) is perfectly rational,
reasonable or wise i atr. Exactly what this means will depend on the conditions we
impose on the boulesic accessibility relatiiSection 3.3) Rfunctions as an ordinary
predicate. Hence, an individuéimay be inR’s extension in one world-moment pair
even thoughs is not in R’s extension in every world-moment pair. Accordingly, the
fact that an individuad is perfectly rational, reasonable or wiseaneworld-moment
pair does noentail that ¢ is perfectly rational, reasonable or wise émeryworld-
moment pair. In Section 3.3, we will see what happens if we add the extra assumption
that every perfectly rational individual is necessarily perfectly rational (the semantic
conditionC — UR guarantees that this is the case: see Table 16). In the light of the
definitions of the truth conditions for the boulesic sentences (see Section 322)18-
it should be obvious tha& plays an important role in our systems. It will become even
clearer when we introduce the various tableau rules in Section 4.

Let A be a closed boulesic formula of the fodiB, A;B, R:B, Z;B or N;B. Then,
the matrix ofA is constructed in the following way. Let be the least number greater
than evenyn such that, occurs bound iB. From left to right, replace every occurrence
of an individual constant witky,, Xm.1, €tc. The result is the formula’s matrix. Here are
some examples: the matrix #V,Pcis Wy, Px; the matrix of A;Paais Ay, PxXxs; the
matrix of W;(Fa — Gbc)is Wy, (Fx; = GXsXy); the matrix of A ITx; (Fx; v Ge) is
A ITX (F X1 VG Xg); the matrix oW WyExaP X is Wi, Wy, ZX2P X, etc. The valuation
function assigns extensions to matrices of this kindMlis any matrix of the form
WiB, A:B, RB, Z:B or A;B with free variables«,..., X, thenv,. (M) c D". Note
that M always includes at least one free variable. Mebe a matrix where, is the
first free variable inM and ay, is the constant iM[ay, ..., a,/ 3(’] that replaces.
Then the truth conditions for closed boulesic formulas of the fMfay, ..., a,/ i],
whenv,.(Ray) = 0, are defined in terms of the extensior\fin w atr (see condition
2 in Section 3.2 below.

V,-(=) = {{(d,d) :d e D} (the extension of the identity predicate is the same in
every possible world at every moment in time (in a model)). It follows that all identities

individuals might have differemeasons for accepting’ in w atr. It is an interesting question whether or
not it is possible to defin&, but for our purposes in this paper, we do not have to answer this question.
6See [117], Chapter 12; for more on matrices.
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(and non-identities) are both absolutely and historically necesaanyell as eternal.
The existence predicaté functions as an ordinary predicate. The extension of this
predicate may vary from one world-moment pair to anothiec’ is true in a possible
world at a time iffv(c) exists in this world at this time.

3.2 Truth conditions and some semantic concepts

Let M be any mode[D,W,T,<,R,2A,S,v). Letw € W, 7 ¢ T and letA be a well-
formed sentence ig. ThenM,w,7 I+ Ais an abbreviation ofA is true inw atr in
M’ (or ‘Alis true in the pai{w, ) in M"). M,w, 7 I+ Ajustin case it is not true that
M,w,7 I+ A. Note thatM, w, 7 I+ Aiff M,w,7 I+ -A. ‘Yo' € W' is read as ‘for all
possible worldsy’ in W'; ‘3 w’ € W' is read as ‘for some possible world in W', etc.
The truth conditions for various sentencesdrcan now be defined in the following
way (the truth conditions for the omitted sentences are straightforward):

1. M,w,7IFPa...a,iff (v(a1),...,v(an)) € V,-(P).

2. LetM be a matrix where, is the first free variable iM anda, is the constant in
M[ay,...,an/ X] that replaces,. Then the truth conditions for closed boulesic
formulas of the formM(ay, ..., a,/ 7(], whenv(ap) is not an element im,.(R),
are as follows:M, w, 7 I- M[ay, ..., an/ X]iff (v(a1),...,V(an)) € Vor(M).

M,w,TiFAABIf M,w,7IFAand M, w, T I+ B.

. M,w,7IF UAIff Yo' eWandVr e T: M, o', 7" I A.
. M,w,7IF MAIff 30" eWand3r e T: M, o', 7" I A.
.M, w,7IFOAIf Yo' e Ws.t. Row't: M, o', 7IF A.
Mo, 7 IF CAIF Jow' e Ws.t. Row't: M, o', 7 IF A.

. M,w,TIFABif V' e T: M, 0,7 I+ B.

© 00 N o O b~ W

. M,w,TIFSBiff 3" e T: M, w,7" I+ B.

10. M,w,7IFGBiff V' e Tst.t<7: M,w,7" I+ B.

11. M,w,7i-FBiff 37’ e Tst.t<7: M,w,7" I+ B.

12. M,w, 7 - HBIiff Vi’ e Ts.t. 7 <1: M,w, 7" I+ B.

13. M,w,7-PBiff 37" e T s.t. v <. M,w, 7’ I B.

14. M,w, 7+ OAIff Yo' e Ws.t. Gww't: M,o’, 71 A.

15. M,w,7 I PAiff 30’ e Ws.t. Gww't: M, o, 71 A.

16. M, w,7 I TIXAIfT for all ky € L(M), M, w, T I+ A[Kg/X].
17. M,w,7 I+ ZXAIfT for someky € L(M), M, w, T I- Alkq/X].
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18. M,w,7 I+ W,D iff for all " such thatlv(a)ww'r: M,o’,7 I+ D, given that
v(a) is an element i, (R), if v(a) is not an element in,.(R), thenW,D is
assigned a truth value in att in a way that does not depend on the valu®of
(see condition 2 above).

19. M, w,7 I+ A,D iff for at least one’ such thaRlv(a)ww't: M, o', 7 I- D, given
thatv(a) is an element iv,.(R), if v(a) is not an element im,.(R), then.4,D
is assigned a truth value in atr in a way that does not depend on the value of
D (see condition 2 above).

20. M,w, 7 IF RaD iff for all o' such thaRlv(a)ww'r: M,w’,7 I+ =D, given that
v(a) is an element iv,.(R), if v(a) is not an element in,.(R), thenR,D is
assigned a truth value in att in a way that does not depend on the valu®of
(see condition 2 above).

21. M,w,7 I+ Z,D iff for at least onev’ such thativ(a)ww'r: M,o’,7 I+ D and
for at least onev’ such tha®lv(a)ww'r: M, o', I+ =D, given thatv(a) is an
element inv,,.(R), if v(a) is not an element iv,.(R), thenZ,D is assigned
a truth value inw at T in a way that does not depend on the valueDofsee
condition 2 above).

22. M,w, 7 I+ ND iff for all " such thaRiv(a)ww'rt: M,«’,7 I+ D or for all o’
such thatlv(a)ww't: M,w’,7 I+ =D, given thatv(a) is an element i, (R),
if v(a) is not an element in,.(R), thenA,D is assigned a truth value inatr
in a way that does not depend on the valu®dsee condition 2 abové).

IT and X are substitutional, ‘possibilist’ quantifiers since the domain is the same
in every possible world and every object in the domain has a name (see Section 3.1).
Hence, in effect, they vary over every object in the domain.

Intuitively speaking, conditions 1&2 are interpreted in the following way. fa)
is not perfectly rational in a world-moment paiy,D, A.D, RaD, Z;D and V3D
behave as ordinary predicates in this world at this time; aahif is perfectly rational
in a world-moment pairV,, A, andR, behave as ordinary modal operators in this
world at this time. Ifv(a) is perfectly rational in a world-moment pair, th&gD is
equivalent withA,D A A,-D andN,D is equivalent withAV,D v W,-D in this world-
moment pair.

Let us now define some important semantic concepts.

Definition 3 (Semantic concepts) Satisfiability in a modeh set of sentences is
satisfiable in a modeM iff there is a possible world and point in timer in M such
that every sentence inis true inw at r. Validity in a class of models:A sentence
Ais valid in a class of modeM iff A is true in every world at every moment of time

"Notethat we have to introduce all boulesic operators as primitive. If we were to restrict our systems to
perfectly rational individuals, then it would be possible to use one boulesic operator as primitive/fsay
and define the other operators in terms of this operdio(Rx — (RxB <~ Wx-B)) is, for example, a
theorem in every system in this paper. But if some individLialnot perfectly rational she may rejegeven
though it is not the case that she wants it to be the case thd&.nterefore,;R cannot be defined in terms
of W. Similar remarks apply to the other operators.
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Table 1: Conditions on the alethic accessibility relati®n

Condition | Formalisation of condition

C-aT VTV wRwwt

C-ab VrVw3iw Rew't

C-aB VTVwVo' (Row't > Ro'wr)

C-a4 VIVoVw' Vo' ((Rww't ARO'0'1) > Row''1)
C-a5 VTVoVw Yo' (Rww't A Rewt) - Ro'w"'t

in every model irM. Logical consequence in a class of model& sentence B is a
logical consequence of a set of sentericés a class of model (M,I" i+ B) iff for
every modeM in M and world-moment paifw, 7) in M, if all elements of" are true
in (w, ) (inwatt)in M, then Bis true iNw, 7) (in w at7) in M. If M, T I+ B, then"
entails B inM and the argument frorfi to B is valid inM. An argument is invalid (in
M) iff it is not valid (inM).

3.3 Conditions on models and systems of classes of models

In this section, | will consider some conditions that might be imposed on our models.
These conditions concern the formal properties of the accessibility relations, the rela-
tionships between the various accessibility relations and the relationships between the
accessibility relations and the valuation function. Since our models include four acces-
sibility relations, there are 16 possible types of interactions between these relations (if
we include the models where there are no interactions at all). | will consider examples
of all these types.

The clauses in this section can be combined in many different ways, generating
many different systems. Exactly which conditions steuldaccept seems to depend
on several factors. One important factor is the interpretation of the conceptfeict
rationality (wisdom). It might be the case that different conditions are plausible for
different purposes.

The conditions in this section should be more or less self-explanatory. However,
| have added a few comments about some of the new clauses and | mention some
sentences that are valid in different classes of models. There are many interesting
relationships between the various conditions that | will not investigate in this paper.
Occasionally, | will mention some connections.

Table 1 contains information about the formal properties of the alethic accessibility
relation at a time. In this papeh is treated as a 3-place relation and not as a binary
relation as is usually the case ([25], [44], [59], [64] and [118]). Intuitively, this means
that the ordinary 2-place alethic accessibility relation is relativised to particular mo-
ments in time. C’ in * C — aT’ stands for ‘condition’ and ‘a’, for ‘alethic’.C — aT is
called C - aT’ because it is a 3-place version of the well-known condiffom ordi-
nary alethic (modal) logic. According ©© — aT, the alethic accessibility relatidR is
reflexive at every moment in time; according@o- aD, R is serial at every moment
in time, etc. Other conditions in this section are interpreted in a similar way. | will
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Table 2: Conditions on the temporal accessibility relation

Condition | Formalisation of condition

C-PD vrar't <t

C-FD vrar'r <1’

C-t4 vove' v ((r< o' At <7") > 1<)

C-DE Vv (r <t - (v <" AT < 7))

C-FC VvV ((r <t ar<t’) > (' <" v =" v’ < 1))
C-PC vove' VT (7 <At <) > (P < v =7 v <))
c-C Vv (r<t'vr=1 v <1)

C-uUB vevr' v ((r <t At <) - I (7 <" A" <))
C-LB VvV (7 <tat’ < 1) - I < AT <))

Table 3: Conditions on the deontic accessibility relati®n

Condition | Formalisation of condition

C-dD VTV wiw Gww't

C-d4 VTVoVo' Vo' ((Gww't A Gw'w''t) » Gww'T)
C-d5 VTVoVo' Vo' ((Gww't A Gww''t) > Go'w’'r
C-0dT | ViVwVe' (Gww't > Gw'w'r)

C-0dB | V1VwVw' Vo' ((Sww't A Gu'w't) > Gu"w't

often omit the initialC if it is clear from the context that we are talking about a seman-
tic condition. It is usually binary relations that are called serial, transitive, Euclidean,
etc. Nonetheless, | will extend these concepts to 3-place and 4-place relations in this
section. If2 satisfiesC — b4 (se€eTable 4), we will call2( transitive, and so on.

The well-known conditions iTfable 2 say something about the formal properties
of the temporal relation ‘earlier thark,. PD stands for ‘pasD’, FD for ‘future D’,

DE for ‘dense’,FC for ‘future convergence’PC for ‘past convergenceC for ‘com-
parability’, UB for ‘upper bounds’, andLB for ‘lower bounds’. According t& - PD,

for example, there is no first point in time; accordingde- t4, time is transitive, etc.
The conditions ifable 2are often described in various introductions to temporal logic
and require no further comments (see, for example, [20], [40], [55], [68], [95], [119],
[122] and [112)).

Table 3 includes information about the formal properties of the deontic accessi-
bility relation at a time (‘d stands for ‘deontic’). The deontic accessibility relation is
usually treated as a binary relation. In this pagiis a 3-place relation. Intuitively,
this means that the ordinary binary deontic accessibility relation is relativised to par-
ticular moments in time. 2-place versions of the conditiontaible 3 are discussed in
many introductions to deontic logic (see, for example, [7]). Accordin@ todD, the
deontic accessibility relation is serial at every moment in time; accordi@g-td5, the
deontic accessibility relation is Euclidean at every moment in time, etc.

The conditionC - dT (VrVwSwwr), according to which the deontic accessibility
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Table 4: Conditions on the boulesic accessibility relaion

Condition | Formalisation of condition

C-bD VéVTVwIw Asww'r

C-b4 YoVTV Vo' Vo' (Adww't A Adw' "' 1) — Adww''T)
C-b5 VéVTVwV o' Vo' (Adww't A Asww' 1) - Adw' vt

C-WhHT | VoVrVwVw (Asww't - Asw'w't)

C-WDHB | VoVrVwVw Vo' (Aéww't A Adw' w''t) » Asw" 't

relation is reflexive at every moment in time, is not intuitivelausible. For in every
model that satisfies this condition we can show that the scherf@ dT) is valid:

OA - A, which says that everything that is obligatory is tr@- OdT is similar to

C - dT, butC - OdT does not entail that the deontic accessibility relation is reflexive
at every moment in time. According © - OdT, «' is deontically accessible to itself

at a time ifw’ is deontically accessible from at this time. Likewise, according to the
conditionC - dB (VrVwVw' (Gww't - Gw'wr)), the deontic accessibility relation is
symmetric at every moment in time. In every model that satisfies this condition, we can
show that the scherm (or dB) is valid: A — OPA, which says that everything that is
the case ought to be permitted. Hence, this does not seem to be an intuitively plausible
condition.C — OdB appears to be more reasonable. According to this conditibis,
accessible fromw” at 7 if ' is accessible fronm andw” is accessible form’ at 7.

C - OdT does not guarantee th&A — A is valid, but it guarantees that ought to

hold. i.e. thatO(OA — A) is valid, andC — OdB does not guarantee that—- OPA is

valid, but it guarantees th&ought to hold, i.e. thaD(A - OPA) is valid.

The conditions inTable 4, which deal with the boulesic accessibility relation, are
similar to the conditions infable 3 (‘b’ stands for ‘boulesic’). However, there are
also some important differenceés;is a 3-place relation, whil@l is a 4-place relation.

C - bD, for example, says: for every (individuaf) for every (moment in time)

and for every (possible worldy there is a (possible world)’ such that acceptsy’

in w atr. According to this condition, every individual always accepts at least one
possible world at every moment in time, no matter what situation she is in. If a model
satisfies this condition, we can show that the following sentence (schema) is valid:
IIx(Rx - -(WxB A Wx=B)), that is, if an individuak is perfectly rational, then it is

not the case thatwants it to be the case thBtat the same time thatwants it to be the
case that noB. If x wants it to be the case thBtand also wants it to be the case that
not-B, not all of xX's wants can be satisfied. Hence, this principle is intuitively plausible.

Suppose thaM is a model that satisfie&s- UR, orC-oWandC-FT orC-FTR
(seeTable 6andTable 16). Then, itM satisfiesC—b4, [Ix(Rx— (W«B - W, WB))
is valid in M; if it satisfiesC — b5, Ix(Rx— (AxB - Wy AB)) is valid; if it satisfies
C - WhT, IIx(Rx - Wx(WxB — B)) is valid; and if it satisfieC — WbB, IIx(Rx —

Wx(B - Wy A«B)) is valid. Note thaC — UR, orC-oW andC-FT orC - FTRare
needed to prove this result since an individual might be perfectly rational in one world-
moment pair even though she is not perfectly rational in some other world-moment pair
according to our semantics.

22z



QuantifiedTemporalAlethic BoulesicDeonticLogic

Table 5: Alethic deontic interactions: Conditions concerrting relation betweefi
andS

Condition | Formalisation of condition
C-o0 VTVoVo' (Gww't > Rew't)
C-0¢ VTV w3w' (Gww't A Rww'T)
C-000 | ViVuVu' Vo' ((Gww't A Bw'w't) - Ro'w't
C-00¢ | VYV (Gww't » 30" (6w w't A Rw'w"'T))
C-da4 VIVoVo' Vo' ((Sww't ARo'0''T) > Row''1)
C-da5 VIVoVw' Yo' ((Gww't ARwwt) - Ro'w'1)
C-add VTVVw' Vo' (Rew't A Gw'w"T) > Gwaw''1)
C-ads VIVoVo' Vo' ((Rwo't A Gow''1t) > Go'w't
C-POP | ViVoVo' Vo' ((Gww't ARww' 1) - 30" (Rew' 0"t A G w"'1))
!
U

C-00P | VYV Vo' ((Rww't A B0'w't) - F0" (Sww™"' 1 AR 0"'T))

IR

C-0O0P | ViVwVe' Vo' ((Gww't AR 1) - F0" (Rww" v A Gw™" w'1))

We observed that - dT andC - dB are intuitively implausible. Likewise, the
conditionsC — bT (VéV1VwAdwwt) andC — bB (V6V1VwV o' (Asww't - Asw' wt))
are intuitively problematic. In every model that satisflesb T, I[Ix(Rx— (WxB — B))
is valid, and in every model that satisfi€s— bB (andC - UR), IIx(Rx - (B —

Wi AxB)) is valid. C-WhbT is weaker tha€ —bT andC-WbBis weaker thaiC - bB,
andIIx(Rx— Wx(WxB — B)) andIIx(Rx— Wx(B — WA,B)) are intuitively more
plausible thadIx(Rx— (WxB — B)) andIIx(Rx— (B - WxAB)), respectively.

So far, we have considered some formal properties of single accessibility relations.
Now, let us turn to some possible connections between two different accessibility rela-
tions.

The conditions inTable 5 are concerned with some possible relations between the
alethic and the deontic accessibility relations. In every model that sati3fiesO,
0A — OA (the necessity-ought or must-ought principle) is valid, and in every model
that satisfie€ - O, OA — A (the ought-possibility or ought-can principle) is valid.

