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Abstract

The purpose of this paper is to develop a set of quantified temporal alethic
boulesic deontic systems. Every system in this class consists of five parts: a ‘quan-
tified’ part, a temporal part, a modal part (an alethic part), a boulesic part and a
deontic part. Separately, all these parts, except the boulesic part, have been studied
extensively, but there are no systems in the literature that combine them all. So,
all systems in this paper are new. The ‘quantified part’ consists of relational pred-
icate logic with identity, where the quantifiers are, in effect, a kind of possibilist
quantifiers that vary over every object in the domain. The alethic part includes
two types of modal operators, for absolute and historical necessity and possibility.
By ‘boulesic logic’, I mean the logic of the will; it treats ‘willing’ (‘consenting’,
‘rejecting’, ‘indifference’ and ‘non-indifference’) as a kind of modal operator. De-
ontic logic is the logic of norms; it deals with such concepts as ought, permitted
and forbidden. I will investigate some possible relationships between these differ-
ent parts, and consider various principles that include more than one type of logical
expression. Every system is described both semantically and proof theoretically. I
use a kind ofT ×W semantics to describe the systems semantically, and semantic
tableaux to describe them proof theoretically. I prove that every tableau system in
the paper is sound and complete with respect to its semantics. Finally, I consider
some examples of valid and invalid sentences and arguments, show how one can
use semantic tableaux to prove their validity or invalidity, and try to illustrate the
philosophical usefulness of the systems developed in the paper.

Keywords: Quantified modal logic, Modal logic, Temporal logic, Deontic
logic, Boulesic logic, Semantic tableaux.

1 Introduction

In this paper, I will introduce a set of quantified temporal alethic boulesic deontic
systems. Every system in this class includes five parts: a ‘quantified’ part, a temporal
part, a modal part (an alethic part), a boulesic part and a deontic part. Separately,
each of these parts, except the boulesic part, has been investigated thoroughly. Some
interactions between them have also been explored. Connections between alethic and
deontic logic, between temporal, alethic and deontic logic, and between predicate and
modal logic have, for example, been investigated (see below for references). However,
as far as I know, there are no systems in the literature that combine them all. Hence,
all systems in this paper are new. Since the different parts, except the boulesic part, are
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well-known, I will focus on the combination of the various components.Every system
will be characterised semantically using a kind ofT ×W semantics. According to this
approach, both worlds and times are basic and truth is relativised to world-moment
pairs. Consequently, a sentence may be true at some world-moment pairs and false at
others. TheT × W approach is mentioned by [123], [152] and [157], among others.
I will develop a set of semantic tableau systems and prove that they are sound and
complete with respect to their semantics.

The alethic part of our systems includes two types of modal operators for abso-
lute and historical necessity and possibility, respectively:� (absolute necessity),�
(absolute possibility),◻ (historical necessity) and◇ (historical possibility). For intro-
ductions to (alethic) modal logic, see, for example, [25], [26], [44], [54], [59], [61],
[64], [84], [85], [94], [96], [129], [147], [148], [149] and [164].

Every system includes several temporal operators, for example,A (always), S

(sometimes),G (always in the future),F (sometime in the future),H (always in the
past) andP (sometime in the past). For more on temporal logic, see, for example, [20],
[40], [55], [68], [95], [119], [122] and [112].

Deontic logic is the logic of norms. Every system in this paper includes deontic
operators such asO (ought) andP (permitted) that can be used to symbolise various
normative propositions. For some introductions to deontic logic, see, for example, [5],
[7], [62], [67], [71], [76], [77], [105] and [153].

By ‘boulesic logic’ I mean a new kind of logic, the logic of the will; it treats ‘will-
ing’ (‘consenting’, ‘rejecting’, ‘indifference’ and ‘non-indifference’) as a kind of modal
operator. Every system includes five boulesic operatorsW , A, R, I andN . W , A,
R, I andN are sentential operators that take individual terms and formulas as argu-
ments and give formulas as values. The sentenceWdB reads ‘individuald wants it to
be the case thatB’, the sentenceAdB reads ‘daccepts that (it is the case that)B’, or
‘d consents to the state of affairs (the idea) thatB’, the sentenceRdB reads ‘drejects
(disapproves, objects to, condemns) (the state of affairs that)B’, the sentenceIdB reads
‘d is indifferent towards (the state of affairs that)B’, and the sentenceNdB reads ‘dis
non-indifferent towards (the state of affairs that)B’. Even though boulesic logic is new,
there have been some vaguely similar attempts to develop a kind of ‘intentional’ logic,
see, for example, [28], [29], [46], [100], [102] and [131]; see also [66], Chapter 10, [92]
and [101]. The approach in this paper is, however, quite different. According to this
approach, almost nothing of interest follows from the proposition that someone wants
something (or has some other boulesic attitude towards something), unless we assume
that this individual is (perfectly) rational or wise. However,if we assume that some
individual is (perfectly) rational, we can derive all sorts of interesting consequences
from the claim that this individual wants something (or has some other boulesic atti-
tude towards something). Exactly what follows will depend on the interpretation of the
concept of rationality and on what conditions we choose to impose on the so-called
boulesic accessibility relation in our semantic models (see Section 3.3). For more on
non-temporal boulesic logic, see [124]. For more on the concept of rationality, see, for
example, [107] and [31].

The ‘quantified part’ of the systems consists of relational predicate logic with iden-
tity. The quantifiers are, in effect, a kind of ‘possibilist’ quantifiers that vary over every
object in the domain and the domain is the same in every world-moment pair. Every
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system includes a universal quantifier,Π (‘everything’), and a particular quantifier,Σ
(‘something’). In every system, we can also define a pair of ‘actualist’ quantifiers in
terms of the possibilist quantifiers and an existence predicate. Intuitively, the actualist
quantifiers vary over everything that exists in a world-moment pair, that is, that exists
in a world at a particular moment in time. For some views on how to combine modal
logic and predicate logic, see, for example, [17], [41], [47], [59], [63], [64], [78], [84],
[85], [97], [98], [114], [118], [137], [142] and [141].

I will investigate some possible relationships between these different parts of our
systems, and consider various principles that include more than one type of logical ex-
pression. Some interactions of this kind have been explored before. Logicians have, for
example, developed systems that combine alethic and deontic logic, temporal, alethic
and deontic logic, and predicate and modal logic. Some of the first attempts to combine
deontic logic and alethic modal logic can be found in several essays by Anderson (see
[1], [2], [3], [4]). Another early contribution is [58]; see also [87].

Many philosophers and logicians have developed logical systems that include tem-
poral, alethic and deontic elements, see, for example, [43], [11], [12], [13], [14], [150],
[143], [144], [10] and [9]. Chellas ([43]) also adds a modal logic of action to his sys-
tems. For more ideas on how to combine deontic logic with temporal logic, see, for
example, [15], [27], [33], [34], [35], [36], [37], [38], [42], [44], Chapter 6, [52], [53],
[146] and [8]. See also [18], [19], [32], [70] and [83].

Systems that combine modal and temporal logic with a kind of action logic have
been developed by researchers within the stit-paradigm. Sometimes these systems are
combined with deontic logic. For more on stit-logic, see, for example, [16], [22], [73],
[79], [80], [81], [110], [113], [131], [158], [159], [160], [161] and [162]. For more
on how to combine modal and temporal logic, see, for example, [45], [50], [145] and
[165]. See [108] for an early attempt to combine various systems.

There are many good reasons, both technical and philosophical, to be interested
in the results in this paper. Since all systems are new, there are good logical reasons
to be interested in them. I use semantic tableau in this paper. Most logicians who
have tried to combine different branches of logic, such as, for example, temporal logic
and deontic logic, have used axiomatic techniques. Tableau systems are often more
user-friendly. It is often easier to prove theorems, establish the validity or invalidity
of various principles and arguments, and find countermodels in tableau systems. Our
symbolic apparatus might also be useful in linguistics and computer science.

I cannot discuss all the philosophical reasons to be interested in our systems in
detail, but let me mention five points to illustrate the usefulness of our technical results.

First, we appear to need systems of this kind to prove that certain statements that
are intuitively valid are valid. Consider the following example:

E1. It is (absolutely) necessary that if a perfectly rational individualx wants it to be
the case thatA sometime in the future and it is (historically) necessary that it is always
going to be the case that ifA thenB, thenx wants it to be the case thatB sometime in
the future.

This sentence is intuitively valid. If it will be the case thatA sometime in the future
and it is historically necessary that it is always going to be the case that ifA thenB,
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then it is inevitable that it will sometime in the future be the casethat B. Hence, if
someone is perfectly rational and she wants it to be the case thatA sometime in the
future, she also wants it to be the case thatB sometime in the future given that it is
historically necessary that it is always going to be the case that ifA thenB. In Section
7, I will show that we can prove this sentence in every system that includes the tableau
rule T − ◻W. However, we cannot prove this proposition in any other system in the
literature (at least not without assuming some implicit premises).1

Second, we can use the systems to find countermodels to some propositions that
are intuitively invalid. Consider the following sentence:

E2. If an individual x wants it to be the case thatx sometime in the future will be
a citizen of Great Britain and it is (historically) necessary that it is always going to be
the case that ifx is a citizen of Great Britain thenx is a citizen of Europe, thenx wants
it to be the case thatx sometime in the future will be a citizen of Europe.

Even thoughE1 is intuitively valid, E2 is intuitively invalid. If someone isnot
perfectly rational, she may wantA even though she does not want every necessary
condition forA. In Section 7, I will show how we can prove thatE2 is invalid in the
class of all models and how one can use semantic tableaux to construct countermodels
to invalid sentences.

Third, we appear to need systems of the kind in this paper to prove that certain
arguments that are intuitively valid indeed are valid.

Consider the following example:

E3. P1. It is (absolutely) necessary that if no perfectly rational individual accepts
that you will rape someone in the future, then it ought to be (the case) that it is always
going to be the case that you do not rape someone.

P2. Everyone who is perfectly rational wants it to be the case that it is never going
to be the case that you rape someone.

C. Hence, it is not permitted that you will rape someone in the future.

This argument is intuitively valid. It appears to be necessary that the conclusion is
true if the premises are true. However, we cannot establish this in any systems in the
literature. In Section 7, I will show how we can use a semantic tableau to prove that
this argument is valid in the class of all models. To be able to prove this, we need to use
all parts of our systems. Note that the argument includes an alethic expression (‘abso-
lutely necessary’), quantifier expressions (‘no’ and ‘everyone’), boulesic expressions
(‘accepts’ and ‘wants’), temporal expressions (‘will in the future’ and ‘it is always go-

1Notethat when we say that some individualc wants (or accepts or. . .) A, we usually mean thatc wants
(accepts, etc.)A in an all-things-considered sense in this paper. For example,c might not feel like going to
the dentist; nevertheless, all-things-considered she wants to go. Going to the dentist is a means to an end,
namely, healthy teeth. Accordingly, when we say thatc wants (or accepts, etc.)A, we do not necessarily
mean thatc wants (or accepts, etc.)A ‘in itself’; in fact, c might dislikeA, even though she wantsA to be the
case becauseA is a necessary means to or conditions for something else that she wants ‘in itself’. In other
words, it is possible forc to want (accept, etc.)A in an all-things-considered sense even thoughc does not
like every aspect ofA or every consequence ofA and even ifc has some desire (a prima facie desire) for
not-A. For more on this, see [124].
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ing to be the case that’) and deontic expressions (‘permitted’and ‘ought’). Hence, to
prove that the argument is valid, we need a system that includes all of these parts.

Fourth, our systems can be used to analyse and prove some interesting principles in
ethics and metaethics, for example, the principle of internalism. There are many kinds
of internalism, but according to one version of this principle the following proposition
is true:

(I). It is absolutely necessary that if someonex is perfectly rational, then if it ought
to be the case thatA thenx wants it to be the case thatA.

This principle can be symbolised in the following way in our systems:�Πx(Rx→
(OA → WxA)). This formula can be proved in every system that includes the tableau
rule T − OW . Consequently, it is valid in the class of allC − OW-models (by the
soundness results in Section 6). For more on internalism, see, for example, [23], [24]
and [151]. See also Section 5.