C - 00O isweaker tharC — 0O andC - OO is weaker thalC - 0. C-0o O
does not guarantee thaf — OA is valid, but it guarantees that this principle ought to
hold, i.e. thatO(OA - OA) is valid, andC - OO does not guarantee thatA - GA

is valid, but it guarantees that this principle ought to hold, i.e. @A - GA) is
valid.

In every model that satisfieS — da4,0A — O o A is valid; in every model that
satisfiecC-da5,0A -~ OO Ais valid; in every model that satisfi€s-ad4, OA -~ oOA
is valid; and in every model that satisfiés- ad5, PA - oPAis valid.

If a model satisfie€ — Po P, thenP o A — oPAis valid in this model. If a model
satisfiesC — O o P, thenO 0o A — 0OA is valid in this model. If a model satisfies
C - oOP, thenoOA — O o Aiis valid in this model.

‘oW’ in ‘' C-oW’ stands for ‘Must (or Necessity) Want’, and ‘Wdn ‘' C - W'
for ‘Want Can (or Possibility)’ (se@able 6). C — ab4 (as in ‘alethic boulesic 4") is
called ‘C —ab4’ because it is similar to the well-known alethic (modal) condiion4
and the alethic deontic conditidd — ad4, and similarly forC — ab5, C — ba4 and
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Table 6: Alethic boulesic interactions: Conditions concerrilmgrelation betweefit
and(

Condition Formalisation of condition

C-ow VéVTVwV o (Adww't > Rww't)

C-Wwo VoY1V 0w (Adww't A Rww't)

C-WwaW | YéVrVouVu' Vo' (Jéww't A A0 w"'1T) = Re'w't
C-WWS | VoVTVwVw (Udww't - Fw'" (Aw' vt ARw'0"'T))

C-ba4 VéVTVoVe' Vo' (Asww't A RO 0'1) > Row''1)
C-bab YoVrVwVo' Vo' (Adww't A Rwwt) - Ro'w't
C-ab4 VéVTVwV o' Vo' (Rww't A Aéw' w''1) — Asww'T)
C-ab5 VoVTVwV o' Vo' ((Rww't A ASww' 1) — Adw' "'t

C-AoP YoVTV Vo' Vo' (Adww't A Rwwt) - Fo™" (Ro' 0"t A Asw” 0"'1))
C-WoOP | VoVTVwVw' Vo' (Rew't A Adw'w"'7) - F0"" (Aswe T A Rw™ 0"'1))
C-owP VéVTVwVw' Vo (Asww't AR w'1) - F0" (Rww' T A As0" "' 1))

C-bab. ‘AoP in‘C-.A40P’is an abbreviation of ‘Acceptance Must (or Necessity)
Permutation’; ‘W oP’ and ‘0WP’ stand for ‘Want Must (or Necessity) Permutation’
and ‘Must (or Necessity) Want Permutation’, respectively.

The conditions inTable 6 are similar to the conditions iffable 5. They are
concerned with some possible relationships between the boulesic accessibility rela-
tion and the alethic accessibility relatioil€ — o)V says: ‘For every (individualy,
for every (moment in time), for every (possible world)» and for every (possible
world) ’, § acceptsw’ in w att only if «' is alethically accessible from at 7. In
other words, ifC — oW holds, then it is not the case thétacceptsw’ in w at 7 if
w' is not alethically accessible from at 7. In every class of models that satisfies
this condition, the following version of the so-callagpothetical imperativés valid:
UIx(Rx— ((WxA A O(A - B)) - WxB)), which says that ik is perfectly rational,
then if x wantsA to be the case and it is necessary thanly if B is the case ther
wantsB to be the case. Hence, this condition is philosophically quite interesting.

C - W< is another philosophically interesting condition. Accordingte W<,
for every (individual)s, for every (moment in timey, for every (possible world
there is a (possible world)’ such thats acceptsw’ in w att and«’ is alethically
accessible fronw atr. In other words, in every possible world, at every moment in
time, 6 accepts at least one possible world that is alethically accessible at that time.
This condition is similar to conditio€ — bD (Table 4). C - W< entailsC - bD,
butC - bD (in itself) does not entaiC — W<. In every class of models that satisfies
this condition, the following schema is validix(Rx — (WxA — OA)), that is, if
an individualx is perfectly rational, thex wants it to be the case thatonly if Ais
possible. In other words, according to this condition, a perfectly rational individual
does not want anything impossible. This is an intuitively plausible principbewints
something that is impossibl&'s want will inevitably be frustrated.

C-WoW is weaker thariC — oW, andC - WW<S is weaker thaiC - WS, In
every model that satisfigs - W oW (andC — UR), IIx(RXx - Wx(OA - WxA)) is
valid, and in every model that satisfiés- WW<¢ (andC-UR, orC-oW andC-FT
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Table 7: Boulesic deontic interactions: Conditions concertiiggrelation betwee®
and(

Condition Formalisation of condition
cC-ow VéVTVwV o' (Adww't > Gww't)
C-wo VoVTVwVw (Gww't - Asww't)

c-04 VoYV wiw' (Adww't A Gww't)

C-bdd VoVTVwVw' Vo (Aww't A Gw'w"T) > Gwaw''T)
C -bd5 VoVTVoVo' Vo' ((Asww't A Bww''1) - Sw'o't
C-db4 VoVTV Vo' Vo' ((Gww't A Asw' w"'1) - Asww''T)
C -db5 VoVTVwVw' Vo' ((Gww't A Asww'T) - Adw "'t

C-AOP VYTV wVw' Vo (dww't A Gww''7) - F0" (6’0"t AAdw" w'"'T))
C-WOP | ¥6¥1VuVw' Vo' ((Gww't A Asw' w"'1) » Jo" (Adww"'t A Gw' w''T))
C-OWP | VéVTVwVw' Vo' (Asww't A Sw'w't) > 0" (Sww" 1 A UAsw™ w"'T))
C-00W | VéVTVwVe' Vo' ((Sww't AAsw' w'T) - Gw'w''t

C-0OWO | Vé¥rVuVw' Vo' ((Gww't A Gw'w't) = Adw' vt

C-00A4 | VéVTVwVe' (Gww't - " (Asw' vt A Gu'w"'T))

C-WOW | VéVrVuVw' Vo' (Asww't AAéw'"'T) > Sw'o't

C-WWO | Vé¥rVuVw' Vo' (Asww't A Gw'w't) - Aéw' "'t

C-WOA | VéVTVwVo (Asww't - " (Asw "7 A Gw'w''T))

or C - FTR),IIX(Rx - Wx(WxA - OA)) is valid.

In every model that satisfi€3 - ba4,IIx(Rx— (OA - WxOA)) is valid; in every
model that satisfie€ — ba5,IIx(Rx— (OGA - Wy & A)) is valid; in every model that
satisfiesC — ab4 (andC - UR,C - FT or C - FTR),IIX(Rx—> (WxA - OWA)) is
valid; and in every model that satisfi€s— ab5 (andC - UR,C - FT orC - FTR),
Ix(Rx— (AxB - 0.A4B)) is valid.

If a model satisfie€ - AoP (andC-UR,C-FT orC-FTR), thedIx(Rx— (AxO
B - 0.AxB)) is valid in this model. If a model satisfi€-WoP (andC-UR,C-FT
or C - FTR), thenlIx(Rx— (Wx 0 A - oWxA)) is valid in this model. If a model
satisfie€C-oWP (andC-UR,C-FT orC-FTR), thedIx(Rx— (OWA - WxOA))
is valid in this model.

The conditions inTable 7 are concerned with some possible relations between
the boulesic and the deontic accessibility relations. According toOW, if o' is
boulesically accessible from to § at 7, thenw' is deontically accessible from at
7, and according t&€€C - WO, «' is boulesically accessible from to § at 7 if «’
is deontically accessible from at 7. In everyC — OW-model, IIx(Rx - (OA —
WxA)) is valid; and in everyC - WO-model, IIX(Rx - (WxA — OA)) is valid.
IIX(Rx - (OA — W\A)) is a kind of internalism ('If an individuak is perfectly
rational (reasonable or wise), then if it ought to be the caseAhhen x wants it to
be the case thak). ITx(Rx— (WxA — OA)) (‘If an individual x is perfectly rational
(reasonable or wise), thenxfwants it to be the case thatthen it ought to be the case
that A’) is the ‘converse’ of this proposition. If a model satisfies b@tk OV and
C - WO, thenIIx(Rx - (OA < WxA)) is valid in this model.TIx(Rx - (OA <
WiA)) says that ifx is perfectly rational (reasonable or wise), then it ought to be the
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Table 8: Temporal alethic interactions: Conditions concertiiegrelation betweeft
and<

Condition | Formalisation of condition
C-ASP | VVT'VoVw' ((7 < 7' ARwo't") > Row'r)
C-AR VIV VoVo' Vo' ((1 < 7 A Rwo't A Re'0''t") > Row''1)

case thaf iff x wantsit to be the case that. (See Section 5 for more on this.)

In everyC — O.A-model, IIx(Rx - (OB — A,B)) is valid. IIx(Rx - (OB —
AxB)) says that ifx is perfectly rational (reasonable or wise), then if it ought to be the
case thaB thenx accepts that it is the case that

In every model that satisfi€s — bd4, [Tx(Rx— (OA - W,OA)) is valid; in every
model that satisfie€ — bd5, IIX(Rx - (PA — WyPA)) is valid; in every model that
satisfiesC — db4 (andC - UR, orC-oO andC - FT or C - FTR),IIx(Rx— (WxA —
OWxA)) is valid; and in every model that satisfi€s- db5 (andC - UR, orC - 0O
andC - FT or C - FTR),IIx(Rx— (AxB - O.A«B)) is valid.

If a model satisfie€ - AOP (andC-UR, orC-0O andC-FT orC-FTR), then
Ix(Rx— (AxOB — O.AB)) is valid in this model. If a model satisfi€&-1/VOP (and
C-UR, orC-00 andC - FT or C - FTR), thenlIx(Rx - (WxOA — OW\A)) is
valid in this model. If a model satisfi€s— OWP (andC - UR, orC-o0O andC - FT
or C - FTR), therlIx(Rx— (OWxA - W,OA)) is valid in this model.

C - OOW is weaker thal€ — OW, C - OWO is weaker thai€ - WO, and so on
for C-00A, C-WOW, C- WWO, andC - WOA.

In every model that satisfigs — OOW (andC - UR, orC - 0O andC - FT or
C-FTR),IIx(Rx— O(OA - W,A)) is valid; in every model that satisfi€- OWO
(andC-UR, orC-o0 andC-FT orC-FTR),IIX(Rx— O(WxA - OA)) is valid; in
every model that satisfi€s— OO.A (andC - UR, orC-oO andC-FT orC-FTR),
Ix(Rx - O(OB — A,B)) is valid; in every model that satisfi€s - YWOW (and
C-UR, orC-oW andC- FT or C - FTR),IIx(Rx— Wx(OA - WiA)) is valid; in
every model that satisfi€s-WWO (andC-UR, orC-oW andC-FT orC-FTR),
IIx(Rx— Wx(WxA — OA)) is valid; and in every model that satisfiés- WWO.A (and
C-UR, orC-oW andC - FT or C - FTR),IIx(Rx— Wx(OB — A«B)) is valid.

The conditions inTable 8 are concerned with some possible relations betvigen
and<. In the conditions in this tabléAS Pstands for ‘alethic shared past’ aAdR for
‘alethic ramification’.

According toC — AS P, it is true that if a world)’ is alethically accessible from a
world w at time7’, thenw' is alethically accessible from at every moment that is
earlier thanr’. This condition is plausible if we model reality as a tree-like structure
that branches towards the future and not as a set of entirely unconnected possible worlds
and moments in time. Then we can think of the possible worldé/ias possible
histories of one and the same world (reality) rather than as distinct worlds.

Note thatC — AR follows from C — ASPandC - a4. C - ARis, therefore, also
plausible if we model the world as a tree-like structure.

If a model satisfie€ — AS P, we can show that the following sentences are valid:
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Table 9: Temporal deontic interactions: Conditions concerthirgelation betwee®
and<

Condition | Formalisation of condition

C-0GdT | VIVr' VoV ((t < ' A Gww't) » Go'w't’

C-0GdB | VtV©'VoVu' Vo' ((r < 7' A Gww't A B’ w"'t") - 6w w't’
C-DR VTV VoV Vo' ((1 < 7' A Gww't A Bw'w't") - Gww''T)

Table 10: Temporal boulesic interactions: Conditions concertiiagelation between
2 and<

Condition | Formalisation of condition

C-WGbDT | VoVTVTr'VwVw' ((1 <7 A ASww't) - Adw' w't’

C-WGbB | YéVrVT'VuVw' Vo' ((1 < 7' AAdww't A Asw'w"'t") - Asw” w't’
C-BR VoVTVT' VoV Vo' (1 < 7' A Adww't A Adw' w''t") - Adww''T)

HoA - oHA PoA - oPA,oGA - GoAandoA - GoPA.

If a model satisfie€ — AR, we can show thaitGA - oG o Ais valid.

The conditions inTable 9 are concerned with some possible relations between the
temporal and the deontic accessibility relations.

In everyC — OGdT-model,OG(OA — A) is valid, and in everC - OGdB-model,
OG(A — OPA) is valid. If a model satisfie€ — DR (‘deontic ramification’) OGA —
OGOA s valid in this model.

C - OGdT is weaker thal€ - dT andC - OGdB s weaker thai€ - dB; if a model
satisfiesC — dT, it also satisfie€C — OGdT, and if a model satisfie€ — dB, then it
satisfiesC — OGdB. However, we have already observed tGat dT andC — dB are
intuitively implausible.OG(OA — A) says that it ought to be that it is always going to
be that ifA ought to be ther is true; in other words, it says that it ought to be that it is
always going to be the case tHiI is true (not thadT is in fact true), and this seems
to be intuitively much more plausible tha itself. OG(A -~ OPA) says that it ought
to be that it is always going to be thatAfis true then it ought to be permitted that
In other words, this sentence says that it ought to be that it is always going to be that
dBis true. This is intuitively more plausible thaiB itself.

Note that if a model satisfies bo@ - OGdT andC - OdT, thenOG(OA — A)
is valid in this model, that is, then it is true that it ought to be that it is and that it is
always going to be the case that if it ought to be the caseflianA. OG(OA — A)
is by definition equivalent wittO((OA - A) A G(OA — A)). Likewise, if a model
satisfies botfC — OGdB andC - OdB, thenOG(A — OPA) is valid in this model.
OG(A — OPA) is by definition equivalent witl©((A - OPA) A G(A - OPA)).

The conditions inTable 10 are similar to the conditions iffable 9. They are
concerned with some possible connections betweand<. If a model satisfie€ -
WGDT (andC - UR), IIx(Rx - WxG(WxB — B)) is valid in this model, and if a
model satisfie€ - WGhB (andC - UR), IIx(Rx - WxG(B - WyA«B)) is valid in
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Table 11: Alethic boulesic deontic interactions: Conditi@asicerning the relation
betweert®, 2l and&

Condition | Formalisation of condition

C-00OW | VoVTVwVo' Vo' ((Gww't A Adw'w'T) > Ro'w"'1)
C-WoO | VéVrVwVe' Vo' (Réww't A Gw'w’'t) - Reo'w''1)
C-0OWS | VoVTVuVe (Gww't - Ju'" (Asw' vt A Rw'w"'1))
C-WOS | VoVTVwVe (Asww't —» Fw" (6w’ w't ARw'w"'T))

this model. TIx(Rx - (WxGB — WxGWxB)) is valid in every model that satisfies
C - BR(‘'boulesic ramification’) (an@ — UR).

Note that if a model satisfies bo@- WGbT andC - WbT (andC - UR), then
IIX(Rx - WxG(WxB — B)) is valid in this model, that is, then it is true thatxfis
perfectly rational, therx wants it to be that it is and that it is always going to be the
case that ifx wants it to be the case thBtthenB. TIx(Rx -~ WxG(WxB — B)) is by
definition equivalent withIx(Rx— Wy((WxB — B) AG(WxB — B))). Likewise, if a
model satisfies bot6 —-/GbBandC - WbB (andC - UR), thenlIx(Rx— WG (B -
WxAxB)) is valid in this model. TIX(Rx - WG (B - WxAB)) is by definition
equivalent withlIx(Rx— Wx((B - WxAxB) A G(B - WxAxB))).

So far, we have considered some formal properties of single accessibility relations
and some possible interactions between two different accessibility relations. Now, let
us investigate some possible connections that involve three different accessibility rela-
tions.

The conditions iffable 11 concern some possible interactions betw#e®( and
S.

C-oWis stronger tha€ - Oo W, C - O is stronger tha® - Wo O, C-Wo
is stronger thatC - OW<, andC - O< is stronger thal® — WOO. Every sentence
that is valid in aC - O o W-model is therefore also valid in@ - oWV-model, etc.

If a model satisfie€C - O oW (andT - UR), thenIIx(Rx - O(OA - W\A))
is valid in this model. If a model satisfi€&s— W o O (andT - UR), thenlIx(Rx —
Wx(OA - OA)) is valid in this model.lTx(Rx - O(WxA - <A)) is valid in every
model that satisfie€ - OW<¢ (andT - UR), andlIx(Rx— Wx(OA — SA)) is valid
in every model that satisfi&gs - WO (andT - UR).

If it is reasonable to acceft- W<, then itis also reasonable to acc€pt OW O
since the latter is derivable from the former. However, some might thinlCthav < is
too strong. Such an individual might still believe titat OWW< is reasonable. Accord-
ing to TIx(Rx - (WA — OA)), every perfectly rational individual wants something
only if it is possible. However, according fdx(Rx -~ O(WxA — &A)), this is not
necessarily the case. Even if this sentence is true, it is possible that someone that is
perfectly rational wants something that is impossible. But it is true that if someone
is perfecty rational, then it ought to be that she wants something only if it is possible
according to this formula. Similar remarks apply to the other conditiofabie 11.

In this paper, | will not try to decide whether or not this position is plausible, but it is
clearly interesting enough to be worth mentioning.
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Table 12: Temporal boulesic deontic interactions: Conditimorscerning the relation
betweerRl, G and<

Condition Formalisation of condition

C - 0OGbT VoVTVT' VoVo' ((7 < 7' A Gwaw't) - Adw' W'’

C - OGbB VoVTVT' VoV Vo' ((1 < 7' A Bww't A ASw'0"'T') - Asw" w't’
C-0GOW | VoVrVr'VoVw' Vo' ((1 <7 A Bww't AAsw' w'7") - Guw'w''t’
C-0OGWO | V6VTVT' VoV Vo' ((T < 7' A Bww't A Gw'w"'T") - Asw' "7’
C-0GOA | VoVrVr'VoVw ((1 <7 ABww't) » Jw" (Asw' vt A ' w"T"))
C - WGdT VoVTVT' VoV ((r < ' Addwaw't) - Gw'w't’

C-WGdB | VéVTVT' VoV Vo' ((T < 7' AUsww't A Gw'w't") > Gw" 0’7’
C-WGOW | VoVrVr'VoVw' Vo' ((1 < 7' A ASww't A Asw'0"'T") - S’
C-WGWO | VoVrVr'VoVw Vo' ((1 < 7' AAdww't A Bo'w't") - Adw' w1’
C-WGOA | VéVTVT'VuVo' ((7 < 7 Adww't) - Jo" (A0 0"t A Sw'w'T"))

The conditions infable 12 concern some possible relationships betw#te® and
<.