Fifth, our systems can be used in the development of whole ethical systems. Our
logical systems seem to be particularly well suited to developing a kind of Kantian
ethics, but they might also be interesting to, for example, various ideal observer the-
orists (see Section 5 for more on this), constructivists, moral idealists, contractualists
and divine will theorists.

Let me briefly illustrate how the systems in this paper can be used to analyse several
Kantian theses, for example, the so-called ought implies can principle, the hypothetical
imperative, and the idea that for a perfectly rational individual ‘I ought’ and ‘I will’ are
equivalent. In some systems we can even prove that these principles are valid. These
examples clearly illustrate that our systems can be used in the development of a kind
of Kantian ethics.

It is generally agreed that Kant thought that ought implies can. He expresses this
idea in several places in his works, see, for example, [89] 6:47 (‘duty commands noth-
ing but what we can do’) and [89] 6:62 (‘Weought to conform to it, and therefore
we must alsobe ableto’). So, someone ought to do something only if she can do it
according to Kant; we do not have any obligations that are impossible to fulfil. Ac-
cording to one interpretation of this principle, this means (or at least entails) that it is
absolutely necessary that ought implies (historical) possibility. Hence, it is absolutely
necessary that if it ought to be the case thatA then it is (historically) possible thatA.
This principle can be symbolised in the following way in our systems:�(OA→◇A),
and this schema can be proved in every system that includes the tableau ruleT −O◇.
Consequently, it is valid in the class of allC−O◇-models (by the soundness results in
Section 6).2

Kant introduced the concept of a hypothetical imperative. InGrundlegung zur
Metaphysik der Sitten, he defines this concept in the following way:

2SinceKant many other philosophers and logicians have accepted the ought implies can principle. Kant
is probably the most famous defender of this thesis, but he was not the first to accept it, see, for example,
[120], Book I, Chapter V, VIII: ‘Impossibilities are incapable of Obligation; ... no Man can be conceiv’d to
have enjoin’d impossible Duties in a Law...’. For more on the ought-can principle, see, for example, [49],
[57], [82], [91], [99], [104], [109], [111], [133], [134], [138], [139], [140], [154] and [163].
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‘Who wills the end, wills (so far as reason has decisive influenceon
his actions) also the means which are indispensably necessary and in his
power’ and “‘If I fully will the effect, I also will the action required for it”
is analytic’. ([88], p. 45; English translation in [115], pp. 80−81.)

Since Kant, there has been debate about what is the logical form of a hypothetical
imperative. I will not enter into this debate in the present paper; I just want to point
out that it is possible to symbolise several different interpretations of the concept in
our systems and mention one of the most plausible. According to this interpretation,
it is universally necessary that, for everyx, if x is perfectly rational, then ifx wants
it to be the case thatA and it is necessary that ifA then B, then x wants it to be
the case thatB. This reading can be symbolised in the following way:�Πx(Rx →
((WxA ∧ ◻(A → B)) → WxB)). This formula can be proved in every system that
includesT−◻W. Since a system that includesT−◻W is sound with respect to the class
of all C − ◻W-models, the sentence is valid in this class of models (by the soundness
results in Section 6). I discuss this principle in more detail in [124]. Universal necessity
implies historical necessity. Hence, we can also prove the following version of the
hypothetical imperative:�Πx(Rx→ ((WxA ∧ �(A → B)) → WxB)). In fact, this
sentence can be proved in every system in this paper and hence it is valid in the class
of all models.3

According to [116], p. 223, “‘I ought” is equivalent to “I will” for a rational agent
as such’ for a Kantian (see also [115], p. 26). This idea can be symbolised in our
systems in the following way:�Πx(Rx→ (OA↔ WxA)), which can be read as ‘It
is absolutely necessary that for everyx, if x is perfectly rational then it ought to be
the case thatA if and only if (iff) x wants it to be the case thatA’.4 This schema is a
theorem in every system that includes the tableau rulesT −OW andT −WO, and it is
valid in the class of models that satisfyC−OW andC−WO. It is not obvious that Kant
himself would accept this principle—he seems to think that there are no ‘oughts’ for a
perfectly rational individual ([115], p. 78)—but the difference between these positions
is not great. For if ‘I ought’ is equivalent to ‘I will’ for a rational agent, then every ‘I
ought’ can, in principle, be ‘eliminated’. In any case, the principle is clearly Kantian
in spirit.

Consequently, we can symbolise and prove at least three versions of three important
Kantian ethical principles. Of course, these principles are not the only ones that would
be included in a more fully developed Kantian ethical system and much more could be
said about them, but the discussion above is sufficient for our purposes in this paper
and clearly shows the usefulness of our systems.

I conclude that we have very good reasons to be interested in the systems in this
paper.

The paper consists of seven main sections. Section 2 deals with the syntax and
Section 3 with the semantics of our systems. In Section 4, I describe the proof theory
of our logics, while Section 5 includes some examples of theorems. Section 6 contains

3For more information about the hypothetical imperative, see, for example, [21], [30], [39], [51], [52],
Chapter 5, [60], [65], [69], [72], [74], [75], [93], [103], [132], [125], [126], [127], [128], [155] and [156].

4Note that this formula entails(I) above, that is, it entails a kind of internalism.
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soundness and completeness proofs for every system. Finally,in Section 7, I consider
some examples of valid and invalid sentences and arguments.

2 Syntax

2.1 Alphabet

Terms: (i) A set of variablesx1, x2, x3 . . .. (ii) A set of constants (rigid designators)
kd1, kd2, kd3, . . .. Predicates: (iii) For every natural numbern > 0, n-place predicate
symbolsP1

n, P2
n, P3

n . . .. (iv) The monadic existence predicateE, and the monadic
rationality predicateR. (v) The dyadic identity predicate (necessary identity)=. Con-
nectives:(vi) The primitive truth-functional connectives¬ (negation),∧ (conjunction),
∨ (disjunction),→ (material implication) and↔ (material equivalence).Operators:
(vii) The alethic operators�,�, ◻ and◇. (viii) The temporal operatorsA, S, G, F,
H andP. (ix) The deontic operatorsO andP. (x) The boulesic operatorsW , A, R, I
andN . Quantifiers: (xi) The (possibilist) quantifiersΠ andΣ. Parentheses:(xii) The
brackets ) and (.

x, y andz . . . stand for arbitrary variables,a, b, c . . . for arbitrary constants, ands
andt for arbitrary terms (with or without primes or subscripts). For more on the set of
constants, see Section 3.1. I will useFn, Gn, Hn . . . for arbitraryn-place predicates and
I will omit the subscript if it can be read offfrom the context.

2.2 Language

The languageL is defined in the following way: (i) Any constant or variable is a term.
(ii) If t1, . . . , tn are any terms andP is any n-place predicate,Pt1 . . . tn is an atomic
formula. (iii) If t is a term,Et (‘t exists’) is an atomic formula andRt (‘t is perfectly
rational’) is an atomic formula. (iv) Ifsandt are terms, thens= t (‘ s is identical witht’)
is an atomic formula. (v) IfA andB are formulas, so are¬A, (A∧B), (A∨B), (A→ B)
and (A ↔ B). (vi) If A is a formula, so are�A (‘it is universally [or absolutely]
necessary thatA’), �A (‘it is universally [or absolutely] possible thatA’), ◻A (‘it is
[historically] necessary thatA’) and◇A (‘it is [historically] possible thatA’). (vii) If B
is a formula, so areAB (it is always the case thatB), SB (it is sometimes the case that
B), GB (it is always going to be the case thatB), FB (it will some time [in the future]
be the case thatB), HB (it has always been the case thatB) andPB (it was some time
[in the past] the case thatB). (viii) If B is any formula andt is any term, thenWtB (‘t
wants it to be the case that (desires that)B’), AtB (‘t accepts that (consents to the idea
that, approves that, tolerates that, is willing that) (it is the case that)B’), RtB (‘t rejects
(disapproves, objects to, condemns) (the state of affairs that)B’), ItB (‘t is indifferent
towards (the state of affairs that)B’) andNtB (‘t is non-indifferent towards (the state of
affairs that)B’) are formulas. (ix) IfA is any formula andx is any variable, thenΠxA
(‘for every [possible]x: A’) andΣxA (‘for some [possible]x: A’) are formulas. (x) If
A is a formula, thenOA (‘it ought to be the case thatA’) andPA (‘it is permitted that
A’) are formulas. (xi) Nothing else is a formula.
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The concepts of bound and free variables, and open and closed formulas,are de-
fined in the usual way.A, B, C . . . stand for arbitrary formulas, andΓ, Φ . . . for
finite sets of closed formulas.A[a1, . . . ,an/x1, . . . , xn] is the result of replacing ev-
ery free occurrence ofx1 by a1, and. . ., and every free occurrence ofxn by an in A.

A[a1, . . . ,an/x1, . . . , xn] will be abbreviated asA[a1, . . . ,an/
→

x]. A[t/x] is the formula
obtained by substitutingt for every free occurrence ofx in A. The definitions are stan-
dard. Brackets around formulas are usually dropped if the result is not ambiguous.

Definition 1 The definitions below should be treated as pure metalogical abbrevia-
tions. However, in parentheses I will indicate how the new symbols might be inter-
preted informally.Deontic operators:FA (‘it is forbidden that A’)=d f ¬PA; KA (‘it is
optional that A’)=d f (PA∧P¬A); NA (‘it is non-optional that A’)=d f ¬KA. Temporal
operators:GA (‘it is and it is always going to be the case that A’)=d f (A∧GA); HA
(‘it is and it has always been the case that A’)=d f (A∧HA); FA (‘it is or it will some
time in the future be the case that A’)=d f (A∨ FA); PA (‘it is or it has some time in
thepast been the case that A’)=d f (A∨ PA). Actualist quantifiers:∀xA (‘for every
existing x A’)=d f Πx(Ex→ A) and∃xA (‘for some existing x A’)=d fΣx(Ex∧ A).

3 Semantics

3.1 Models

Definition 2 (Models) A modelM is a relational structure⟨D,W,T,<,R,A,S,v⟩,
where D is a non-empty set of individuals (the domain), W is a non-empty set of pos-
sible worlds, T is a non-empty set of times,< is a binary relation on T (<is a subset
of T × T), R is a ternary alethic accessibility relation (Ris a subset of W× W × T),
A is a four-place boulesic accessibility relation (Ais a subset of D× W × W × T), S

is a ternary deontic accessibility relation (Sis a subset of W× W × T), and v is an
interpretation function.

R is used in the definition of the truth conditions for sentences that begin with
the alethic operators◻ and◇, S is used in the definition of the truth conditions for
sentences that begin with the deontic operatorsO andP, A is used in the definition of
the truth conditions for sentences that begin with the boulesic operatorsW , A, R, I
andN , and< is used to define the truth conditions for sentences that begin with the
temporal operators. Intuitively,τ < τ′ says that the timeτ is before the timeτ′, Rωω′τ

says that the possible worldω′ is alethically (historically) accessible from the possible
worldω at the timeτ, Sωω′τ says that the possible worldω′ is deontically accessible
from the possible worldω at the timeτ, andAδωω′τ says that the possible worldω′

is boulesically accessible (acceptable) to the individualδ in (or relative to) the possible
worldω at the timeτ, or thatδ acceptsω′ in (or relative to)ω atτ.5

5In this paper, we treatA as primitive. However, it might in principle be possible to define this relation.
Here are some possible definitions:ω′ is acceptable toδ in ω at τ iff the utility of ω′ for δ at τ is positive,
or above a certain threshold or as high as possible, or iffδ does not prefer any other possible world toω′

in ω at τ, or . . .. The important thing for our purposes in this paper is that all definitions of this kind are
compatible with the semantics we use. The models are also consistent with the proposition that different
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The valuation functionv assignsevery constantc an elementv(c) of D, and each
world-moment pair,⟨ω, τ⟩, andn-place predicate,P, a subset,v

ωτ
(P) (the extension

of P in ω at τ), of Dn. In other words,v
ωτ
(P) is the set ofn-tuples that satisfyP

in the worldω at timeτ (in the world-moment pair⟨ω, τ⟩). Hence, every constant
is a kind of rigid designator: it refers to the same individual in every world-moment
pair. Nonetheless, the extension of a predicate may change from world-moment pair
to world-moment pair and it may be empty in a world-moment pair. LetM be a
model. Then the language ofM,L(M), is obtained by adding a constantkd, such that
v(kd) = d, to the language for every memberd ∈ D. Hence, every object in the domain
of a model has at least one name in our language, but several different constants may
refer to one and the same object.