If a model satisfie€ - OGbT (andC - UR), thenlIx(Rx -~ OG(WxA - A)) is
valid in this model, and if a model satisfi€s- OGbB (andC - UR), thenIIx(Rx —
OG(B - WyAB)) is valid in this model.TTIx(Rx - OG(OA — W,A)) is valid in
every model that satisfigs - OGOW (andC - UR); I[Ix(Rx— OG(WxA — OA)) is
valid in every model that satisfi€&- OGWO (andC - UR); andlIx(Rx— OG(OB —
AxB)) is valid in every model that satisfi€s - OGO.A (andC - UR). If a model
satisfiesC - WGAT (andC - UR), I[Tx(Rx— WxG(OA — A)) is valid in this model,
and if a model satisfie8 - WGdB (andC - UR), IIx(Rx— WG (A — OPA)) is valid
in this model. TIx(Rx - W G(OA — WxA)) is valid in every model that satisfies
C - WGOW (andC - UR); ITx(Rx > WG(WxA — OA)) is valid in every model
that satisfie€ - WGWO (andC - UR); andlIx(Rx— WxG(OB — A«B)) is valid in
every model that satisfi€s - WGO.A (andC - UR).

C - OGOW is weaker tharC - OW, C - OGWO is weaker tharC - WO, C -
OGOA is weaker thaiC — 0.4, C - WGOW is weaker thaitC — OW, C - WGWO
is weaker thai€ - WO, andC - WGOA is weaker thai€ — O.A. Every sentence that
is valid in aC — OGOW-model is therefore also valid in@ - OWW-model, etc.

Suppose a model satisfi€s- OGbT andC - ObT (andC - UR). ThenlIx(Rx—
OG(WxA — A)) is valid in this model. Suppose a model satisfis OGbB and
C - ObB (andC - UR). ThenIIx(Rx - OG(B — WxAB)) is valid in this model.
IIX(Rx > OG(OA — WxA)) is valid in every model that satisfi&- OGOW and
C - OOW (andC - UR); IIx(Rx - OG(WxA — OA)) is valid in every model that
satisfiesC - OGWO andC - OWO (andC - UR); andlIx(Rx— OG(OB — AxB))
is valid in every model that satisfi&s - OGO.4 andC - OOA (andC - UR). If a
model satisfie€ - WGAT andC - WdT (andC — UR), IIX(Rx - WG (OA — A))
is valid in this model, and if a model satisfi€s- WWGdB andC - WdB (andC - UR),
Ix(Rx - WKG(A — OPA)) is valid in this model.TTx(Rx - WxG(OA - W,A))
is valid in every model that satisfigs - WGOW and C - WOW (andC - UR);
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Table 13: Temporal alethic deontic interactions: Conditiooscerning the relation
betweerR, G and<

Condition Formalisation of condition
C-0GOoO | VIVT'VuVo' Vo' ((T < 7' A Bww't A Gw'w"T") - Rw' w7’
C-0GO® | VIVI' VoV ((t < 7' A Gww't) » 30" (60 0"t A Rw'0"'1"))

Table 14: Temporal alethic boulesic interactions: Conditiomscerning the relation
betweertR, 2( and<

Condition Formalisation of condition
C-WGoOW | VéVTVr'VuVw' Vo' ((1 < 7' AdSww't A w0 T") - Rw'w"' 7’
C-WGW<S | VoVTVT VovVw ((t < 7' Adww't) » 0" (Adw 0"t A Ro'w"'T"))

IIX(Rx— WG (WA — OA)) is valid in every model that satisfi€s - WGWO and
C - WWO (andC - UR); andIlx(Rx - W,G(OB - A,B)) is valid in every model
that satisfie€ - WGO.A andC - WOA (andC - UR).

The conditions infable 13are concerned with some possible interactions between
MR, 6 and<. In everyC - OG o O-model, OG(ODA — OA) is valid, and in every
C - OGO¢-model, OG(OA — ©A) is valid. If a model satisfie€ — OG o O and
C-00o0, OG(OA — OA) is valid in this model, and if a model satisfi€s- OGO
andC - O0¢, OG(OA — OA) is valid in this model.

The conditions infable 14are concerned with some possible interactions between
R, A and<. If a model satisfie€ - WG o W (andC - UR), IIX(Rx - WG (DA —
WxA)) is valid in this model; and if a model satisfie&s- WGW< (andC — UR),
IIX(Rx— WKG(WxA — OA)) is valid in this model. If a model satisfi€&- WGoWwW
andC-WoW (andC-UR),IIx(Rx— WxG(OA - W,A)) is valid in this model, and
if it satisfiesC-WGW <O andC-WW<E (andC-UR), IIX(RX— WxG(WKA - OA))
is valid in this model.

Finally, let us consider some possible interactions between all four accessibility
relations (sedable 15).

If a model satisfie€ -OGoW (andC-UR),IIX(Rx— OG(OA - WA)) is valid

Table 15: Temporal alethic boulesic deontic interactions: Conditions concerning the
relation betweefR, 2, S and<

Condition Formalisation of condition

C-0GoW | VéVrVr'VuVw' Vo' ((1 < 7' A Bww't AAsw' w"'t") - Ro'w"t’
C-0GWS | VoVTVT' VoV ((t < v A Gww't) » 30" (Asw' vt AR w''7"))
C-WGDO | VéVTVT' VvV Vo' ((1 < 7' A Aww't A Gw'w"'T") - Ro'w''t’
C-WGOG | VeVTVT' VuVw' Vo' ((1 <7 AAdww't) - Fw" (60’0t ARw'w''T"))
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Table 16: Conditions on the valuation functiem a model

Condition | Formalisation of condition

C-FT If Rwiwot andAis an atomic sentence

(or a sentence of the fori/.B, A:B, R¢B, Z.B or N:B,

given that-Rcis true inw; atr) that is true inw; atr, thenAis true inw, atr.
C-BT If Rwiwot andAis an atomic sentence

(or a sentence of the fori/.B, A:B, R¢B, Z.B or N:B,

given that-Rcis true inw, at) that is true inw, atr, thenAis true inw; atr.
C-FTR | If Rwiwor andRcistrue inws att, thenRcis true inw, att (for anyc).
C-UR If Rcis true inw; atti, thenRcis true inw, atr, (for anyc).

in this model; if it satisfie€€ - OGW<¢ (andC — UR), IIX(Rx - OG(WKA — OA))
is valid in this model; if it satisfie€ — WG o O (andC - UR), ITX(Rx— WxG (DA -
OA)) is valid in this model; and if it satisfie€ - WGO< (andC - UR), ITx(Rx —
WKG(OA - &A)) is valid in this model.

If a model satisfie€ -OG oW andC-OoW (andC-UR),IIX(Rx— OG(OA —
WyA)) is valid in this model; if it satisfie€ - OGW< andC - OW< (andC - UR),
IIx(Rx - OG(WA - OA)) is valid in this model; if it satisfie€ - WG o O and
C-WoO (andC - UR), IIx(Rx - WG (oA — OA)) is valid in this model; and if
it satisfiesC - WGO$ andC - WO (andC - UR), TIX(Rx— W G(OA - GA)) is
valid in this model.

We have now considered some possible interactions between the different accessi-
bility relations in our models. It is also possible to impose conditions that involve the
valuation functiorv. Let us consider four conditions of this kind.

The conditions iMMable 16are concerned with some possible relations between the
alethic accessibility relatiofk and the valuation function. ‘FT’ stands for ‘forward
transfer’, BT’ for ‘backward transfer’, ‘R’ for ‘rationality’ and ‘U for ‘universal’. In
every model that satisfi€3— UR, we can show that every perfectly rational individual
(at every moment in time) is necessarily perfectly rational; in every model that satisfies
C-FTR(andC -oW), we can show that every perfectly rational individual (at every
moment in time) wants to be perfectly rational. AccordingXte FT, every atomic
formula (and every sentence of the fomi.B, A.B, R.B, Z.B or N;B, given that
-Rcis true) is historically settled, and according@e- BT every atomic formula (and
every sentence of the foriv:B, A.B, RB, Z.B or N.B, given that-Rcis true) that is
historically possible is trueC — FT andC - BT are plausible if we think of the world
as a tree-like structure. Note that they do not entail &varysentence is historically
necessary, nor thaverysentence that is historically possible is true. Even if we assume
thatC - FT andC - BT hold, various ‘future-directed sentences’, suchzdsa and
FRa, are, for example, not necessarily historically settled.

The conditions mentioned in this section can be used to obtain a categorisation of
the set of all models into various kinds. L&1(Cy,...,Cy) be the class of (all) models
that satisfy the condition8y,...,C,. Then, for exampleM(C - bD,C - b4,C - b5)
is the class of (all) models that satisfy the conditi@hs bD, C — b4 andC - b5, etc.
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We can now define the concept of a system of a class of models.

Definition 4 (System of a class of model$he set of all sentences in the languatje
that are valid in a class of model$1 is called the (logical) system @¥1, or the logic
of M, S(M).

By imposing different conditions on our models we can generate many logical sys-
tems that are non-equivaler§(M(C - bD,C - b4,C - b5)) (the system ofM (C -
bD,C - b4,C - b5)) is, for example, the class of sentence<ithat are valid in the
class of (all) models that satisfy the conditiadds bD, C — b4 andC - b5.

We have now described the semantics of our systems. Let us turn to the proof
theory.

4 Proof theory

In Section 4, | will describe several tableau rules that can be used to construct a set of
tableau systems. Every tableau system is an extension of propositional logic (for more
on semantic tableau and propositional logic, see, for example, [136] and [86]). Every
system also includes a modal part, a temporal part, a deontic part, a boulesic part and
rules for a pair of (possibilist) quantifiers. For more information on the tableau method
and various kinds of tableau systems, see, for example, [48], [59] and [118].

The tableau rules in this section correspond to the semantic conditions introduced
in Section 3.3. The interpretation of the rules is standard. For example, according to
U (Table 18), we may add\,w;t; (for anyw; andt;) to any open branch in a tree that
includesUA, wit; according to-A, we may extend the tip of any open branch in a tree
on which-(A A B), witx occurs into two new branches, withA, wity at the tip of one
new branch ané B, w;t, at the other, etc.

Intuitively, ‘Rc,wite’ in the ‘boulesic rules’ says that the individual denoted by
‘c’ is perfectly rational in the world denoted by {at the time denoted byt, and
‘Acwwity’ says that the world denoted by jinis boulesically accessible (acceptable)
to the individual denoted by ‘c’ in the world denoted by, &t the time denoted by
‘t’. Note thatc can be replaced by any constant in the rule&able 21-22. The same
is true of other rules in this section that include something of the facayw;ty; that
is, in every rule of this kindg can be replaced by any constant.

The quantifier rules (Table 23) are never instantiated with varialal@sA[a/x] is
any constant on the branch (or a new one if there are no constants on the branch) and
in A[c/x] is a constant that is new to the branch, that is, that does not already occur on
the branch.

In the CUT rule (Table 24),A can be replaced by any sentence. However, in the
completeness proofs, | will use a weaker r@¢] TR, and no€CUT. INnCUTR,A s of
the formRc, wherec is a constant (that occurs as an index to some boulesic operator)
on the branch.T - li andT - lii are redundant in any system that does not include
T-FC, T-PCorT -C (seeTable 27).

(T-TIi)is interpreted in the following wayA(t;) is a line in a tableau that includes
‘ti’, and A(t;) is like A(ti) except that i is replaced by ‘t. Thatis, if A(t;) is A, wit;,
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Table 17: Propositional rules

- AN =A
—-=A, Witk (A/\ B),Witk —\(A/\ B),Wi'[k
) ) P
A, Witk A, Witk -A Wity —B, witk
B, witk
\% -V -
(Av B),witg -(Av B),witk (A - B),witk
¥ N\ | ¥ N\
A wity B, witk -A, Witk AWty B, wity
=B, witk
- = <~ -
-(A - B),witg (A< B),witk -(A < B),witk
! 2N v N
A, Witk AWty —A, Witk A wity —A, Witk
-B, witk B, witx —B, witk -B, witk B, witgk
Table 18: Basic alethic rules (ba-rules)

U M O &
UA, Witk MA, witk OA, Witk OA, Witk
| \ rwiw;ty }
A, wijty A,wit | rwiwjtg

for anyw; andt; | wherew; andt; arenew A, Witk A, witk

-U -M -0 -
-UA, witk -IMA, w;tx -0 AWtk - O A witk
| ) } }
M-A, witk U-A, Witk O-A, Witk O-A, Witk
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Table 19: Basic temporal rules (bt-rules)

A -A S =S
AA wit; -AA Wit SA,Witj —\SA,Witj
{ } { i
A, Witk S-A, wit; A, Witk A-A,wit;
for everyty wherety is new
on the branch| to the branch
G -G F -F
GA, wit; -GA,wit; FA,wit; -FA wit;
tj <tk 1 ! l
| F-A,wit; t <tk G-A,wit;
A, Witk A, Witk
wheretg is new
H -H P -P
HA, wit; -HA, wit; PA, wit; -PA, wit;
tk <t { | i
| P-A,wit; tk <t H-A, wit;
A, witk A, Witk
wheretg is new

Table 20: Basic deontic rules (bd-rules)

(0] P -0 -P
OB, witk PB, witk -0B, witk -PB, witk
SWWijtk 1 1) J,

| SWW;tk P-B,witx | O-B, w;tk

B, wijtk B, wjtk
wherew; is new
Table 21: Basic boulesic rules (bb-rules)

w A R -W -A -R
Rc,witk Rc,witk Rc,wityk Rc,witk Rc,witk Rc,wityk
WeB, Witk AcB, witk ReB,witk | -WeB,witk | - AcB,witk | -RcB, witk

Acww;ty | Acwwitk | { }
| Acww;tk | Ac-B,witk | We—-B, witk AcB, witk
B, wjtk B, wijtk -B, wjtk
wherew; is new
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Table 22: Basic boulesic rules Il (bb-rules)

T N -7 -N
Rc,witk Rc,wityk Rc,witk Rc,witk
Z.B, wity NeB, wity -Z.B,wity | = NcB, witk
} PN } l
AcB, Witk WeB, Witk We—B,witx | NcB, witk Z.B, witk
Ac—B, witk

Table 23: Possibilist quantifiers

IT z =11 -2
IIXA, wit; ZXA, Wit SIIXA Wity | -ZXAWitj
i l l }
Ala/x], wit; Alc/x], wit; Ex-Awit) | TIx=A,wit;
for every constana wherec is new
on the branch, to the branch
a new if there are no
constants on the branch

Table 24: TheCUT-rule (CUT), (CUTR) and temporal identity rules

CUT T-TIi | T-Tlii
Witk A(ti ) A(ti)
Y N ti =t tj=t
Awity -A, Witk } !
for everyA, w; andty | A(t)) A(ty)
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Table 25: Identity rules

T-R= T-S= T-N-=, T-A=
* s=1t, witk a=b,wtk a=b,wt
| A[s/x], witk } Aaw;Witm

t =1t wityk | a=b,wit |

for everyt A[t/x], witk for anyw; andt; | Abwjwitm
onthe branch whereA
is of a certain form
(see explanation in the text)

Table 26: Alethic accessibility rules (a-rules)

T-ab T-aT | T-aB | T-a4 | T-ab5
Wity Wity rwiwite | rwiwit rwiwit
N \ | rWiWit | rwiwgd

Wi Witk TWiWitic | Twjwitk l i
wherew; is new FWiWit | rwWjWiti

thenA(t,-) is A Wit if A(t) is rwwit;, thenA(t,-) is rwWiwtj; if A(t)ist =ty then
A(t)) istj = t, etc. ITA(t) is A,wt;, we only apply the rule wheA is atomic or of
the formwW,D, A;D, R:D, Z;D or ;D given that-Rt, wt; is on the branchT - T lii is
interpreted similarly.

Table 25includes some ‘identity rules’Rin (T — R =) stands for ‘reflexive’ S
in (T — S =) for ‘substitution (of identities)'N in (T — N =) for ‘necessary identity’,
andAin (T — A =) for ‘(boulesic) accessibility’. (T- R =) is a rule without premises;

t = t,wity may be added to any open branch in a tree.

(T - S =) is applied only ‘within world-moment pairs’ and it may be applied to
any atomic formula. However, we shall also allow substitutions of the following kind.
Let M be a matrix where, is the first free variable iM anda, is the constant in
Ml[ay,...,a,...,an/ ?] that replaces,. Furthermore, assume that we haveb,w;ty,
Mlay,...,a,...,an/ ?],witk and-Ran, Wity on the branch. Then we may apply {T
S =) to generate an extension of the branch that inclMs, ..., b,...,an/ ?],Witk.

Table 42includes some ‘transfer rules’FT’ in ‘T - FT’ and ‘T - FTR’ is an
abbreviation of ‘Forward Transfer'BT' in ‘T — BT’ of ‘Backward Transfer’, and ‘R’
in‘T -FTR’and ‘T- UR’ of ‘Rationality’. Note thatAin T — FT (T — BT) is atomic
or of the formW;B, AcB, RcB, Z.B or N;:B given that-Rc,wit; (-Rc,wjt) is on the
branch.T - FT is stronger thad - FTR; T - FTRis derivable in every system that
includesT - FT.