The predicateR has a special interpretation in our systems. ‘Rc’ says thatc is
perfectly rational,perfectly reasonableor perfectly wise. Ifv(c) is in the extension
of R in the possible worldω at the timeτ, this means thatv(c) is perfectly rational,
reasonable or wise inω atτ. Exactly what this means will depend on the conditions we
impose on the boulesic accessibility relationA (Section 3.3).R functions as an ordinary
predicate. Hence, an individualδ may be inR’s extension in one world-moment pair
even thoughδ is not in R’s extension in every world-moment pair. Accordingly, the
fact that an individualδ is perfectly rational, reasonable or wise inoneworld-moment
pair does notentail that δ is perfectly rational, reasonable or wise ineveryworld-
moment pair. In Section 3.3, we will see what happens if we add the extra assumption
that every perfectly rational individual is necessarily perfectly rational (the semantic
conditionC − UR guarantees that this is the case: see Table 16). In the light of the
definitions of the truth conditions for the boulesic sentences (see Section 3.2, 18−22),
it should be obvious thatRplays an important role in our systems. It will become even
clearer when we introduce the various tableau rules in Section 4.

Let A be a closed boulesic formula of the formWtB,AtB,RtB, ItB orNtB. Then,
the matrix ofA is constructed in the following way. Letm be the least number greater
than everynsuch thatxn occurs bound inB. From left to right, replace every occurrence
of an individual constant withxm, xm+1, etc. The result is the formula’s matrix. Here are
some examples: the matrix ofWaPc isWx1Px2; the matrix ofAcPaa isAx1Px2x3; the
matrix ofWc(Fa → Gbc) is Wx1(Fx2 → Gx3x4); the matrix ofAaΠx1(Fx1 ∨Gc) is
Ax2Πx1(Fx1∨Gx3); the matrix ofWcWdΣx2Px2 isWx3Wx4Σx2Px2, etc. The valuation
function assigns extensions to matrices of this kind. IfM is any matrix of the form
WtB, AtB, RtB, ItB or NtB with free variablesx1, . . . , xn, thenv

ωτ
(M) ⊆ Dn. Note

that M always includes at least one free variable. LetM be a matrix wherexm is the

first free variable inM andam is the constant inM[a1, . . . ,an/
→

x] that replacesxm.

Then the truth conditions for closed boulesic formulas of the formM[a1, . . . ,an/
→

x],
whenv

ωτ
(Ram) = 0, are defined in terms of the extension ofM in ω atτ (see condition

2 in Section 3.2 below).6

v
ωτ
(=) = {⟨d,d⟩ ∶ d ∈ D} (the extension of the identity predicate is the same in

every possible world at every moment in time (in a model)). It follows that all identities

individuals might have differentreasons for acceptingω′ in ω at τ. It is an interesting question whether or
not it is possible to defineA, but for our purposes in this paper, we do not have to answer this question.

6See [117], Chapter 1−2, for more on matrices.
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(and non-identities) are both absolutely and historically necessary, as well as eternal.
The existence predicateE functions as an ordinary predicate. The extension of this
predicate may vary from one world-moment pair to another. ‘Ec’ is true in a possible
world at a time iffv(c) exists in this world at this time.

3.2 Truth conditions and some semantic concepts

Let M be any model⟨D,W,T,<,R,A,S,v⟩. Let ω ∈ W, τ ∈ T and letA be a well-
formed sentence inL. ThenM, ω, τ ⊩ A is an abbreviation of ‘A is true inω at τ in
M’ (or ‘ A is true in the pair⟨ω, τ⟩ in M’). M, ω, τ ⊮ A just in case it is not true that
M, ω, τ ⊩ A. Note thatM, ω, τ ⊮ A iffM, ω, τ ⊩ ¬A. ‘∀ω′ ∈ W’ is read as ‘for all
possible worldsω′ in W’; ‘∃ ω′ ∈W’ is read as ‘for some possible worldω′ in W’, etc.
The truth conditions for various sentences inL can now be defined in the following
way (the truth conditions for the omitted sentences are straightforward):

1. M, ω, τ ⊩ Pa1 . . .an iff ⟨v(a1), . . . ,v(an)⟩ ∈ v
ωτ
(P).

2. LetM be a matrix wherexm is the first free variable inM andam is the constant in
M[a1, . . . ,an/

→

x] that replacesxm. Then the truth conditions for closed boulesic

formulas of the formM[a1, . . . ,an/
→

x], whenv(am) is not an element inv
ωτ
(R),

are as follows:M, ω, τ ⊩ M[a1, . . . ,an/
→

x] iff ⟨v(a1), . . . ,v(an)⟩ ∈ v
ωτ
(M).

3. M, ω, τ ⊩ A∧ B iffM, ω, τ ⊩ A andM, ω, τ ⊩ B.

4. M, ω, τ ⊩�A iff ∀ω′ ∈W and∀τ′ ∈ T: M, ω′, τ′ ⊩ A.

5. M, ω, τ ⊩�A iff ∃ω′ ∈W and∃τ′ ∈ T: M, ω′, τ′ ⊩ A.

6. M, ω, τ ⊩ ◻A iff ∀ω′ ∈W s.t.Rωω′τ: M, ω′, τ ⊩ A.

7. M, ω, τ ⊩ ◇A iff ∃ω′ ∈W s.t.Rωω′τ: M, ω′, τ ⊩ A.

8. M, ω, τ ⊩ AB iff ∀τ′ ∈ T: M, ω, τ′ ⊩ B.

9. M, ω, τ ⊩ SB iff ∃τ′ ∈ T: M, ω, τ′ ⊩ B.

10. M, ω, τ ⊩ GB iff ∀τ′ ∈ T s.t. τ < τ′: M, ω, τ′ ⊩ B.

11. M, ω, τ ⊩ FB iff ∃τ′ ∈ T s.t. τ < τ′: M, ω, τ′ ⊩ B.

12. M, ω, τ ⊩ HB iff ∀τ′ ∈ T s.t. τ′ < τ: M, ω, τ′ ⊩ B.

13. M, ω, τ ⊩ PB iff ∃τ′ ∈ T s.t. τ′ < τ: M, ω, τ′ ⊩ B.

14. M, ω, τ ⊩ OA iff ∀ω′ ∈W s.t.Sωω′τ: M, ω′, τ ⊩ A.

15. M, ω, τ ⊩ PA iff ∃ω′ ∈W s.t.Sωω′τ: M, ω′, τ ⊩ A.

16. M, ω, τ ⊩ ΠxA iff for all kd ∈ L(M),M, ω, τ ⊩ A[kd/x].

17. M, ω, τ ⊩ ΣxA iff for somekd ∈ L(M),M, ω, τ ⊩ A[kd/x].
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18. M, ω, τ ⊩ WaD iff for all ω′ such thatAv(a)ωω′τ: M, ω′, τ ⊩ D, given that
v(a) is an element inv

ωτ
(R), if v(a) is not an element inv

ωτ
(R), thenWaD is

assigned a truth value inω at τ in a way that does not depend on the value ofD
(see condition 2 above).

19. M, ω, τ ⊩ AaD iff for at least oneω′ such thatAv(a)ωω′τ: M, ω′, τ ⊩ D, given
thatv(a) is an element inv

ωτ
(R), if v(a) is not an element inv

ωτ
(R), thenAaD

is assigned a truth value inω at τ in a way that does not depend on the value of
D (see condition 2 above).

20. M, ω, τ ⊩ RaD iff for all ω′ such thatAv(a)ωω′τ: M, ω′, τ ⊩ ¬D, given that
v(a) is an element inv

ωτ
(R), if v(a) is not an element inv

ωτ
(R), thenRaD is

assigned a truth value inω at τ in a way that does not depend on the value ofD
(see condition 2 above).

21. M, ω, τ ⊩ IaD iff for at least oneω′ such thatAv(a)ωω′τ: M, ω′, τ ⊩ D and
for at least oneω′ such thatAv(a)ωω′τ: M, ω′, τ ⊩ ¬D, given thatv(a) is an
element inv

ωτ
(R), if v(a) is not an element inv

ωτ
(R), thenIaD is assigned

a truth value inω at τ in a way that does not depend on the value ofD (see
condition 2 above).

22. M, ω, τ ⊩ NaD iff for all ω′ such thatAv(a)ωω′τ: M, ω′, τ ⊩ D or for all ω′

such thatAv(a)ωω′τ: M, ω′, τ ⊩ ¬D, given thatv(a) is an element inv
ωτ
(R),

if v(a) is not an element inv
ωτ
(R), thenNaD is assigned a truth value inω at τ

in a way that does not depend on the value ofD (see condition 2 above).7

Π andΣ are substitutional, ‘possibilist’ quantifiers since the domain is the same
in every possible world and every object in the domain has a name (see Section 3.1).
Hence, in effect, they vary over every object in the domain.

Intuitively speaking, conditions 18−22 are interpreted in the following way. Ifv(a)
is not perfectly rational in a world-moment pair,WaD, AaD, RaD, IaD andNaD
behave as ordinary predicates in this world at this time; and ifv(a) is perfectly rational
in a world-moment pair,Wa, Aa andRa behave as ordinary modal operators in this
world at this time. Ifv(a) is perfectly rational in a world-moment pair, thenIaD is
equivalent withAaD∧Aa¬D andNaD is equivalent withWaD∨Wa¬D in this world-
moment pair.

Let us now define some important semantic concepts.

Definition 3 (Semantic concepts) Satisfiability in a model:A set of sentencesΓ is
satisfiable in a modelM iff there is a possible worldω and point in timeτ in M such
that every sentence inΓ is true inω at τ. Validity in a class of models:A sentence
A is valid in a class of modelsM iff A is true in every world at every moment of time

7Notethat we have to introduce all boulesic operators as primitive. If we were to restrict our systems to
perfectly rational individuals, then it would be possible to use one boulesic operator as primitive (sayW)
and define the other operators in terms of this operator.Πx(Rx → (RxB ↔ Wx¬B)) is, for example, a
theorem in every system in this paper. But if some individualc is not perfectly rational she may rejectB even
though it is not the case that she wants it to be the case that not-B. Therefore,R cannot be defined in terms
of W . Similar remarks apply to the other operators.

Quantified Temporal Alethic Boulesic Deontic Logic

219



Table 1: Conditions on the alethic accessibility relationR

Condition Formalisation of condition
C − aT ∀τ∀ωRωωτ

C − aD ∀τ∀ω∃ω
′

Rωω
′

τ

C − aB ∀τ∀ω∀ω
′

(Rωω
′

τ→ Rω
′

ωτ)

C − a4 ∀τ∀ω∀ω
′

∀ω
′′

((Rωω
′

τ ∧Rω
′

ω

′′

τ) → Rωω
′′

τ)

C − a5 ∀τ∀ω∀ω
′

∀ω
′′

((Rωω
′

τ ∧Rωω
′′

τ) → Rω
′

ω

′′

τ)

in every model inM. Logical consequence in a class of models:A sentence B is a
logical consequence of a set of sentencesΓ in a class of modelsM (M,Γ ⊩ B) iff for
every modelM in M and world-moment pair⟨ω, τ⟩ in M, if all elements ofΓ are true
in ⟨ω, τ⟩ (in ω at τ) in M, then B is true in⟨ω, τ⟩ (in ω at τ) in M. If M, Γ ⊩ B, thenΓ
entails B inM and the argument fromΓ to B is valid inM. An argument is invalid (in
M) iff it is not valid (inM).