If a system include¥ - UR, we can show that the following sentence is a theorem
in this systemIIx(Rx — URX), which says that every perfectly rational individual is
necessarily perfectly rational. Intuitively, it is not obvious that this principle is true.
Individuals that are contingently perfectly rational are conceivable and appear to be
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Table 27: Temporal accessibility rules (t-rules)

T-t4 T-PD T-FD
ti <t tj t
tj <tk | !
| tk <t tj <tk
ti <t wherety is new wherety is new
T-DE T-FC T-PC
ti <t ti <t tj <t
! t <tk tk <t
i <tk PAAN N
tk <t G<ttj=ttk <tj | tj <tetj=tktk <t

wherety is new

T-C T-UB T-LB

ti, tj t <t tj<t

v | N ti <tk tk <t
i<ty ti=t t<t | !

tp <t t <t

t <t t <tk

wheret; is new
to the branch

wheret, is new
to the branch

Table 28: Deontic accessibility rules (d-rules)

T-dD T-d4 | T-d5 | T-0OdT | T-0dB
Witk SWW;t) SWW;t SWW;t) SWWit
| SWi Wit SWWl; | SWi Wit
SWWjtk | | SWiwit) !
wherew; isnew | SWwili | Swiwgt SWW;

Table 29: Boulesic accessibility rules (b-rules)

T-bD T-b4 T-b5 | T-WbT | T-WhbB

Witk Acwwit | Acwwit | Acwwit Acww;ty

| AcwWiwit | Acwwt | AcCW Wity
Acww;ty | l Acwwity |

wherew;j isnew | Acwwiti | ACWWit Acwwity
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Table 30: Alethic-deontic accessibility rules (ad-rules)

T-oO0 | T-0¢& | T-0O00 | T-00 T-da4 | T-dab
SWWitk Witk SWWit SWWit SWWwi;t SWW;t
| | SWi Wit | W Wity Wi Wi
TWiwjtk SWW;jtk | rWiwgt | !
rwWiw;ty Wi Wty SWj Wl Wi Wl Wi Wty
wherew; wherew
is new is new
T-add | T-ad5 | T-PoP | T-OOoP | T-0OOP
rwiwit rwiwit SWWijtm rWiWitm SWWitm
SWj Wil SWWl) W Wity SWjWkim IWjWiim
\ I ) ) |
SWWT SWjWity r'WiWitm SWWtm r'wWiwtm
SWWith Wi Witm SWWitm
wherew wherew; | wherew
is new is new is new

Table 31: Alethic-boulesic accessibility rules (ab-rules)

T-oW | T-Wo | T-WoWw | T-WWO T -ba4d T -bab
Acww;ty Witk Acww;t Acwwit Acwwit | Acwwit
l l Acwi Wity l W Wit Wit
Wi Witk Acww;ty | W Wt ! |
rwWiwjtk FWj Wty AcCwW Wty Wi Wl FWj Wty
wherew; wherew
is new is new
T-ab4d | T-abs T-AoP T-WwaoP | T-oWP
rwiwit, rwiwit, Acwwitm rWiwitm Acwwijtm
Acwiwity | ACWWid, Wi Wictm AcwiWitm W Wictm
} i | i i
Acwwity | Acwiwil rWjWitm Acwwitm rwiwtm
AcwWwitn rwiWitm AcWWtn
wherew; wherew wherew,
is new is new is new
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Table 32: Boulesic-deontic accessibility rules (b-d-rules)

T-OW | T-WO | T-0A T - bd4 T - bd5

Acww;ty SWWitk Witk SWWit) SWWit)
l | ) ACW; Wity ACWWit
SWwitk | Acwwitk | Sww;tk } }

Acww;ty ACWWit Acwiwity

T-db4 | T-db5 | T-AOP | T-WOP | T -OWP

Acww;jt | Acwwit | Acwwitm SWWijtm Acwwijtm

SWWl) SWWl) SWWitm Acw Wit SWiWitm
4 ! ! v 4
SWWict) SW, Wit SWWitm Acwwitm SWWitm

AcWWitn SWWitm AcwWitm
wherew wherew wherew
is new is new is new

Table 33: Boulesic-deontic accessibility rules (b-d-rules)

T-00W | T-OWO T-00A4

SWWit) SWWit SWWit)
Acw Wty SW; W) l
} } Acw Wity
SW; Wil AcwW Wity SW; Wl

wherew is new
T-WOW | T-WWO T-wWO0A

Acwwit Acwwity Acwwit
Acw Wity SW Wit !

i } AcW Wity
SW; Wity ACW Wity SW Wity

wherew is new

Table 34: Temporal-alethic accessibility rules

T-ASP| T-AR
rwiwit rwiwity
k<t t <tn

| rWjWgtm
Wi Witk |
Wi Wk
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Table 35: Temporal-deontic accessibility rules

T-0OGdT | T-0GdB | T-DR
SWW;t) SWWit) SWWit)
t<tm t <tn t <tn

! SWWitm | SWiWktm
SWWijtm l l
SWWitm SWWl)

Table 36: Temporal-boulesic accessibility rules

T-WGbT | T-WGbB T-BR
Acwwit Acww;ty Acww;ty
t < tm t <tm t <tm

! AcwWiWitm | ACWWitm
ACW,Wjtm } \
ACWWwitm | ACWWil

Table 37: Alethic-boulesic-deontic accessibility rules

T-Oow | T-WooO T-0Wo T -WOo
SWWit) Acwwit SWW;t) Acwwit
Acwwity SWj Wity 1 )
l l AW Wity SW Wity
Wi Wit W Wit rWiwgt rWijWl)
wherewy is new | wherew is new

Table 38: Temporal-boulesic-deontic accessibility rules

T-0OGbT | T-0OGbB | T-0GOW | T-0GWO T-0G0A
SWW;t) SWWit) SWWit SWW;t) SWW;ty
t <tm U <tm b <tm t <tm i <tm
1 ACW, Wi ACW Wit SWWitm 1
Acwwitm l l | ACW; Wit
ACWWitm SWj Wiktm Acw Wit SWj Wiktm
wherew is new
T-WGAT | T-WGdB | T-WGOW | T-WGWO T -WGOA
Acwwit Acwwit Acwwit Acww;t Acwwit
t <tm U <tm b <tm t <tm U <tm
1 SW;Wikim ACW Wit SWWitm 1
SWWijtm l l | ACW;Witm
SWW;tm SW; Witm AcwWitm SW, Witm
wherew is new
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Table 39: Temporal-alethic-deontic accessibility rules

T-0OGoO | T-0GO¢
SWWit SWW;t)
U <tm i <tm
SWiWitm l

| FWjWitm

W Witm SWWictm

wherewy

is new

Table 40: Temporal-alethic-boulesic accessibility rules

T-WGaw | T-WGWO
Acwwit Acwwit
U <tm i <tm
ACW;Wictm \
l FWjWitm
W Witm AcW Wit
wherewy
is new

Table 41: Temporal-alethic-boulesic-deontic accessililitgs

T-0Gaow | T-O0GW<¢ | T-WGoO | T-WGOo
SWWity SWWity Acwwit Acwwit
t <tm U <tm i <tm t <tm
ACW Wt l SW;Wiktm |
! rWjWgtm | rWjWitm
W Witm ACW Wt W Witm SWWitm
wherewy wherew
is new is new
Table 42: Transfer rules, etc.
T-FT T-BT T-FTR T-UR
AWt A,wity Rc,witk Rc,witk
rwWiwit, rwWiwit TWiwjtg |
i I ! Re,wit
A, wity A wit) Rc,w;jty | for anyw; andt
whereA is of whereA is of
a certain form a certain form
(see explanation in the text) (see explanation in the text)
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(logically) possible. So, itis a good thing that not all systessume that this principle

is true. Whether the transfer rulesTable 42 should be added to our systems appears

to be a matter of choicd& — FT andT — BT seem to be plausible if we think of reality

as a tree like structure that branches towards the future but is determined in the past
(and the present). But for some applications, we may want to exclude them. (For more
on this, see Section 5.)

Let us now introduce some important concepts.

A tree is a kind of structure that consists of a sehotlesordered by a successor
relation. Every tree hasraot that is a node that is not a successor of any node. Every
other node in a tree is a successor of the root. A node without successdiis & a
leaf. A path from the root to a tip is calledosanch. For more on the concept of a tree,
see [135] and [136], pp. 3+

A (semantic) tableau is a tree where the nodes have the following shaps;,
whereAis aformulainC andi, j € {0,1,2,3,...}, orrw;w;ty, Sww;ty, ACWW;t, t < tj,
ort; = tj wherei, j, ke {0,1,2,3,...} andcis a constant irC.

A branch in a tableau is closed just in case batht; and-A,wit; occur on the
branch (for somé\, w; andt;); it is open iffit is not closed. Intuitively, this means that
a branch is closed ift contains a contradiction and it is open precisely when it does
not contain any contradiction. A tableau is closeckiféry branch in it is closed; it is
open just in case it is not closed.

Semantic tableaux can be used to test whether or not a sentence or argument is
valid. Intuitively, a tableau rule shows us how to ‘extend branches’ from given nodes
in a way that preserves satisfiability. We can think of the construction of a tableau
as a systematic search for a model that makes the sentence we are testing false or the
argument that we are testing invalid. If the tableau is closed, it is not possible to find
a model of this kind, since it is not possible to find a consistent model in which all
sentences on some branch in the tableau are true. Hence, if it is a sentence that we are
testing, this sentence cannot be false, and if it is an argument that we are testing, this
argument cannot have true premises and a false conclusion. Consequently, the sentence
or argument that we are investigating is valid. If a branch in a tree is open (and every
rule that can be applied has been applied), it is possible to use this branch to r@ad off
countermodel to the sentence or argument that we are interested in. This countermodel
shows that it is possible that the sentence we are testing is false or that the argument
that we are testing has true premises and a false conclusion. Accordingly, this sentence
or argument is invalid.

Let us now define some important proof-theoretical concepts.

Definition 5 (Tableau systems) Tableau systeftableau system is a class of tableau
rules. Quantified temporal alethic boulesic deontic tableau systearquantified tem-
poral alethic boulesic deontic tableau system is a tableau system that includes all
propositional rules, all basic temporal rules, all basic alethic rules, all basic boulesic
rules, all basic deontic rules, the rules for the possibilist quantifiers, the CUT -rule (or
CUTR) and all the identity rules.

The smallest quantified temporal alethic boulesic deontic tableau system is called

8This ‘intuitive’ line of thought is developed in more detail in the section on soundness and completeness.
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Q. By adding various tableau rules, it is possible to construct a large class of stronger
guantifiedtemporal alethic boulesic deontic tableau systems. Let the name of a quan-
tified temporal alethic boulesic deontic tableau system be a list of the hames of the
(non-basic) rules that the system contains. The initialiTa tableau rule may usually

be omitted. So, ‘aTdDbD’, for example, is the name of the quantified temporal alethic
boulesic deontic tableau system that includes all the rules that every system of this kind
contains and the ruléB- aT, T —dD andT - bD, etc.

Definition 6 (Proof-theoretical conceptdh the following definitions, let S be a (quan-
tified temporal alethic boulesic deontic) tableau system and let an S-tableau be a
tableau generated in accordance with the rules inF¥oof in a system:A proof of

a sentence A in S is a closed S -tableau-§é:;wtg, that is, a closed S -tableau that
starts with-A,wptp. Theorem in a systemA sentence A is atheoremin S (is provable

in S) iffthere is a proof of Ain S, that is, iffiere is a closed S -tableau ferA, wotp.
Derivation in a system:A derivation of a sentence B from a set of senteliciesS is

a closed S -tableau that starts withuigty for every Ac I and -B, wotg. The sentences

in T are called the premises and B the conclusion of the derivatiRnoof-theoretic
consequence in a systenThe sentence B is a proof-theoretic consequence of the set
of sentenceFk in S (B is derivable froni" in S,T" g B) iff there is a derivation of B
fromI' in S, that is, just in case there is a closed S -tableau that starts witlgtf\for
every Ae I and - B, woto.

Definition 7 (The logic of a tableau systenjhe logic L(S) of a tableau system S is
the class of all sentences ihthat are provable in this system.

For examplel(aTdDbD) the logic ofaT dDbD, is the class of all sentencesin
that are provable inT dDbD, that is, in the quantified temporal alethic boulesic deontic
tableau system that includes all the rules that every system of this kind contains and the
rulesT —aT, T -dD andT - bD.

5 Examples of theorems

In this section, | will mention some interesting formulas that are theorems in some
tableau systems. The proofs are usually straightforward and are omitted.
Some ‘boulesic’ sentences that are theorems in every syste#ll the following
sentences (schemas) are theorems in every system in this pe@&x -~ (W¢B <
-Ax-B)), IIx(Rx = (-WxB < A;-B)), IIx(Rx = (Wx-B < -A«B)), IIx(Rx —
(AxB < -Wy=B)), IIX(RX = (Wx(AA B) < (WLAAWKB))), TIIX(Rx— (WxA vV
WiB) = Wx(Av B))), IIX(Rx— (Ax(AA B) - (AxA A AB))), IIx(Rx— (Ax(Av
B) & (AxAvV AB))), IIx(Rx - (Wx(A - B) - (WA - WxB))), IIX(Rx —
(WAAW(A > B)) » WiB)), IX(RX > (Wx(A = B) - (-WxB — -WxA))),
IXx(RX— ((-WxB A Wx(A - B)) - -W,A)), IIX(RX—> (Wx(A - B) - (Wx-B —
Wy=A))), IIX(RX = (Wx=B A Wx(A - B)) - Wy=A)), IIX(Rx - (Wx(A -
B) - (AxA - AyB))), IIx(RXx - ((AxA A WK(A - B)) - AB)), IIX(Rx —
(Wx(A = B) = (-=AB — =AxA))), IX(Rx > ((=ABAWK(A > B)) > - AA)),
Ix(Rx— (Wx(A - B) » (Ax-B = Ax-A))), IX(Rx— ((Ax-BAWx(A - B)) —
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Ax=A)), TIX(RX = (WK(A < B) > (WKA < WiB))), TIX(RXx > (Wx(A < B) -
(-WKA < =WiB))), IIX(RXx > (WxK(A < B) > (Wx-A < Wx-B))), IIx(Rx —
(Wi(A < B) - (AA < AB))), IIX(Rx—> (Wx(A < B) - (-AxA < - AxB))),
IIX(Rx - Wx(A < B) - (Ax-A < A;-B))), IIX(RX - (R«B < -AB)),
IX(Rx - (RxB < Wyx-B)), TIX(Rx - (NyB < -IyB)), TIX(Rx - (ZyB <«
(AxB A Ax-B))), IX(Rx— (NxB < (WxB v Wy-B))), IIX(RX— (ZxB <> Zx-B)),
IIX(RX = (N4B < Nyx=B)), IIX(Rx > (Wy(A = B) - (R«xB - RxA))), IX(Rx—>
((RxBAWK(A » B)) = RxA)), IIX(Rx > (Wx(A = B) - (-RxA —~ -RxB))),
IMX(RX— ((-=RxAAWx(A - B)) - =R«B)), [Ix(Rx—= (Wx(A - B) - (Rx-A —
Rx-B))), IX(RXx = ((Rx=A A Wx(A - B)) - Rx-B)), Ix(Rx - (Wy(A <
B) —» (RxA < R«B))), IX(Rx—> (Wx(A < B) - (=RxA < =RxB))), IIX(Rx >
(Wx(A < B) = (Rx—A < Rx-B))), IIX(RX = (Wx(A < B) - (ZxA < IB))),
IMx(Rx— (Wx(A < B) —» (-IyA < -ZyB))), IIX(Rx > (Wx(A < B) » (Zx-A <
Zy-B))), IIx(Rx > (Wx(A < B) = (NA < NiB))), IIx(Rx > (Wx(A < B) —
(-NXA < =NiB))), TIX(Rx—> (Wx(A < B) - (Ny-A < Ny=B))).

Some sentences that include one type of operator that can be proved in every
system.The dual ofU is M, the dual ofa is ¢, the dual ofA is S, the dual ofG is FF,
the dual oft is P, the dual ofO is P, the dual ofz isF, and the dual offl isIP. Lets be
U, 0, A, G, H, O, G orH, and lete be the dual ok. Then, all the following sentences
(schemas) are theorems in every system in this pafier> — ¢ =B, == B < ¢-B,
1-B< —¢B,¢B < —u-B,s(AAB) « (sAAuB), (sAvsB) - s(AvB), «(AAB) —
(#AneB), ¢(AVvB) < (¢Av eB),s(A—> B) > (sA— =B), (sAArs(A—> B)) > =B,
I(A—> B) - (—.-B—> —|IA), (—.IB/\I(A—> B)) - —|IA,I(A—> B) — (I—|B—) I—|A),
(I—\B/\ I(A — B)) — m-A, I(A — B) — (0A — QB), (QA/\ I(A — B)) — B,
s(A—>B) > (-eB—> -eA), (-eBAs(A—>B)) > —-¢A,s(A—> B) > (¢-B > ¢-A),
(0—|B/\ I(A—> B)) — ¢=A, I(A(—> B) N (IA<—> IB), I(A<—> B) — (ﬂlA<—> ] B),
1(A< B) > (s-A <+ n-B),s(A< B) > (¢A < ¢B),s(A< B) > (- ¢ A< — ¢ B),
1(A< B) > (e-A < «-B).

Some ‘boulesic’ sentences that are theorems in evelp-system.All the follow-
ing sentences (schemas) are theorems in every system in this paper that in@udes
IIX(Rx— (WxB - AxB)), IIX(Rx— ~(WxB A Wx-B)), IIX(Rx— (AxB Vv Ax-B)),
IIX(Rx = =(Wx(Av B) A (Wx=A A Wx=B))), IIX(Rx > (Wx(A = B) - (WA —
AxB))), TIX(RXx = (WA A WK(A > B)) — AxB)), IIx(Rx - Wx(A - B) —
(-AxB = -W,A))), IX(RX > ((-AxB A WK(A = B)) - -WiA)), IIX(Rx —
(Wx(A = B) > (Wx=B > -W,A))), IX(RX— (Wx=BAW\(A = B)) > -W,A)),
IIX(Rx - (WxB - -RyxB)), IIX(Rx = (R«B - -WxB)), IIX(RX - —-(RxB A
Rx=B)), TIx(Rx = =(WxB A R«B)), TIX(Rx = =(Wx(A v B) A (RxA A RxB))),
IIX(Rx = (Wx(A = B) > (WxA - =R«B))), TIX(RX = ((WxAA Wx(A = B)) —
-RxB)), IIx(Rx—> (Wx(A = B) = (RxB - -WA))), IIX(RXx— ((RxB A Wx(A —
B)) — -WA)).

Some ‘alethic-boulesic’ sentences that are theorems in every/V-system. All
the following sentences (schemas) are theorems in eviEvysystem in this paper:
IIx(Rx— (O(A = B) = (WA - WxB))), IIX(Rx— ((WxAAT(A - B)) > WiB)),
IMx(Rx— (O(A - B) - (-WxB — -W\A))), IIX(Rx > ((-WxBAO(A - B)) —
-WiA)), TIX(RX — (O(A - B) - (Wx-B - Wx-A))), IIX(Rx - ((Wx-B A
O(A — B)) > Wx-A)), IIx(Rx - (o(A - B) - (AA - AyB))), IIx(Rx —»
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((AxA A O(A - B)) - AxB)), IIx(Rx - (a(A — B) » (-AxB - -AsA))),
Ix(Rx - ((-~AxB A O(A - B)) - - AA)), IIx(Rx - (a(A - B) - (Ax-B —
Ax-A))), IIX(RXx = ((Ax-BAO(A - B)) - Ax-A)), [Ix(Rx — (O(A < B) -
(WxA < WiB))), IIX(Rx— (O(A <> B) - (-WxA < -WxB))), IIX(Rx— (O(A <
B) - (Wx-A <& Wx-B))), IIx(Rx - (O(A < B) - (AA < A4B))), IIx(Rx —
(O(A < B) > (~AA < ~A,B))), TIX(RXx > (O(A < B) > (A < A-B))),
IIX(Rx— (B(A = B) - (RxB = RxA))), [IX(Rx— ((RxBAT(A = B)) > RxA)),
IIX(Rx — (a(A - B) - (-RxA - =RxB))), IX(Rx > ((-RxAAO(A - B)) —
-RxB)), IX(Rx— (O(A — B) » (Rx-A - Rx=-B))), IIX(Rx—> ((Rx-AAO(A -
B)) - Rx-B)), IIx(Rx - (O(A < B) - (RxA < R«B))), IIX(Rx - (O(A <
B) > (-RxA < -R«B))), IIx(Rx— (O(A < B) - (Rx—A < Rx-B))), IIx(Rx—
(o(A < B) » (ZxA < I4B))), IIX(Rx - (O(A < B) - (-IxA <« -I\B))),
Ix(Rx - (O(A < B) —» (Zy-A < Iy-B))), [Ix(Rx - (O(A < B) - (N;A <
NiB))), Ix(Rx - (O(A < B) — (-NA < -NiB))), TIx(Rx - (O(A < B) —
(Nx-A < Nyx-B))).