3.3 Conditions on models and systems of classes of models

In this section, I will consider some conditions that might be imposed on our models.
These conditions concern the formal properties of the accessibility relations, the rela-
tionships between the various accessibility relations and the relationships between the
accessibility relations and the valuation function. Since our models include four acces-
sibility relations, there are 16 possible types of interactions between these relations (if
we include the models where there are no interactions at all). I will consider examples
of all these types.

The clauses in this section can be combined in many different ways, generating
many different systems. Exactly which conditions weshouldaccept seems to depend
on several factors. One important factor is the interpretation of the concept ofperfect
rationality (wisdom). It might be the case that different conditions are plausible for
different purposes.

The conditions in this section should be more or less self-explanatory. However,
I have added a few comments about some of the new clauses and I mention some
sentences that are valid in different classes of models. There are many interesting
relationships between the various conditions that I will not investigate in this paper.
Occasionally, I will mention some connections.

Table 1contains information about the formal properties of the alethic accessibility
relation at a time. In this paper,R is treated as a 3-place relation and not as a binary
relation as is usually the case ([25], [44], [59], [64] and [118]). Intuitively, this means
that the ordinary 2-place alethic accessibility relation is relativised to particular mo-
ments in time. ‘C’ in ‘ C − aT’ stands for ‘condition’ and ‘a’, for ‘alethic’.C − aT is
called ‘C − aT’ because it is a 3-place version of the well-known conditionT in ordi-
nary alethic (modal) logic. According toC − aT, the alethic accessibility relationR is
reflexive at every moment in time; according toC − aD, R is serial at every moment
in time, etc. Other conditions in this section are interpreted in a similar way. I will
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Table 2: Conditions on the temporal accessibility relation<

Condition Formalisation of condition
C − PD ∀τ∃τ

′

τ

′

< τ

C − FD ∀τ∃τ
′

τ < τ
′

C − t4 ∀τ∀τ
′

∀τ
′′

((τ < τ
′

∧ τ
′

< τ
′′

) → τ < τ
′′

)

C − DE ∀τ∀τ
′

(τ < τ
′

→ ∃τ
′′

(τ < τ
′′

∧ τ
′′

< τ
′

))

C − FC ∀τ∀τ
′

∀τ
′′

((τ < τ
′

∧ τ < τ
′′

) → (τ
′

< τ
′′

∨ τ
′

= τ
′′

∨ τ
′′

< τ
′

))

C − PC ∀τ∀τ
′

∀τ
′′

((τ
′

< τ ∧ τ
′′

< τ) → (τ
′

< τ
′′

∨ τ
′

= τ
′′

∨ τ
′′

< τ
′

))

C −C ∀τ∀τ
′

(τ < τ
′

∨ τ = τ
′

∨ τ
′

< τ)

C −UB ∀τ∀τ
′

∀τ
′′

((τ < τ
′

∧ τ < τ
′′

) → ∃τ
′′′

(τ
′

< τ
′′′

∧ τ
′′

< τ
′′′

))

C − LB ∀τ∀τ
′

∀τ
′′

((τ
′

< τ ∧ τ
′′

< τ) → ∃τ
′′′

(τ
′′′

< τ
′

∧ τ
′′′

< τ
′′

))

Table 3: Conditions on the deontic accessibility relationS

Condition Formalisation of condition
C − dD ∀τ∀ω∃ω

′

Sωω
′

τ

C − d4 ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Sω
′

ω

′′

τ) → Sωω
′′

τ)

C − d5 ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Sωω
′′

τ) → Sω
′

ω

′′

τ)

C −OdT ∀τ∀ω∀ω
′

(Sωω
′

τ→ Sω
′

ω

′

τ)

C −OdB ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Sω
′

ω

′′

τ) → Sω
′′

ω

′

τ)

often omit the initialC if it is clear from the context that we are talking about a seman-
tic condition. It is usually binary relations that are called serial, transitive, Euclidean,
etc. Nonetheless, I will extend these concepts to 3-place and 4-place relations in this
section. IfA satisfiesC − b4 (seeTable 4), we will callA transitive, and so on.

The well-known conditions inTable 2 say something about the formal properties
of the temporal relation ‘earlier than’,<. PD stands for ‘pastD’, FD for ‘future D’,
DE for ‘dense’,FC for ‘future convergence’,PC for ‘past convergence’,C for ‘com-
parability’, UB for ‘upper bounds’, andLB for ‘lower bounds’. According toC − PD,
for example, there is no first point in time; according toC − t4, time is transitive, etc.
The conditions inTable 2are often described in various introductions to temporal logic
and require no further comments (see, for example, [20], [40], [55], [68], [95], [119],
[122] and [112]).

Table 3 includes information about the formal properties of the deontic accessi-
bility relation at a time (‘d’ stands for ‘deontic’). The deontic accessibility relation is
usually treated as a binary relation. In this paper,S is a 3-place relation. Intuitively,
this means that the ordinary binary deontic accessibility relation is relativised to par-
ticular moments in time. 2-place versions of the conditions inTable 3are discussed in
many introductions to deontic logic (see, for example, [7]). According toC − dD, the
deontic accessibility relation is serial at every moment in time; according toC−d5, the
deontic accessibility relation is Euclidean at every moment in time, etc.

The conditionC − dT (∀τ∀ωSωωτ), according to which the deontic accessibility
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Table 4: Conditions on the boulesic accessibility relationA

Condition Formalisation of condition
C − bD ∀δ∀τ∀ω∃ω

′

Aδωω
′

τ

C − b4 ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Aδω
′

ω

′′

τ) → Aδωω
′′

τ)

C − b5 ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Aδωω
′′

τ) → Aδω
′

ω

′′

τ)

C −WbT ∀δ∀τ∀ω∀ω
′

(Aδωω
′

τ→ Aδω
′

ω

′

τ)