Some ‘alethic-boulesic’ sentences that are theorems in every system that in-
cludesoW and bD (or Wo). IIX(Rx— (O(A - B) > (WKA - A«B))), TIx(Rx —
(WA A O(A = B)) - AB)), IIX(Rx » (O(A - B) - (-AxB - -W\A))),
Ix(Rx - ((-AxB A o(A - B)) - -W,A)), IIx(Rx - (o(A - B) - (Wx-B —
-WiA))), IIX(Rx - (Wx-B A O(A - B)) - -W,A)), IIx(RXx - —~(o(Av B) A
(Wx=ArWy=B))), TIx(Rx— =(a(Av B) A (RxAARB))), [IX(Rx— (0(A - B) —»
(WxA = =R«B))), IIX(Rx > (WA A O(A > B)) - =R«B)), IIX(Rx > (O(A -
B) »> (R«xB - -WxA))), IIx(Rx— ((RxBAO(A = B)) = -W\A)).

Some ‘deontic boulesic’ sentences that are theorems in every system that
cludesT — OW (and the definitions in Definition 1). TIx(Rx - (OA — W\A)),
IIX(Rx - (FA - RxA)), IIX(Rx - (AxB - PB)), OA — IIX(Rx - W\A), FA -
IIX(RX > RxA), ZXRx— (IIx(Rx - AxB) — PB), Zx(RxA AxB) — PB, EXRx—
(OA = ZX(RXA WKA)), ZXRX— (FA - ZX(RXA R4A)). The sentenc®TIX(RXx —
(OA - W,A)), which is a theorem in everl - OW-system, says that it is absolutely
necessary that for every individuglif x is perfectly rational, then if it it ought to be the
case tha#\, thenx wants it to be the case thAt This is a version of a philosophically
very interesting principle often called ‘internalism’ (see Introduction). More precisely,
it is a kind of conditional existence internalism. The following sentence is an instance
of this schema: ‘it is absolutely necessary that if the individuial perfectly rational,
then if c ought to do the actiotd, thenc wants to doH’. Nevertheless, ift is not
perfectly rational, it is not necessary that she wants tbéldéccordingly, this kind of
internalism is compatible with the existence of amoralists and with the phenomenon of
weakness of wil.OA — TIx(Rx — WxA) is similar. It says that if it ought to be the
case that, then everyone who is perfectly rational wants it to be the caseth@he
other theorems mentioned in this paragraph are also closely connected to the theory of
internalism?®

Some ‘boulesic deontic’ sentences that are theorems in every system that in-
cludesT - WO (and the definitions in Definition 1). TIx(Rx - (PB — A4B)),

n_

9For more on internalism and various interpretations of this thesis and for an introduction to some argu-
ments for and against it, see, for example, [23], [24] and [151].
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IIX(Rx—> (WA — OA)), IIX(RXx— (RxA — FA)), PB > IIX(Rx > A4B), ZXRXx—
(TIX(Rx = WxA) — OA), EXRX— (IIX(RXx - RxA) — FA), ZX(RXA WxA) — OA,
EX(RXA RyA) — FA, ZxRx - (PB - Zx(RxA AxB)). The converse 0DA —
IIX(Rx— WA) is TIX(Rx— WxA) — OA. We cannot prove the latter formula. How-
ever, we can establish something similar in evEry/VO-system, namely the following
principle: EZxRx— (TIx(Rx— WyA) — OA). This theorem says that if there is some-
one who is perfectly rational, then if everyone who is perfectly rational wants it to be
the case thah then it ought to be the case thatIIx(Rx— (WxA — OA)) says that if

xis perfectly rational, then X wants it to be the case thatthen it ought to be the case
thatA (to prove this theorem we do not have to assume that there is someone who is per-
fectly rational). If no one is perfectly rational, th&xRx— (IIx(Rx— WA) — OA)

is vacuously truePB — IIx(Rx— AxB) says that it is permitted th& only if every-

one who is perfectly rational acce®g(if it is permitted thatB then everyone who is
perfectly rational acceptB).

Some ‘deontic boulesic’ sentences that are theorems in every system that in-
cludesT - OA. TIx(Rx— (OB — A,B)), [Ix(Rx— (WxB — PB)), OB - IIx(Rx—
AyB), ZXRx— (IIX(Rx— WA) — PA). OB — TIx(Rx— A«B) says that it ought to
be the case thd& only if everyone who is perfectly rational acce@sif it ought to be
the case thaB then everyone who is perfectly rational accepts that it is the case that
B). IIx(Rx— (OB — A,B)) says that ifx is perfectly rational, then if it ought to be
the case thaB thenx accepts that it is the case tHatIIx(Rx— (WxB — PB)) says
that if x is perfectly rational thex wantsB only if it is permitted thaB.

Some ‘boulesic deontic’ sentences that are theorems in every system that in-
cludesT - OW and T - WO (and the definitions in Definition 1). [IX(Rx— (OA «
WiA)), IIX(RX - (FA < R4A)), IIX(Rx - (PB < AB)), IIX(RXx - (WA <
OA)), IIX(Rx— (RxA <> FA)), IIx(Rx— (AxB < PB)), ZXxRx— (OA < IIx(Rx—
WKA)), ZXRX — (FA < TIX(RXx —» RyA)), ZxRx - (PB < IIX(Rx - AB)),
EXRX— (OA < ZX(RXA WA)), ZXRX— (FA < ZX(RXA RyA)), EXRX— (PB <
EX(RxA AxB)). TIx(Rx - (OA < W\A)) says that ifx is perfectly rational then
it ought to be the case tha& iff x wants it to be the case th&. This is a prin-
ciple that a Kantian might want to include in his or her system (see Introduction).
Ix(Rx— (AxB < PB)) says that ifx is perfectly rational thex accepts that it is the
case thaBiff it is permitted thaB, etc. So, suppose thats perfectly rational. Then,
it ought to be the case thatiff x wants it to be the case that(and x wants it to be
the case thad iff it ought to be the case th&), it is forbidden (wrong) tha# iff x
rejectsA (andx rejectsA iff it is forbidden (wrong) thaf), it is permitted (right) that
A iff x accepts that it is the case thaiand x acceptsA iff it is permitted (right) that
A), etc. Hence, in every system that includes OW andT — WO (and the defini-
tions in Definition 1), we can show that every perfectly rational individual has boulesic
attitudes that are perfectly aligned with all the norms (all obligations, permissions and
prohibitions). ZxRx— (OA < IIx(Rx— W;A)) says that if there is someone who is
perfectly rational, then it ought to be the case th#t everyone who is perfectly ratio-
nal wants it to be the case tha&t ExRx— (PB <« TIx(Rx— AxB)) says that if there
is someone who is perfectly rational then it is permitted Bhdf everyone who is per-
fectly rational accepts that it is the case tBaetc. Suppose that there is someone who
is perfectly rational. Then, if our system includes OW andT — WO, we can prove
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the following equivalences: it ought to be the case thif everyone who is perfectly
rational wants it to be the case th#gtit is permitted thaf iff everyone who is perfectly
rational accepts that it is the case thatand it is forbidden thaA iff everyone who is
perfectly rational rejecté&\.. Accordingly (if we assume that there is someone who is
perfectly rational), the theorems in this paragraph can be interpreted as a kind of ideal
observer theory for normative propositioffdf a system include$ -OW andT - WO

we can also prove the following formulagixily((RxA Ry) - (WxB - W,B)),
IIx(Rx— (WxB - IIy(Ry - W, B)), IIxIly((RXxA Ry) - (AxB — AyB)), [IX(RXx—~
(AxB - Ily(Ry — A,B))), IIxIly((RxA Ry) - (RxB - RyB)), IIX(Rx - (RxB -
Iy(Ry - RyB)), ZX(RxA WyxB) — IIX(Rx - W,B), Zx(RxA A,B) — IIX(RX —
AxB), ZX(RXA RyB) — IIX(Rx— RyB). IIXIly((RxA Ry) - (WxB - W, B)) says

that if x is perfectly rational ang is perfectly rational, then ik wants it to be the case
that B theny wants it to be the case thBt IIXIly((RxA Ry) - (AxB - AyB)) says

that if x is perfectly rational ang is perfectly rational, then ik accepts that it is the
case thaB theny accepts that it is the case thtetc. So, if a system includds- OW
andT - WO we can prove that all perfectly rational individuals want, accept and reject
the same thing$

Some ‘boulesic’ and ‘alethic boulesic’ sentences that are theorems in various
systems.n every system that includds-b4, IIx((RxAWxRX) - (WxB - W, VB))
is a theorem. In every system that includes- b5, IIx((RxA WxRX) — (AxB —
WxAxB)) is a theorem. In every system that includes WhbT, ITx((RxA WxRX) —
Wx(WxB — B)) is a theorem. In every system that includes- WbB and b4,
IIX((RXA WKRX) > Wi (AWKA — A)) is a theoremIIx((RxA WxRX) — Wy (DA —
WxA)) is a theorem in every system that includes W oW andIIX((RxA WxRX) —
Wx(WKA - OA)) is a theorem in every system that includes WW <.

Barcan-like formulas. The following Barcan-like formulas can be proved in ev-
ery system in this papefIx(Rx — (IlyWixB < WiITyB)), TIX(Rx - (ZyA«B «
AZyB)), IIX(RXx — (ALIlyB — Iy A«B)), andIIx(Rx - (ZyWixB — W,XZyB)). Let
= beU, O, A, G, H, O, G or H, and lete be the dual ofs. Then, all the follow-
ing sentences (schemas) are theorems in every system in this plapeB < =I[1xB,

YX & B < ¢ZXB, ¢[IxB— IIx ¢ B, andXx= B - =XxB.

Some theorems that can be proved in systems that include the transfer rules.
In every system that includéE- URor T - FTRandT - oW, we can prove that
the following sentence is a theoremix(Rx — WxRX), which says that everyone
who is perfectly rational wants to be perfectly rational. In every system that includes
T-URorT-FTRandT —-oW, andT -bD, we can prove that the following sentence
is a theorem:IIx(Rx - AxRX), which says that everyone who is perfectly rational
accepts that she is perfectly rational. In every system that incllide§R, we can

1%For more on ideal observer theories, see, for example, [56] and [90]. | will not try to decide whether
or not it is reasonable to assume that there is someone who is perfectly rational in this paper. However,
note that our systems do not exclude that there are things that do not exist and that non-existing things have
properties. So, the statement that there is someone who is perfectly rational does not necessarily entail
that this individual exists. If being perfectly rational is not an existence-entailing property, our systems are
compatible with the proposition that there are non-existing perfectly rational individuals.

UThis does not entail that every perfectly rational individual wants every individual to do the same things
and have the same properties. For example, the view is compatible with the proposition thatbdth
wanteto beP and that bottt andd want f to be notP.
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prove the following sentencéIx(Rx— URX), which says that every perfectly rational
individual is necessarily perfectly rational.

Some theorems that include the identity signLet O be a boulesic operator (W
A, R, Z or N). Then, if a system includes (¥ S =) and (T- A =), we can prove
the following theorems in this systemiO:B A ¢ = d) - OyB andIIxIly((OxB A x =
y) = OyB), which are intuitively plausible. By using (¥ N =), we can show that all
identities and non-identities are (absolutely and historically) necessary and eternal, that
is, we can prove all the following theoremBxXIIy(x = y — Ux = y), [IXIly(x = y —
ox =y), [IXlly(-x =y > U-x = y), [IX[ly(-x = y - O-x = Y), [IX[Ty(X = y > AX =
y) andIIxIly(-x = y - A-x = y). Since every constant is treated as a rigid designator
in this paper, this is plausible.

Some theorems that include temporal and boulesic operatordn every system
that includesT - WGDT, IIx((RxA WxGRX) - W\G(WA — A)) is a theorem and
IIX(Rx— WxG(WxA — A)) can be proved in every system that includes WGbT
andT — UR. IIx((RxA WA\GRxA W GWxRX) - WKG(B — WxAB)) is a theorem
in every system that contairis - WGbB andIIx(Rx - WxG(B — Wy AB)) is a
theorem in every system that contaihs YWGbBandT - UR. IIx((RxA WGRX) —
(WKGA - WGW,A)) can be proved in every system that includes BR.

Some theorems in various systemd.et A be a formula in Section 3.3. ThenAf
is valid in every model that satisfies the semantic condit®rsxy, ..., C - X,, thenA
is a theorem in every quantified temporal alethic boulesic deontic tableau system that
includes the tableau ruleb- Xy, ..., T — X,. We observed that if a model satisfies
C - bD, thenIIx(Rx — -(WxB A Wx=B)) is valid in this model. HencdIx(Rx —
-(WxB A Wx-B)) is a theorem in every quantified temporal alethic boulesic deontic
tableau system that includ&s- bD. We observed that if a model satisfles OGo W
andC - UR, IIx(Rx - OG(OA — WxA)) is valid in this model. HencdlIx(Rx —
OG(oA - WKA)) is a theorem in every guantified temporal alethic boulesic deontic
tableau system that includés- OG oW andT - UR, etc.

6 Soundness and completeness theorems

This section establishes the soundness and completeness of every system in this paper.
Let us begin by defining these concepts.

Definition 8 (Soundness and completeness) LetS - A4, ..., T — A, be a quantified
temporal alethic boulesic deontic tableau system as defined in Section 4 (Definition 5)
above (where T Ay, ..., T — A, are the non-basic tableau rules in S). Then we shall
say that the class of modeld, correspondsto S iffl = M(C - Ay, ...,C - An).

S is sound with respect td iff T s A entailsM, T I+ A, and S is complete with
respect taM just in caseM, I' I+ A entailsI’ s A (whereM corresponds to S).

Lemma 9 (Locality)

Let My = (D,WT, <, R, A 6,v) and M, = (D,W T, <, R, 2, S, Vv,) be two models.
Since M3 and M, have the same domain, the language/df, is the same as the
language ofM,. Let us call this languag&€. Moreover, let A be any closed formula
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of £ such that y and v, agree on the denotations of all the predicates, constants and
matrices in it. Then for allo e W andr € T: M1, w,7 I+ Aiff Mo, w, T I- A.

Proof. The result is established by recursion on formulas; ‘the IH’ is an abbrevia-
tion of ‘the induction hypothesis’.

Atomic formulas. My, 0,7 I+ Pa...ay iff (vi(a1),...,va(an)) € Vi, (P) iff
(v2(a1),---,V2(an)) € Vour (P) iff My, w,7 I+ Pay...a,.

Suppose that1, w, T I+ Ray, thatM is a matrix wherexy, is the first free vari-
able inM and thatan, is the constant ifM[ay, ..., a,/ ?] that replaces,. Then:
Mz, w,7 I Rag and My, w,7 - M[ay,...,a./ X] iff (vi(a1),...,v1(an)) € Viur(M)
iff (Vo(@1),....V2(an)) € Vaur (M) iff M2, w,7 IF M[ay,...,an/ X].

Truth-functional connectives. Straightforward.

(0). M1, w,7 - aBiff for all " such thatRww'r, M1, w’, 7 I+ Biff for all " such
thatRww'r, Mo, ', 7 I+ B[the IH] iff My, w,7 I+ OB.

Other alethic, temporal and deontic operators. Similar.

(W,D). A'is of the formW,D. Assume thatMi,w,7 I+ W:;D. We have two
cases:Mq,w, 7 It Rcor M1, w, 7 I+ RC. SupposeMq, w, 7 I+ Rc. ThenMy, w, T It
Rc. Hence My, w, 7 I+ W:D. And vice versa. Supposéti,w,7 I+ Rc. Then
for all ' such thatlvi(c)ww'rt: My, ’,7 I+ D. Accordingly, for allw’ such that
Avo(C)ww't: My, o', 7 I+ D [by assumption and the IH]. Moreovek!,, w, 7 I+ Rc.
Hence, My, w, 7 I+ W:D. And vice versa. It follows thatM,w,7 I+ WD iff
Mo, w, 71 WeD.

Other boulesic operators. Similar.

(). My, w,7 = IIXBiff for all ky € £, M, w,7 I+ Blky/x] iff for all ky €
L, My,w,7t I+ B[ky/x] [by the IH, and the fact thaty,.(ky) = Vour(kg) = d] iff
Mo, w, 7 I+ TIXB.

The particular quantifier. Similam

Lemma 10 (Denotation) Let M = (D,W.T,<,,2,S,v) be any model. Let A be
any formula of the language o¥1 (£(M)) with at most one free variable, x, and a
and b be any two constants such thaayé& v(b). Then for anyw € W andr € T:
M, w, 7 I+ Ala/X] if M,w,7 I+ Alb/X].

Proof. The proof is by recursion on sentences.
Atomic formulas. (To illustrate, we assume that the formula has one occurrence of
‘a’ distinct from eachg;.) M,w,7 I+ Pay...a...a,iff (v(ag),...,v(a),...,v(an)) €
Vor (P)iff (v(a1),...,v(b),....v(an)) € Vor (P) iff M,w,7I-Pay...b...a,.
SupposeM,w, T I+ Ray, that M is a matrix wherexy, is the first free variable
in M and thatay, is the constant iM[ay.....a....,a,/ X] (M[as.....b,....a,/ X])
that replacesq,. (To illustrate, we assume that the formula has one occurrence of ‘a’
distinct from eacls; and thata, is nota (b).) Then:M, w,7 I+ M[ay, ..., 4a,...,an/ ?]
iff (v(ag),...,v(@),...,v(a@n)) € Vo (M) iff (v(a),...,v(b),...,v(an)) € Vo (M) iff
M, w, T May,...,b,....a,/ X].
Truth-functional connectives. Straightforward.
(0). M,w, 7 I+ 0B[a/x] iff for all " such thatRww'r, M, o', 7 I+ B[a/x] iff for
all " such thatiww'r, M, ', 7 I B[b/X] [the IH] iff M, w, 7 I+ OB[b/X].
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Other alethic, temporal and deontic operators. Similar.

(Wy). Ais of the formW;D. EitherM, w, 7 I Rtor M, w, 7 I+ Rt We have already
established that the result holdsh, w, T I+ Rt So, suppose tha1, w, T I+ Rt. Since
X is the only free variable, cannot be a variable distinct from So,t is eitherx or
a constant. Suppoges x. ThenM,w,t I+ WyD[a/X] iff M,w,7 I+ WaD[a/x] iff
for all ' such thalv(a)ww'r, M, o', 7 I+ D[a/x] iff for all ' such thatlv(b)ww'r,
M, o', v - D[b/x] [by the fact that(a) = v(b) and the IH] iff M, w, 7 I Wp,D[b/X]
iff M,w, I WxD[b/x]. Suppose is a constant, say. ThenM, w, T I+ W;D[a/x] iff
for all " such thalv(c)ww'r, M, &', 7 I+ D[a/x] iff for all ' such thaRlv(c)ww'r,
M, o', 7+ D[b/x] [by the IH] iff M, w, 7 I+ W:D[b/X].

Other boulesic operators. Similar.

(IT). Let A be of the formIlyB. If x =y, thenA[a/x] = A[b/x] = A, so the result is
trivial. Hence, suppose thatandy are distinct. Then(IlyB)[b/x] = ITy(B[b/x]) and
(B[b/x)[a/y] = (B[a/y))[b/x]. M.w.t - (TlyB)[a/x] if M,w,T I Tly(B[a/x])
iff for all ky € L(M), M,w,7 I+ (B[a/x])[kq/y] iff for all ky € L(M), M,w,7 I+
(Blka/YD[a/x] iff for all ky € L(M), M,w,7 I+ (Blks/y])[b/x] [the IH] iff for
all kg € L(M), M,w,7 I+ (B[b/X])[ky/y] if M,w,t I+ TIy(B[b/X]) iff M,w,7 I+
(TyB)[b/x].

The case for the particular quantifier (X) is similar.

6.1 Soundness theorem

Let M = (D,WT,<, R, 2, S,v) be any model and8 any branch of a tableau. Théh
is satisfiable inM iff there is a functiorf from wg, Wy, Wo, ... to W, and a functiorg
fromtg,t1,tp,... t0 T such that

(i) Ais true inf(w;) atg(tj) in M, for every nodeA,wit; on 5;

(if) if rwiw;te is onB, thenR f (w;) f(w;)g(tk) in M;

(iii) it Acww;t, is onB, then2iv(c)f(w:) f(w;)g(tk) in M;

(iv) if sww;t is onB, then& f(w;) f(w;)g(t) in M;

(v) if t <tjis onB, theng(ti) < g(t;) in M;

(vi) if t =tjis onB, theng(t) = g(t;) in M.

If these conditions are fulfilled, we say thiabndg show thats is satisfiable inM.

Lemma 11 (Soundness Lemmalet B be any branch of a tableau ant! be any
model. If5 is satisfiable inM and a tableau rule is applied to it, then there is a model
M’ and an extension d#, B’, such that3’ is satisfiable inM’.

Proof. The proof is by induction on the height of the derivation. lfetndg be
functions that show that the branghis satisfiable inM.

Connectives and modal, temporal and deontic operators. Straightforward.

(W). Suppose thaRe,wity, W:D, wity, and Acwwitx are onB, and that we apply
the)W-rule. Then we get an extension Bfthat includeD, wjty. SinceB is satisfiable
in M, W,D andRcare true inf (w;) atg(tc). Furthermore, for anw; andw; such that
Acww;ty is on B, Av(c)f(w;) f (w;)g(tk). Thus by the truth conditions fon;D, D is
true in f(w;) atg(t).
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(A). Suppose thaRc wity, A:D, wity are on5 and that we apply thel-rule to get
an extension of3 that includes nodes of the forfcww;t, and D, w;jty. SinceB is
satisfiable inM, A:D andRcare true inf(w;) atg(tx). Hence, for somev in W,
2Av(c)f(wi)wg(tk) andD is true inw atg(tx) [by the truth conditions ford.D and the
fact thatRcis true inf (w;) atg(tx)]. Let f’ be the same ab except thatf’(w;) = w.
Sincef andf’ differ only atw;, f" andg show thats is satisfiable inM. Furthermore,
by definition?Av(c)f’(w) f'(w;j)g(tc), andD is true inf’(w;) atg(ty).

Other boulesic operators. Similar.

(IT). Suppose thdixA,w;t; is onB and that we apply thH-rule to get an extension
of B that includes a node of the fori[a/x], witj. M makesIIxA true in f(w;) at
g(tj). For B is satisfiable inM. Hence A[kq/X] is true inf (w;) atg(t;) in M, for all
ki € L(M). Letd be such that(a) = v(ky). By the Denotation Lemmai[a/x] is
true in f(w;) atg(t;) in M. Accordingly, we can také’ to be M.

(X). Suppose tha&xA,wit; is on B and that we apply thE-rule to get an extension
of Bthatincludes a node of the forA{c/x], wit; (wherecis new). Since3 is satisfiable
in M, ZxAis true in f(w;) atg(tj) in M. Consequently, there is sorkg ¢ L(M)
such thatM makesA[ky/x] true in f(w;) atg(tj). Let M’ = (D,W T, <, R, 2, G,V)
be the same as1 except that/(c) = d. Sincec does not occur if\[ky/X], A[kg/X] is
true in f(w;) atg(t;) in M’, by the Locality Lemma. By the Denotation Lemma and
the fact thatv/(c) = d = V'(kq), A[c/x] is true inf(w;) atg(t;) in M’. Moreover, M’
makes all other formulas on the branch true at their respective world-moment pairs as
well, by the Locality Lemma. For does not occur in any other formula on the branch.

(-IT) and (=%). Straightforward.

Accessibility rules. | will consider three examples to illustrate the method.

(T — ab5). Suppose thatv;w;t; and Acwwt; are onB, and that we apply (T
ab5) to give an extended branch containiigwjwt;. SinceB is satisfiable inM,
Rf(w)f(wj)g(t) andAv(c)f(w) f(wi)a(t). Hence2lv(c)f(w;)f(we)g(t) since
M satisfies conditiol€ — ab5. Consequently, the extension®fs satisfiable inM.

(T - WGOA). Suppose thabcww;ty andt < ty, are onB, and that we apply
(T -WGOA) to give an extended branch containifygw;witm andswjwitm, wherew
is new. SinceB is satisfiable inM, 2Av(c)f(w;) f(w;)g(t) andg(t) < g(tm). Hence,
for somew in W, 2v(c)f(w;j)wg(tm) andS f (w;)wg(tm), sinceM satisfies condition
C - WGOA. Let f’ be the same ak except thatf’(wk) = w. Sincewy does not occur
on B3, f" andg show thatB3 is satisfiable in\MM. Moreover,2v(c)f’(w;) f’(wi)g(tm)
and& f'(wj) f'(We)g(tm) by construction. Hencd, andg show that the extension of
B is satisfiable inM.

(T - OG o O). Suppose thaswwit, t; <t and swwitm are onB, and that we
apply (T- OG o O) to give an extended branch containimgwitm. SinceB is satis-
fiable in M, & (w) f(wj)a(t), g(ti) < g(tm) andSf(w;) f (Wi)g(tm). Accordingly,
R T (w;) f(we)g(tm), for M satisfies conditio€—-OGOO. In conclusion, the extension
of B is satisfiable inM. =

Theorem 12 (Soundnes§ heorem)Every system S in this paper is sound with respect
to its semantics.

Proof. Assume thaB does not follow fronT" in M, whereM is the class of models
that corresponds t8. Then every premise ifi is true and the conclusioB false in
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some worldw at some timer in some modelM in M. Consider ars-tableau whose

first nodes consists &, woto for everyA e T and-B, wptg, where ‘wy’ refers tow and

‘to’ refers tor. The initial list in this tableau is satisfiable . Every time we apply a

rule to our tree it produces at least one extension that is satisfiable in a mtidelM

(by the Soundness Lemma). Accordingly, we can find a whole branch such that every
initial section of this branch is satisfiable in some madél’ in M. It is impossible

that this branch is closed, for if it were closed, then some sentence would be both true
and false in some possible world at some timeMti’. Therefore, the whole tableau

is open. It follows thaB is not derivable fronT" in S. Consequently, iB is derivable
fromI'in S, thenB follows fromT'in M. m

6.2 Completeness theorem

In this section, | will prove that every system in this paper is complete with respect to
its semantics. First, | will define some important concepts.

We can think of &ompletdableau as a tableau where every rule that can be applied
has been applied. There can be several different (complete) tableaux for the same
sentence or set of sentences, some more complex than others, for the tableau rules
can be applied in different orders. To produce a complete tableau, we shall use the
following method!? (1) For every open branch, one at a time, begin at its root and
move towards its tip. Apply any rule that produces somethieyto the branch. If a
rule has multiple applications (such asandIl), then make all possible applications
at once. (2) Once we have done this for all open branches in the tableau, we repeat
the procedure. Some rules, suchTas aD andT - W< (T — FD), introduce new
‘possible worlds’ (‘moments in time’). Every rule of this kind is applied once at the
tip of every open branch at the end of every cycle (given that it produces something
new). If a system includes more than one rule of this kind [®2,..), we alternate
between them. The first time we uBd; the second time we us®, etc. Before we
conclude a cycle in this process we split the end of every open branch in the tree and
addRc,witj to the left node ane:Rc,wit; to the right node, for every constam{that
occurs as an index to some boulesic operator on the tng@ndt; on the branch. If
there is still something to do according to this process, the tableau is incomplete; if not,
it is complete.

Definition 13 (Induced Model) Suppose thdt is an open and complete branch of
a tableau and that | is the set of numbers Brimmediately preceded by a ‘t". Let
i=Jifi=jor't=t'or'tj=1t"isonB. = is an equivalence relation and]

is the equivalence class of i. Furthermore, let C be the set of all constarifs dve
shall say that a~ b just in case a b,wgty occurs on the branch. Obviously,~ab

is an equivalence relation. Léa] be the equivalence class of a underThe model
M =(D,WT,<,R, A 6,v)induced bys is defined as follows. B {[a]:a<C} (or,

if C = @, D = {o} for an arbitrary 0). (o is not in the extension of anything.) W
{wi:wioccursonB}, T = {7y :iel}, 7y < 7pj iff 6 < tj occurs onB, Rwiwjtyg

iff rwiw;jtc occurs onB, Av(a)wiwjt iff Aawwity occurs onB and Swiw;tyy iff

12Note that it is often possible to produce shorter proofs or derivations by using some more ‘intuitive’
method instead.
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SWw;t, occurs onB. v(a) = [a], and([ai],...,[an]) € Vo (P)iff Pay...an,witj is
on B, given that P is any n-place predicate other than identity:Rfy, witj occurs on
B and M is an n-place matrix with instantiations on the branch (wheyésxthe first
free variable in M and @ is the constant in Ny, ...,a,/ ?] that replaces x), then
([aa], .-, [@n]) € Ve, (M) iff M[&g, ..., an/ ?],vvitj occurs onB3. (Due to the identity
rules this is well defined.) When we have &,wgtg, b = c,Wotg, etc. we choose one
single object for all constants to denote.

If our tableau system includes neitlier FC, T - PCnor T — C, = is reduced to
identity and[i] = {i}. Hence, in such systems, we may tdki be{r; : t occurs on3}
and dispense with the equivalence classes.

Lemma 14 (Completeness Lemmad)et 5 be an open branch in a complete tableau
and let M be a model induced b§. Then, for every formula A:

(i) if A, witj is onB, then M, wi, 7 ] I+ A, and
(i) if =A,wit; is onB, thenM, wi, 7(j) I+ A.

Proof. The proof is by induction on the complexity &f

(i) Atomic formulas. Pay...a,,Witj is on B = ([ai],...,[a@]) € Vur,,(P) =
(V(ag),---,V(an)) € Ve (P) = M, wi, 757 I- Pag ... an.

a=b,wtjisonB=a~b(T-N=)=[a]=[b]=v(a)=v(b) = M,w,1[ I
a=b.

Suppose thatl is a matrix wherex, is the first free variable anal, is the constant

in M[ay,...,an/ X] that replaces, and thatM, w;, T (j] " Ran. Then:M([ay, ..., a,/
X], wit; occurs onB = ([ay],....[n]) € Viyry;, (M) = (V(@1), ..., V(8n)) € Vi, (M)
= M, wi,1j] IF M[al,...,an/i].

Other truth functional connectives and modal, temporal and deontic operators.

Straightforward.

Boulesic operators. ()W Suppose/V.D,witx is on B. Moreover, suppose that
Rc,wity is not onB. Then-Rc,witk is on B [by CUTR]. HenceWV.D is true inw; at

k by definition and previous steps. Supp&Bewit is onB. Then since the branch
is complete, théV-rule has been applied and for evevysuch thatAcww;ty is on B,
D,w;t is on B. By the induction hypothesi$) is true in everyw; at T[k] such that
v(c)wiwjtp- SinceRe,wity is onB, v(c) is perfectly rational inv; atrpy. It follows
that)V,D is true inw; atzp, as required.

Other boulesic operators. Similar.

Quantifiers. (X). Suppose thakD,wit; is on the branch. Since the tableau is
complete (X) has been applied. Accordingly, for sanB[c/x], wit; is on the branch.
Hence, M, wi, 751 I+ D[c/x], by (IH). For somekg € L(M), v(c) = d, andv(ky) =
d. Consequently/\/l wi, ()] = D[ky/x], by the Denotation Lemma. It follows that
M, wi, 7(j) IF ZXD.

The case fofT is similar.

(i) Atomic formulas.

-Pay...an,WitjisonB = Pa; ...a,, Wtj is not on3 (B open):> ([ 1],...5[@n]) ¢
Vorzy (P) = (V(@1), ..., V(@n)) ¢ Vo) (P) = M, wi, 7 1t Pay ..
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-a = b,wit; ison B = a = b,wptp is not onB (B open)= it is not the case that
a~b=[a]#[b]=v(a)+v(b) = M,w,t +a=b.

Suppose thatl is a matrix wheregy, is the first free variable anrdgl, is the constant
in M[ay,....,an/ X] that replacesy, and thatM, w;, 7 (j] # Ran. Then:=M[ay,...,a,
/Y],witj occurs o3 = M[ay,...,an/ X] wit; is not onBB (B open)= ([ai],...,[an])
€ Vi) (M) = (V(@2)..... V(@) ¢ Vuyry (M) = M, w175 I+ M[ay.....a0/ X].

Other truth-functional connectives and modal, temporal and deontic operators.

Straightforward.

Boulesic operators. (-)V Suppose-W,D, wit is on5. Furthermore, suppose that
Rc,wit is not onB. Then-Rc,witk is on B [by CUTR]. Hence)V.D is false inw; at
() by definition and previous steps. Supp&Bewiti is on3. Then the-)V-rule has
been applied te VD, wity and we haved.-D, wit, on B. For the branch is complete.
Then theA-rule has been applied td.-D, wity, since the branch is complete. Hence,
for some neww;, Acww,tk and -D, w;t, occur onBB. By the induction hypothesis,
2v(c)wiwjtyg, andD is false inw; at (K- SinceRc,wity is on B, v(c) is perfectly
rational inw; atr 1- ConsequentlyV,D is false inw; atzp, as required.

Other bouIeS|c operators. Similar.

Quantifiers. (X). Suppose thatXxD,wit; is on the branch. Since the tableau is
complete (X) has been applied. SdIx-D,w;t; is on the branch. Again, since the
tableau is complete (IT) has been applied. Thus, foc alC, -D[c/x], wit; is on the
branch. Consequentlyt, wi, 7(;; i+ D[c/x] for all ¢ e C [by the induction hypothesis].
If kg € L(M), then for some € C, v(c) = v(ky). By the Denotation Lemma, for all
ki € L(M), M, wi, 7)) I+ D[kd/x]. ConsequentlyM, wi, 7(j) It ZXD.

(-I0). Stralghtforward ]

Theorem 15 (Completenes§ heorem)Every system in this paper is complete with
respect to its semantics.

Proof. First, | will show that the theorem holds for our weakest syst@nirhen,
| will extend the theorem to all stronger systems. Mete the class of models that
corresponds t@.

Suppose thaB is not derivable fronT" in Q. Then it is not the case that there is
a closedQ-tableau that starts with, woto for every A in I and -B, wptp. Lett be a
completeQ-tableau whose first nodes comprigesvt, for everyAin I' and-B, woto.
Obviously,t is not closed; it is open. It follows that there is at least one open branch in
t. Let B be an open branch in According to the model induced I8, all the premises
inT" are true andB false inwp at7[g). Hence, itis not the case th@tfollows from I in
M. Consequently, iB follows fromI" in M, thenB is derivable fronl" in Q.

I will now show that all extensions a are complete with respect to their seman-
tics. To establish this we have to verify that the model induced by the open branch
B is of the right kind in every case. First, we must go through every single semantic
condition and prove that the induced model is of the right kind. Then we combine our
proofs. The following steps illustrate the method:

C - b5. Suppose tha&lv(c)wiwjrpy andAv(c)wiwkrp). Then, bothAcww;t; and
Acwwt; occur onB [by the definition of an induced model]. Sindg®is complete,
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(T - b5) has been applied ardw;wt; occurson B. It follows that2lv(c)wjwkrp, as
required [by the definition of an induced model].

C - t4. Suppose thaty;) < 7 andrj) < 7 Thent; < tj andt; < tc occur oni3
[by the definition of an induced model]. Singas complete (T- t4) has been applied.
Hencet; < tc occurs on3. It follows thatr;; < 7, as required [by the definition of
an induced model].

C - ad5. Assume thafRwjwjr; and Gwiwyrpy. Then, bothrwiw;t; and sww,
occur onB [by the definition of an induced model]. SinBds complete, (T- ads5) has
been applied answjwit; occurs onB3. Hence Swjwit)), as required [by the definition
of an induced model].

C-oW. Suppose thallv(c)wiw;tyg. ThenAcww;t, occurs orB [by the definition
of an induced model]. SincB is complete, (T- 0WW) has been applied arveh;w;t,
occurs onB. ConsequentlyRwiwjtpy, as required [by the definition of an induced
model].

C - ASP. Suppose th&wjwjr; andrpg < 7. Thenrwiwjt andt <t occur
on B [by the definition of an induced model]. Sinsas complete (T- AS P) has been
applied. Hencegw;w;ty occurs onB. It follows thatRwiw;r(k, as required [by the
definition of an induced model].

C - OGO<¢. Suppose thabwjwjry; andpy < 7y Thensww;t andt < ty
occur onB [by the definition of an induced model]. Singeis complete (T- OGO)
has been applied. Hence, for somg rwjwitm and sw;wity are on3. Accordingly,
for somewy, Rwjwkr(m andSwjwkrm), as required [by the definition of an induced
model].

C-WGoW. Suppose thallv(C)wiwjtpy, 77y < Tm) @andAV(C)wjwkt(m. Then
Acwwity, t < tn and Acw,witm occur onB [by the definition of an induced model].
SinceB is complete (T- WG o W) has been applied. Accordinglyy;wity, occurs on
B. ConsequentlyRwjwkt[m), as required [by the definition of an induced modai].

7 Examples

In this section, | will consider one example of a valid sentence, one example of an
invalid sentence and one example of a valid argument. | will show how one can use
semantic tableaux to construct proofs and derivations and to readwtfermodels

from open and complete trees. All the examples in this section were mentioned in the
introduction.

7.1 Example 1: A valid sentence
I will now show that the following sentence is a theorem in every system that includes
T-ow

ELl. Itis (absolutely) necessary that if a perfectly rational individuaiants it to be
the case thaf sometime in the future and it is (historically) necessary that it is always

131n a strict sens&1 is not a sentence but a schema. When we say that this sentence is a theorem we mean
that every instance of it is a theorem.
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going to be the case thatAfthenB, thenx wants it to be the case thBtsometime in
the future.

This sentence can be symbolised in the following way in our syst&iis(Rx —
(IWKFAAOG(A - B)) - WLIFB)). A proof of a sentencé in a systens is a closed
S-tableau that begins withA,woty. If there is a proof ofA in S, A is a theorem irS
(see Definition 6). Consequently, to prove thEIX(Rx— (WKFAATOG(A - B)) —»
WiFB)) is a theorem in every — oW-system we construct a clos&d- o)V-tableau
for the negation of this sentence. More precisely, we construct a clbsedWV-
tableau whose root consists of (1) below. Here is the prit® (s an abbreviation of
the derived rule Modus Ponens):

(1) ~-UIIX(Rx— (WKFAAOG(A - B)) - WFB)), Wotg
(2) M=TTIX(RX = ((WxFA A DOG(A — B)) — WyFB)), Woto [1, ~U]
(3) ~TIX(RX— (WiFAA OG(A— B)) — WyFB)), wits [2, M]
(4) Zx-(Rx— (WYFAAOG(A > B)) - WyFB)), Wity [3, ~I1]
(5) ~(Rc— ((WeFAADG(A > B)) > W,EB)), wity [4, 3]
(6) Rewity [5, - -]

(7) ~((WFA A OG(A > B)) — WeFB), wyty [5, - -]

(8) WeFA A OG (A - B),wity [7, - —]

(9) - W FB,wyty [7, = =]

(10) WA, Wity [8, /\]

(11)0G(A > B),wity [8, A]

(12) A~FB, wit; [6, 9, - W]

(13) Acwwioty [6, 12,.4]

(14) -FB, oty [6, 12,.4]

(15) G-B,w,ty [14, —JF]

(16)FA,w,t; [6, 10, 13,V]

(A7) rwawoty [13, T — oW]

(18) G(A - B),wot; [11, 17,0]

(19)t; < t; [16, F]

(20) A, wWot) [16, F]

(21) A B,wst, [18, 19,G]

(22) -B,w,t [15, 19,G]

(23) B, Wst, [20, 21, MP]

(24) « [22, 23]

The smallest system that includ&s- oWV is valid with respect to the class of all
C-oW-models (see Section 6). It follows tHEIIX(Rx— ((WxFAAOG(A - B)) >
WiFB)) is valid in the class of all models that satis®y- oW .

7.2 Example 2: An invalid sentence and a countermodel

We have seen th&8fTIIx(Rx— ((WFAADOG(A - B)) - W,FB)) is valid in the class
of all C — oW-models. However, the sentence is not valid in the class of all models.
Nor can we show that the following proposition is valid: it is (absolutely) necessary
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that if some individuakk wantsit to be the case thak sometime in the future and it
is (historically) necessary that it is always going to be the case thath&nB, then
X wants it to be the case thBtsometime in the future. In fact, this sentence cannot
be proved in any system in this paper. In the proof above (Section 7.1), it is essential
that we are quantifying over perfectly rational individuals. All of this is intuitively
plausible.

I will now show that the following sentence is not valid in the class of all models:

E2. If an individual x wants it to be the case thatsometime in the future will be
a citizen of Great Britain and it is (historically) necessary that it is always going to be
the case that ik is a citizen of Great Britain theris a citizen of Europe, thenwants
it to be the case thatsometime in the future will be a citizen of Europe.

E2 can be symbolised in the following wayix((WxFGx A 0G(Gx - Ux)) —
WKFUX), where GX reads as X is a citizen of Great Britain’ and ‘Ux’ reads ag *
is a citizen of Europe’. To show that a senterés not valid we construct an open
complete tableau for the negation of this sentence. More precisely, we construct an
open semantic tableau that begins with, woto. Then we use an open branch in the
tree to read oféi countermodel. Here is our tableau:

(1) -IIX((WKFGxA BG(GXx — UX)) - WFUX), Woto
(2) Zx-((WKFGXA OG(Gx — UX)) = W FUX), woto [1, -I1]
(3) -((W:FGecA OG(Gec— Uc)) > WFUc), woto [2, Z]
(A WIFGeaoG(Ge - Uc),woto [3, = —]
(5) -WFUc,wotg [3, = =]
(6) W IFGe,wotg [4, A]
(7) oG (Gc— Uc),wotp [4, A
e N
(8) Re,wotg (9) -Rcwoto [CUTR]
(10)c=c,wotp [T - R=]

The left branch in this tree can be developed further. However, at this stage we
cannot apply any more rules to the right branch, which is open (and complete). Hence,
the whole tableau is open (and complete). Ha((WFGx A oG(Gx » Ux)) —
W,FUX) is not a theorem in our weakest systedi* Accordingly, the formula is
invalid in the class of all models (by the completeness results in Section 6).

Let us now verify this claim. Since the right branch in the tree is open and com-
plete, we can use it to read @itountermodeM. The matrix oW FUcis Wy, FUx,
and the matrix oMWV FGcis Wy, FGx. W = {wo}, T = {70}, D = {[c]}, v(c) = [c],
and the extensions & andU are empty inwg at 7g. <, R, A and & are empty.

Voro Wy, FUX2) is the extension oWy, FU X, in wq at 7o, and V., (Wx,FGx) is
the extension oV, FGx in wg at 7o. If —Ray, witj occurs on the brancBB and
M is an n-place matrix with instantiations on the branch (whegéas the first free
variable inM and a, is the constant ifM[ay,...,an/Xs, ..., Xs] that replaces«),

14n fact, the sentence is not a theoremaimy system in this paper. However, it is left to the reader to
verify this.
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then ([a1],....[an]) is an element of,., (M) iff M[ay,...,an/X1,..., %], Wt; oc-
curs onB. -Rc,wotp occurs on the branch, whild), FUX;[c,c/xq, X2], Woto (that is,
WcFUc,wotp) does not occur on the branchy is the first free variable iy, FUx,

andc is the constant iy, FUX;[c,c/xq, X2] that replaces;. So,([c],[c]) is not an
element inv,,,,( Wy, FUX;) (Vuor, (Wx, FUXz) is empty). Since-Rc,wpty occurs on
B, Rcis false inwg atro. If M, wo, 70 I+ RC, thenM, wo, 7o I Wy, FUXz[C,C/Xq1, X2]

iff (v(c),v(C)) IS in Ve (Wx,FUX2). Hence, M, wo, 7o I Wy, FUXo[C,C/X1, X2] iff

(v(c),v(C)) is IN Vyyre Wi, FUXz). (v(C),Vv(C)) iS NOt iN Ve (Wi, FUX2). There-
fore, it is not the case that1, wo, 7o IF Wy, FUXz[C,C/X1, Xo|. Wy, FUXz[C,C/X1, Xo] =

WFUc. It follows that it is not the case that!, wq, o IF W FUCc, that is, W.JFUc is

false inwg atrg.

Wi, FGXo[C,C/X1, X2], Woto (that is, W FGc,woto) occurs on the branchy; is the
first free variable inV,,FGx, andc is the constant iy, FGx[c,c/x1, X| that re-
placesx;. Accordingly,([c], [c]) is an element iV, ., (Wx,FGX2). If M, wo, 7o I+ RC,
then M, wo, 70 IF Wy, FG X[ €,C/x1, X2] iff (v(C),Vv(C)) iS iN Vyery (Wx, FG%). Hence,
M, wo, 7o IF Wy FGXo[C,C/x1, X2 ] iff (v(C),V(C)) IS iN Vyyry Wi, FGX%2). (v(C),V(C))
iS IN Vyyr Wx, FGX). Therefore M, wo, 7o I Wy, FGX[C,C/X1, X2]. It follows that
M, wo, 10 I WFGe, for Wy, FGx[C,C/X1, X2] = WFGc. In other wordsW.FGcis
true inwg atg.

SincefR is empty,0G(Gc — Uc) is vacuously true invg atto. Hence W FGc A
o0G(Gc— Uc)is true inwg attg. Accordingly,( W.FGcAaoG(Ge— Uc)) - W FUc
is false inwg atty. Since[c] is an object in the domain, it follows thaix((WFGx A
oG(Gx — Ux)) - WKFUX) is false inwg at 7o. In conclusion,UTIX((WxFGX A
o0G(Gx— Ux)) - W, FUX) is not valid in the class of all models. Q.E.D.

7.3 Example 3: A valid argument

In this section, | will show that the following argument is valid in the class of all mod-
els:

E3. P1. U(-Zx(RxA A4FPu) - -PFPu) (‘u’ refers to you and PX says that X
rapes someon®). It is (absolutely) necessary that if no perfectly rational individual
accepts that you will rape someone in the future, then it is not permitted that you will
rape someone in the future.

P2. TIx(Rx — WxG-Pu). Everyone who is perfectly rational wants it to be the
case that it is always going to be the case that you do not rape someone.

Hence,

C. OG-Pu. It ought to be the case that it is always going to be the case that you
do not rape someone.

To show that the conclusion (C) is derivable from the premiBd3 énd P2) in ev-
ery system in this paper, we construct a closed tableau that star8 Witlgty, P2, woto
and-C, wotp. Since we do not use any special tableau rules in the tree, the conclusion

15x rapessomeone’ can also be symbolised in the following wayPxy, where Pxy’ says thak rapes
y, but we do not need to use this more ‘sophisticated’ analysis to prove that the argument is valid. So, we
will stick to the monadic predicate.
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is derivable from the premises in our weakest system. Consequérfyderivable
in every other system too. By the soundness results in Section 6, it follows that the
argument is valid in the class of all models. This establishes the desired result.

Here is the tableau that proves that the conclusion is derivable from the premises in
every system:

(1) U(-=x(RxA AxFPu) - -PFPu), woto
(2) TIIx(Rx— WxG—-Pu), woty
(3) -OG-Pu,wptgy
(4) P-G-Pu,wptg [3, —\O]

(5) swowato [4, P]

(6) ﬁG—\PU,Wlto [4, P]

(7) F--=Pu,wstq [6, -G]

@) to<ty[7,F]
(9) —|—|PU,W;|_t1 [7, ]F]
(10) -Zx(RxA A FPu) —» -PFPu,woty [1, U]

v N
(11) =—Zx(RxA AxFPu), woty [10, -] (12) -PFPu,wgtg [10, -]
(13) EX(RxA AFPU), Woto [11, =] (14) O-FPu,Woto [12, =P]
(15) RcA AFPu,Woto [13, 5] (16) -FPu,wito [5, 14,0]
(17) Rewoto [15, A] (18) G-Pu,w;to [16, —F]
(19) AFPU,Woto [15, A] (20) -Pu,wit; [8, 18,G]
(21) Rc > WG—-Pu,wot [2, 1] (22) * [9, 20]

(23) WeG—Pu,woto [17, 21,MP]
(24) Acvowioty [17, 19,.A4]
(ZS)FPU,WztO [17, 19,A]

(26) G-Pu,Wsto [17, 23, 24 V]

(27) o<tz [25, ]F]
(28) Pu,wst; [25, IF]
(29) -Pu,wot, [26, 27,G]
(30) * [28, 29]

Acknowledgement 16 The first version of this paper was finished in 2018. | would
like to thank everyone who has commented on the text since then.

References

[1] Anderson, A. R. (1956). The formal analysis of normative systems. In Rescher
(ed.) (1967), pp. 147213.

[2] Anderson, A. R. (1958). A reduction of deontic logic to alethic modal lolglind,
Vol. 67, No. 265, pp. 100103.

[3] Anderson, A. R. (1959). On the logic of commitmePRhilosophical StudiedO,
pp. 23-27.



DanielR6nnedz

[4] Anderson, A. R. (1967). Some Nasty Problems in the Formal LogiEthics.
Nods, Vol. 1, No. 4, pp. 345360.

[5] Aqvist, L. (1987). Introduction to Deontic Logic and the Theory of Normative
Systems. Naples: Bibliopolis.

[6] Aqvist, L. (1999). The Logic of Historical Necessity as Founded on Two-
Dimensional Modal Tense Logidournal of Philosophical Logi€8, pp. 329-369.

[7] Aqvist, L. (2002). Deontic Logic. In Gabbay and Guenthner (ebishdbook of
Philosophical Logic, 2nd Edition, Vol. 8, Dordrecht/Boston/London: Kluwer Aca-
demic Publishers, pp. 14264.

[8] Aqvist, L. (2003). Conditionality and Branching Time in Deontic Logic: Further
Remarks on the Alchoubn and Bulygin (1983) Example. In Segerberg and Sliwin-
ski (2003), pp. 1337.

[9] Aqvist, L. (2005). Combinations of tense and deontic modality: On the Rt ap-
proach to temporal logic with historical necessity and conditional obligadiour-
nal of Applied Logic3, pp. 421-460.

[10] Aquist, L. and Hoepelman, J. (1981). Some theorems about a “tree” system of
deontic tense logic. In Hilpinen (ed.) (1981), pp. 1221.

[11] Bailhache, P. (1986).es normes dans le temps et sur 'action, Essai de logique
déontique. Universit de Nantes.

[12] Bailhache, P. (1991Essai de logique déontiquParis: Librarie Philosophique,
Vrin, Collection Mathesis.

[13] Bailhache, P. (1993). The Deontic Branching Time: Two Related Conceptions.
Logique et Analyse, 36, pp. 15975.

[14] Bailhache, P. (1997a). Canonical Models for Temporal Deontic Lagigique et
Analyse, 149, pp. 31.

[15] Bailhache, P. (1997b). Temporalized Deontic Worlds with Individuadgique et
Analyse, 149, pp. 2312.

[16] Balbiani, P., Herzig, A. and Troquard, N. (2008). Alternative axiomatics and
complexity of deliberative STIT theoriedournal of Philosophical Logic, 37, pp.
387-406.

[17] Barcan (Marcus), R. C. (1946). A functional calculus of first order based on strict
implication.Journal of Symbolic Logi¢1, pp. 116.

[18] Bartha, P. (1993). Conditional obligation, deontic paradoxes, and the logic of
agencyAnnals of Mathematics and Artificial Intelligen8epp. 1-23.

[19] Bartha, P. (1999). Moral Preference, Contrary-to-Duty obligation and Defeasible
Oughts. In McNamara and Prakken (eds.) (1999), pp198-

26(



QuantifiedTemporalAlethic BoulesicDeonticLogic

[20] Barringer, H., Fisher, M., Gabbay, D. and Gough, G. (e(20P0).Advances in
Temporal Logic. Springer.

[21] Bedke, M.S. (2009). The Iffiest Oughts: A Guise of Reasons Account of End-
Given ConditionalsEthics, Vol. 119, No. 4, pp. 67598.

[22] Belnap, N., Perloff, M. and Xu, M. (2001Facing the Future: Agents and
Choices in Our Indeterminist World. Oxford: Oxford University Press.

[23] Bjorklund, F., Bprnsson, G., Eriksson, J., FramOlinder, R. and Strandberg, C.
(2012). Recent Work on Motivational InternalisfnalysisReviews Vol 72, Num-
ber 1, pp. 124137.

[24] Bjornsson, G., Strandberg, C., Fréndlinder, R., Eriksson, J. and@klund,
F. (2015).Motivational Internalism. Oxford University Press.

[25] Blackburn, P., de Rijke, M. and Venema, Y. (2008odal Logic. Cambridge
University Press.

[26] Blackburn, P., van Benthem, J. and Wolter, F. (eds.) (208&hdbook of Modal
Logic. Elsevier.

[27] Broersen, J. M. (2006). Strategic Deontic Temporal Logic as a Reduction to ATL,
with an Application to Chisholm’s Scenario. In Goble and Meyer (eds.). (2006), pp.
53-68.

[28] Broersen, J. M. (2011). Making a Start with the stit Logic Analysis of Intentional
Action. Journal of Philosophical Logic, Vol. 40, No. 4, pp. 495830.

[29] Broersen, J. M., Dastani, M. and van der Torre L. (2001). Resolving Conflicts
between Beliefs, Obligations, Intentions, and Desires. In Salem Benferhat, Philippe
Besnard (eds.) (2001pymbolic and Quantitative Approaches to Reasoning with
Uncertainty, Springer, pp. 56879.

[30] Broome, J. (1999). Normative Requiremeniatio (new series) XII 4, pp.
398-4109.

[31] Broome, J. (2013)Rationality Through Reasoning. Wiley-Blackwell.

[32] Brown, M. A. (1999). Agents with Changing and Conflicting Commitments: A
Preliminary Study. In McNamara and Prakken (eds.) (1999), pp. 128-

[33] Brown, M. A. (2000). Conditional Obligation and Positive Permission for Agents
in Time. Nordic Journal of Philosophical Logic. Vol. 5, No. 2, pp. 8B12.

[34] Brown, M. A. (2001). Conditional and Unconditional Obligation for Agents in
Time. In Zakharyaschev, Segerberg, Rijke and Wansing (eds.) (2001), pl8321-

[35] Brown, M. A. (2004). Rich deontic logic: a preliminary studgurnal of Applied
Logic 2, pp. 19-37.

261



DanielR6nnedz

[36] Brown, M. A. (2006). Acting with an End in Sight. In Goble aikyer (eds.)
(2006), pp. 6984.

[37] Brunel, J., Bodeveix, J.-P., Filali, M. (2006). A Stat/Event Temporal Deontic
Logic. In Goble and Meyer (eds.) (2006), pp. 890.

[38] Brunel, J. (2007)Combinaison des logiques temporelle et déontique pour la
specification de politiques de sécurité. Universibulouse |ll.

[39] Brunero, J. (2010). Self-Governance, Means-Ends Coherence, and Unalterable
Ends.Ethics, Vol. 120, No. 3, pp. 57%91.

[40] Burgess, J. P. (1984). Basic Tense Logic. In D. Gabbay and F. Guenthner (eds.)
(1984)Handbook of Philosophical Logic, vol. 2, Dordrecht: Reidel, pp. B33-

[41] Carnap, R. (1946). Modalities and Quantificatidaurnal of Symbolic Logi¢1,
2, pp. 3364.

[42] Castdéieda, H.-N. (1975). Ought, Time, and the Deontic ParadoXes.Journal
of Philosophy, Vol. 74, No. 12, pp. 77391.

[43] Chellas, B. F. (1969)The Logical Form of Imperatives. Stanford: Perry Lane
Press.

[44] Chellas, B. F. (1980)Modal Logic: An Introduction. Cambridge: Cambridge
University Press.

[45] Ciuni, R. and Zanardo, A. (2010). Completeness of a Branching-Time Logic with
Possible Choicesstudia Logicad6, pp. 393420.

[46] Cohen, P. R. and Levesque, H. J. (1990). Intention is choice with commitment.
Artificial Intelligence, 42, pp. 213261.

[47] Corsi, G. (2002). A Unified Completeness Theorem for Quantified Modal Logics.
Journal of Symbolic Logic, Vol. 67, No. 4, pp. 148%10.

[48] D’Agostino, M., Gabbay, D. M., Hhnle, R. and Posegga, J. (eds.) (198@nd-
book of Tableau Methods. Dordrecht: Kluwer Academic Publishers.

[49] Dahl, N. (1974). ‘Ought’ implies ‘Can’ and Deontic LogiPhilosophia, Vol. 4,
pp. 485-511.

[50] DiMaio, M. C. and Zanardo, A. (1998). A Gabbay-Rule Free Axiomatization of
T x W Validity. Journal of Philosophical Logi@7, pp. 435487.

[51] Downie, R. S. (1984). The Hypothetical Imperatidind, New Series, Vol. 93,
No. 372, pp. 481490.

[52] Feldman, F. (1986Doing the Best We Can: An Essay in Informal Deontic Logic
Dordrecht: D. Reidel Publishing Company.

262



QuantifiedTemporalAlethic BoulesicDeonticLogic

[53] Feldman, F. (1990). A Simpler Solution to the Paradoxd3eaintic Logic.Philo-
sophical Perspectives, Vol. 4, pp. 30®41.

[54] Fine, K. (2005)Modality and Tense. Oxford: Oxford University Press.

[55] Finger, M. Gabbay, D. and Reynolds, M. (2002). Advanced Tense Logic. In D.
Gabbay and F. Guenthner (eds.) (208&ndbook of Philosophical Logié/ol. 7,
Kluwer Academic Publishers, pp. 4203.

[56] Firth, R. (1952). Ethical Absolutism and the Ideal ObserR&ilosophy and Phe-
nomenological Research, Vol. 12, No. 3, pp. 3345.

[57] Fischer, J. M. (2003). ‘Ought-implies-can’, causal determinism and moral respon-
sibility. Analysis, 63, pp. 244250.

[58] Fisher, M. (1962). A System of Deontic-Alethic Modal LogMind, New Series,
Vol. 71, No. 282, pp. 231236.

[59] Fitting, M. and Mendelsohn, R. L. (1998jirst-Order Modal Logic. Kluwer Aca-
demic Publishers.

[60] Foot, P. (1972). Morality as a System of Hypothetical Imperatiiése Philo-
sophical Review, Vol. 81, No. 3, pp. 30516.

[61] Gabbay, D. M. (1976)lnvestigations in Modal and Tense Logics with Applica-
tions to Problems in Philosophy and Linguistics. Dordrecht: Reidel.

[62] Gabbay, D., Horty, J., Parent, X., van der Meyden, E. and van der Torre, L. (eds.)
(2013).Handbook of Deontic Logic and Normative Systems. College Publications.

[63] Garson, J. W. (1984). Quantification in Modal Logic. In D. M. Gabbay and F.
Guenthner, (eds.) (198#andbook of Philosophical Logi, (2nd edition 3, 2001).

[64] Garson, J. W. (2006Modal Logic for Philosophers. New York: Cambridge Uni-
versity Press.

[65] Gensler, H. J. (1985). Ethical Consistency Principlese Philosophical Quar-
terly, Vol. 35, No. 139, pp. 156L70.

[66] Gensler, H. J. (2002)ntroduction to Logic. London and New York: Routledge.

[67] Goble, L. and Meyer, J.-J. Ch. (eds.) (20aBgontic Logic and Artificial Norma-
tive Systems. Springer.

[68] Goldblatt, R. (1992)Logics of Time and Computation. CSLI.

[69] Greenspan. P. S. (1975). Conditional Oughts and Hypothetical Imperafives.
Journal of Philosophy, Vol. 72, No. 10, pp. 25876.

[70] Hansen, J. (1999). On Relations between Aqvist’s Deontic System G and Van
Eck's Deontic Temporal Logic. In McNamara and Prakken (eds.) (1999), pp.
127144,

262



DanielR6nnedz

[71] Hansson, S. O. (2001T.he Structure of Values and Norms. Cambridge: Cam-
bridge University Press.

[72] Harsanyi, J. C. (1958). Ethics in Terms of Hypothetical ImperatiMiad, Vol.
67, No. 267, pp. 305316.

[73] Herzig, A. and Lorini, E. (2010). A Dynamic Logic of Agency I: STIT, Capabil-
ities and Powerslournal of Logic, Language, and Information, Vol. 19, No. 1, pp.
89-121.

[74] Hill, Ir. T. E. (1973). The Hypothetical Imperativ€he Philosophical Review,
Vol. 82, No. 4, pp. 429450.

[75] Hill, Jr. T. E. (1989). Kant's Theory of Practical Reasdhe Monist, Vol. 72, No.
3, Kant's Practical Philosophy, pp. 36383.

[76] Hilpinen, R. (ed.) (1971)Deontic Logic: Introductory and Systematic Readings.
Dordrecht: D. Reidel Publishing Company.

[77] Hilpinen, R. (ed.) (1981 New Studies in Deontic Logic: Norms, Actions, and the
Foundation of Ethics. Dordrecht: D. Reidel Publishing Company.

[78] Hintikka, J. (1961). Modality and quantificatiofheoria27, pp. 117428.
[79] Horty, J. F. (1996). Agency and obligaticBynthese, 108, pp. 269067.
[80] Horty, J. F. (2001)Agency and Deontic Logic. Oxford: Oxford University Press.

[81] Horty, J. F. and Belnap, N. (1995). The deliberative stit: a study of action, omis-
sion, ability, and obligationJournal of Philosophical Logic, pp. 58%44.

[82] Howard-Snyder, F. (2006). ‘Cannot’ Implies ‘Not Ough®hilosophical Studies,
130, pp. 233246.

[83] Hughes, J. and Royakkers, L. M. M. (2006). Don’t Ever Do That! Long-Term
Duties in PDeL. In Goble and Meyer (eds.). (2006), pp. 11318-

[84] Hughes, G. E. and Cresswell, M. J. (1968 Introduction to Modal Logic. Lon-
don: Routledge.

[85] Hughes, G. E. and Cresswell, M. J. (1998)New Introduction to Modal Logic
London: Routledge.

[86] Jeffrey, R. C. (1967Formal Logic: Its Scope and Limits. New York: McGraw-
Hill.

[87] Kanger, S. (1957). New Foundations for Ethical Theory. In Hilpinen (ed.) (1971),
pp. 36-58.

[88] Kant, I. (1785).Grundlegung zur Metaphysik der Sitten. English translation in
Paton (1948).

264



QuantifiedTemporalAlethic BoulesicDeonticLogic

[89] Kant, I. (1793/1996)Religion Within the Boundaries of Mere Reason.Reli-
gion and Rational Theology, translated and edited by Allen W. Wood and George
Di Giovanni (1996). Cambridge: Cambridge University Press, pp238-

[90] Kawall, J. (2013). Ideal Observer Theories. In H. LaFollette (ékhg Interna-
tional Encyclopedia of Ethics. Blackwell Publishing, pp. 252330.

[91] Kekes, J. (1984). ‘Ought Implies Can’ and Two Kinds of Moralithe Philo-
sophical Quarterly, Vol. 34, No. 137, pp. 45967.

[92] Knuuttila, S. (2004)Emotions in Ancient and Medieval Philosophy. Oxford: Ox-
ford University Press.

[93] Korsgaard, C. M. (2008). The Normativity of Instrumental Reason. In Korsgaard
(2008), The Constitution of Agency: Essays on Practical Reason and Moral Psy-
chology, Oxford/New York: Oxford University Press.

[94] Kracht, M. (1999)Tools and Techniques in Modal Logic. Number 142 in Studies
in Logic. Amsterdam: Elsevier.

[95] Kroger, F. and Merz, S. (2008)emporal Logic and State Systems. Springer.

[96] Lewis C. I. and Langford, C. H. (19323ymbolic Logic. New York: The Century
Company.

[97] Lindstrom, S. (2006). On the proper treatment of quantification in contexts of log-
ical and metaphysical modalities. In Lagerlund, Lindstr Sliwinski (eds.) (2006)
Modality Matters: Twenty-Five Essays in Honour of Krister Segerberg, Uppsala
Philosophical Studies 53, Uppsala.

[98] Lindstrom, S. and Segerberg, K. (2007). Modal logic and Philosophy. In Black-
burn, P., van Benthem, J., and Wolter, F. (208@ndbook of Modal Logic, Studies
in Logic and Practical Reasoning 3, Elsevier, pp. 1431 5.

[99] Littlejohn, C. (2009). “Ought,” “Can” and Practical ReasoAsnerican Philo-
sophical Quarterlyol. 46, Number 4, pp. 363372.

[100] Lorini, E. and Herzig, A. (2008). A Logic of Intention and AttemBtynthese,
Vol. 163, No. 1, Knowledge, Rationality and Action, pp. 49~

[101] Mally, E. (1926).Grundgesetze des Sollens: Elemente der Logik des Willens.
Leuschner and Lubensky.

[102] Marra, A. and Klein, D. (2015). Logic and Ethics: An Integrated Model for
Norms, Intentions and Actions. In Wiebe van der Hoek, Wesley H. Holliday, Wen-
fang Wang (eds.) (2015)nternational Workshop on Logic, Rationality and Inter-
action. Berlin-Heidelberg: Springer, pp. 26331.

[103] Marshall, J. (1982). Hypothetical Imperativégnerican Philosophical Quar-
terly, Vol. 19, No. 1, pp. 105%14.

26t



DanielR6nnedz

[104] Mason, E. (2003). Consequentialism and the “Ought Implies” principle.
American Philosophical Quarterly. Vol. 40, No 4, pp. 31384.

[105] McNamara, P. (2010). Deontic Logi&tanford Encyclopedia of Philosophy,
http://plato. stanford.edu/entries/logic-deontic/.

[106] McNamara, P. and Prakken, H. (eds.) (199®rms, Logics and Information
Systems: New Studies in Deontic Logic and Computer Science. Amsterdam: 10S
Press.

[107] Mele, A. R. (ed.) (2004)The Oxford Handbook of Rationality. Oxford: Oxford
University Press.

[108] Montague, R. (1960). Logical necessity, physical necessity, ethics and quanti-
fiers.Inquiry 4, pp. 259-269.

[109] Montefiore, A. (1958). ‘Ought’ and ‘CanThe Philosophical Quarterly, Vol. 8,
No. 30, pp. 2440.

[110] Muller, T. (ed.) (2014).Nuel Belnap on Indeterminism and Free Action.
Springer.

[111] Ofstad, H. (1959). Frankena on Ought and Qdimd, New Series, Vol. 68, No.
269, pp. 7379.

[112] @hrstram P. and Hasle, P. F. V. (199%mporal Logic: From Ancient Ideas to
Artificial Intelligence. Dordrecht/Boston/London: Kluwer Academic Publishers.

[113] Olkhovikov, G. K., Wansing, H. (2018). An Axiomatic System and a Tableau
Calculus for STIT Imagination LogicJournal of Philosophical Logic47, pp.
259-279.

[114] Parks, Z. (1976). Investigations into Quantified Modal Logi&tudia Logica
35, pp. 109425.

[115] Paton, H. J. (1948)he Moral Law: Kant's Groundwork of the Metaphysics of
Morals. Translated and analysed by H. J. Paton. London and New York: Routledge
(Reprinted 1991).

[116] Paton, H. J. (1948bJ.he Categorical Imperative. Chicago/lllinois: The Univer-
sity of Chicago Press.

[117] Priest, G. (2005)Towards Non-Being. Oxford: Oxford University Press.

[118] Priest, G. (2008)An Introduction to Non-Classical Logic. Cambridge: Cam-
bridge University Press.

[119] Prior, A. (1967)Past, Present and Future. Oxford: Clarendon.

[120] Pufendorf, S. (1672/1964pn the Law of Nature and Nations. New York: Wildy
and Sons.

26¢€



QuantifiedTemporalAlethic BoulesicDeonticLogic

[121] Rescher, N. (ed.) (1967FhelLogic of Decision and Action. Pittsburgh: Univer-
sity of Pittsburgh Press.

[122] Rescher, N. and Urquhart, A. (197Temporal logic. Wien: Springer-Verlag.

[123] Ronnedal, D. (2012). Temporal alethic-deontic logic and semantic tableaux.
Journal of Applied Logic, 10, pp. 21237.

[124] Ronnedal, D. (Forthcoming). Deontic Logic and the Structure of a Perfectly
Rational Will. Organon F.

[125] Schroeder, M. (2004). The Scope of Instrumental ReaBbitosophical Per-
spectives, Vol. 18, Ethics, pp. 33364.

[126] Schroeder, M. (2005). The Hypothetical Imperativa®stralasian Journal of
Philosophy83, pp. 357372.

[127] Schroeder, M. (2009). Means-End Coherence, Stringency, and Subjective Rea-
sons.Philosophical Studies, Vol. 143, No. 2, pp. 22318.

[128] Schroeder, M. (2015). Hypothetical Imperatives. In Mark Timmons and Robert
N. Johnson (eds.Reason, Value, and Respect: Kantian Themes from the Philoso-
phy of Thomas E. Hill, Jr., Chapter 4, Oxford University Press.

[129] Segerberg, K. (19713An Essay in Classical Modal Logic. 3 vols. Uppsala: Uni-
versity of Uppsala.

[130] Segerberg, K. and Sliwinski, R. (eds.) (200B8dgic, law, morality: thirteen
essays in practical philosophy in honour of Lennart Aqvist. Uppsala philosophical
studies 51. Uppsala: Uppsala University.

[131] Semmling, C. and Wansing, H. (2008). From BDI and stit to bdi-stit Idgigic
and Logical Philosophy7, pp. 185207.

[132] Shaver, R. (2006). Korsgaard on Hypothetical Imperativbdosophical Stud-
ies, Vol. 129, No. 2, pp. 335347.

[133] Sinnott-Armstrong, W. (1984). ‘Ought’ Conversationally Implies ‘Cahhe
Philosophical Review, Vol. 93, No. 2, pp. 24261.

[134] Sinnott-Armstrong, W. (1988Moral Dilemmas. Oxford: Basil Blackwell.

[135] Smullyan, R. M. (1966). Trees and Nest Structudesirnal of Symbolic Logic
31, pp. 303321.

[136] Smullyan, R. M. (1968)First-Order Logic. Heidelberg: Springer-Verlag.

[137] Stalnaker, R. and Thomason, R. (1968). Abstraction in first-order modal logic.
Theoria34, pp. 203-207.

[138] Stern, R. (2004). Does ‘Ought’ Imply ‘Can’? And did Kant Think that it Does?
Utilitas 16, 1, pp. 4261.

267



DanielR6nnedz

[139] Stocker, M. (1971). ‘Ought’ and ‘CarAustrlasian Journal of Philosophy, Vol.
49, No. 3, pp. 303316.

[140] Streumer, B. (2003). Does ‘Ought’ Conversationally Implicate ‘Cé&ufopean
Journal of Philosophyt9, 2, pp. 219228.

[141] Thomason, R. and Stalnaker, R. (1968). Modality and Refer&migs, Vol. 2,
No. 4, pp. 359372.

[142] Thomason, R. (1970). Some completeness results for modal predicate calculi.
In K. Lambert (ed.) (1970Philosophical Problems in Logic, D. Reidel, Dordrecht.

[143] Thomason, R. (1981). Deontic Logic as Founded on Tense Logic. In Hilpinen
(ed.) (1981), pp. 165L76.

[144] Thomason, R. (1981). Deontic logic and the role of freedom in moral delibera-
tion. In Hilpinen (ed.) (1981), pp. 17286.

[145] Thomason, R. (2002). Combinations of Tense and Modality. In D. M. Gabbay
and F. Guenthner, (edsHandbook of Philosophical Logi2, (1984), pp. 135165,
(2nd edition 7, 2002, pp. 20234).

[146] van der Torre, L.W.N. and Tan, Y.H. (1998). The Temporal Analysis of
Chisholm’s Paradox. IfProceedings of the Fifteenth National Conference on Ar-
tificial Intelligence(AAAI'98), pp. 650-655.

[147] van Benthem, J. (1983Ylodal Logic and Classical Logic. Naples: Bibliopolis.

[148] van Benthem, J. (19858 Manual of Intensional Logic. CSLI Publications,
Stanford.

[149] van Benthem, J. (2010Ylodal Logic for Open Minds. CSLI Publications, Stan-
ford.

[150] van Eck, J. E. (1981A System of Temporally Relative Modal and Deontic Pred-
icate Logic and its Philosophical Applications. Department of Philosophy, Univer-
sity of Groningen, The Netherlands.

[151] van Roojen, M. (2013). Internalism, Motivational. In H. LaFollette (ed.)
(2013) International Encyclopedia of Ethics. Malden, MA: Wiley-Blackwell. pp.
2693-2706.

[152] von Kutschera, F. (1997). W Completenesslournal of Philosophical Logic
26, pp. 241250.

[153] von Wright, G. H. (1951). Deontic Logi#ind 60, pp. 145.

[154] Vranas, P. B. M. (2007). | Ought, Therefore | C&hilosophical Studie436,
pp. 167-216.

[155] Wallace, R. J. (2001). Normativity, Commitment, and Instrumental Reason.
Philosophers’ Imprint, Volume 1, No. 3. pp. 26.

26¢



QuantifiedTemporalAlethic BoulesicDeonticLogic

[156] Way, J. (2010). Defending the Wide-Scope Approach to Instrum&#ason.
Philosophical Studies, Vol. 147, No. 2, pp. 212383.

[157] WoIfl, S. (1999). Combinations of Tense and Modality for Predicate LJdgiat-
nal of Philosophical Logi@8, pp. 371-398.

[158] Xu, M. (1994a). Decidability of stit theory with a single agent and refref equiv-
alence Studia Logica, 53, pp. 25298.

[159] Xu, M. (1994b). Doing and refraining from refrainingpurnal of Philosophical
Logic, 23, pp. 621632.

[160] Xu, M. (1995). Busy choice sequences, refraining formulas, and mod&a8ties.
dia Logica, 54, pp. 267301.

[161] Xu, M. (1998). Axioms for Deliberative Stitlournal of Philosophical Logic,
Vol. 27, No. 5, pp. 505552.

[162] Xu, M. (2015). Combinations of stit with ought and kndeurnal of Philosoph-
ical Logic, 44, pp. 851877.

[163] Yaffe, G. (1999). ‘Ought’ Implies ‘Can’ and the Principles of Alternate Possi-
bilities. Analysis, 59. pp. 21822.

[164] zZakharyaschev, M., Segerberg, K., de Rijke and Wansing, H. (eds.) (20f1).
vances in Modal Logic, Vol 2. CSLI Publications.

[165] Zanardo, A. (1996). Branching-Time Logic with Quantification over Branches:
the Point of View of Modal LogicThe Journal of Symbolic Logic, vol. 61 number
1, pp. 1-39.

Daniel Ronnedal

Stockholm University

Department of Philosophy

106 91 Stockholm, Sweden
daniel.ronnedal@philosophy.su.se