C −WbB ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Aδω
′

ω

′′

τ) → Aδω
′′

ω

′

τ)

relation is reflexive at every moment in time, is not intuitivelyplausible. For in every
model that satisfies this condition we can show that the schemaT (or dT) is valid:
OA → A, which says that everything that is obligatory is true.C − OdT is similar to
C − dT, butC −OdT does not entail that the deontic accessibility relation is reflexive
at every moment in time. According toC −OdT, ω′ is deontically accessible to itself
at a time ifω′ is deontically accessible fromω at this time. Likewise, according to the
conditionC − dB (∀τ∀ω∀ω′(Sωω′τ → Sω′ωτ)), the deontic accessibility relation is
symmetric at every moment in time. In every model that satisfies this condition, we can
show that the schemaB (or dB) is valid: A→ OPA, which says that everything that is
the case ought to be permitted. Hence, this does not seem to be an intuitively plausible
condition.C −OdB appears to be more reasonable. According to this condition,ω

′ is
accessible fromω′′ at τ if ω′ is accessible fromω andω′′ is accessible formω′ at τ.
C − OdT does not guarantee thatOA → A is valid, but it guarantees thatT ought to
hold. i.e. thatO(OA→ A) is valid, andC −OdBdoes not guarantee thatA→ OPA is
valid, but it guarantees thatB ought to hold, i.e. thatO(A→ OPA) is valid.

The conditions inTable 4, which deal with the boulesic accessibility relation, are
similar to the conditions inTable 3 (‘b’ stands for ‘boulesic’). However, there are
also some important differences;S is a 3-place relation, whileA is a 4-place relation.
C − bD, for example, says: for every (individual)δ, for every (moment in time)τ
and for every (possible world)ω there is a (possible world)ω′ such thatδ acceptsω′

in ω at τ. According to this condition, every individual always accepts at least one
possible world at every moment in time, no matter what situation she is in. If a model
satisfies this condition, we can show that the following sentence (schema) is valid:
Πx(Rx→ ¬(WxB∧Wx¬B)), that is, if an individualx is perfectly rational, then it is
not the case thatx wants it to be the case thatB at the same time thatx wants it to be the
case that not-B. If x wants it to be the case thatB and also wants it to be the case that
not-B, not all ofx’s wants can be satisfied. Hence, this principle is intuitively plausible.

Suppose thatM is a model that satisfiesC−UR, orC−◻W andC−FT orC−FTR
(seeTable 6andTable 16). Then, ifM satisfiesC−b4,Πx(Rx→ (WxB→WxWxB))
is valid inM; if it satisfiesC − b5,Πx(Rx→ (AxB→WxAxB)) is valid; if it satisfies
C −WbT, Πx(Rx→ Wx(WxB → B)) is valid; and if it satisfiesC −WbB, Πx(Rx→
Wx(B→WxAxB)) is valid. Note thatC−UR, orC−◻W andC−FT or C−FTRare
needed to prove this result since an individual might be perfectly rational in one world-
moment pair even though she is not perfectly rational in some other world-moment pair
according to our semantics.
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Table 5: Alethic deontic interactions: Conditions concerningthe relation betweenR
andS

Condition Formalisation of condition
C − ◻O ∀τ∀ω∀ω

′

(Sωω
′

τ→ Rωω
′

τ)

C −O◇ ∀τ∀ω∃ω
′

(Sωω
′

τ ∧Rωω
′

τ)

C −O ◻O ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Sω
′

ω

′′

τ) → Rω
′

ω

′′

τ)

C −OO◇ ∀τ∀ω∀ω
′

(Sωω
′

τ→ ∃ω
′′

(Sω
′

ω

′′

τ ∧Rω
′

ω

′′

τ))

C − da4 ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Rω
′

ω

′′

τ) → Rωω
′′

τ)

C − da5 ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Rωω
′′

τ) → Rω
′

ω

′′

τ)

C − ad4 ∀τ∀ω∀ω
′

∀ω
′′

((Rωω
′

τ ∧Sω
′

ω

′′

τ) → Sωω
′′

τ)

C − ad5 ∀τ∀ω∀ω
′

∀ω
′′

((Rωω
′

τ ∧Sωω
′′

τ) → Sω
′

ω

′′

τ)

C − P◻ P ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Rωω
′′

τ) → ∃ω
′′′

(Rω
′

ω

′′′

τ ∧Sω
′′

ω

′′′

τ))

C −O ◻ P ∀τ∀ω∀ω
′

∀ω
′′

((Rωω
′

τ ∧Sω
′

ω

′′

τ) → ∃ω
′′′

(Sωω
′′′

τ ∧Rω
′′′

ω

′′

τ))

C − ◻OP ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Rω
′

ω

′′

τ) → ∃ω
′′′

(Rωω
′′′

τ ∧Sω
′′′

ω

′′

τ))

We observed thatC − dT andC − dB are intuitively implausible. Likewise, the
conditionsC− bT (∀δ∀τ∀ωAδωωτ) andC− bB (∀δ∀τ∀ω∀ω′(Aδωω′τ→ Aδω′ωτ))
are intuitively problematic. In every model that satisfiesC−bT,Πx(Rx→ (WxB→ B))
is valid, and in every model that satisfiesC − bB (and C − UR), Πx(Rx → (B →
WxAxB)) is valid.C−WbT is weaker thanC−bT andC−WbB is weaker thanC−bB,
andΠx(Rx→Wx(WxB→ B)) andΠx(Rx→Wx(B→WxAxB)) are intuitively more
plausible thanΠx(Rx→ (WxB→ B)) andΠx(Rx→ (B→WxAxB)), respectively.

So far, we have considered some formal properties of single accessibility relations.
Now, let us turn to some possible connections between two different accessibility rela-
tions.

The conditions inTable 5 are concerned with some possible relations between the
alethic and the deontic accessibility relations. In every model that satisfiesC − ◻O,
◻A → OA (the necessity-ought or must-ought principle) is valid, and in every model
that satisfiesC−O◇, OA→◇A (the ought-possibility or ought-can principle) is valid.
C −O ◻O is weaker thanC − ◻O andC −OO◇ is weaker thanC −O◇. C −O ◻O
does not guarantee that◻A→ OA is valid, but it guarantees that this principle ought to
hold, i.e. thatO(◻A→ OA) is valid, andC−OO◇ does not guarantee thatOA→◇A
is valid, but it guarantees that this principle ought to hold, i.e. thatO(OA → ◇A) is
valid.

In every model that satisfiesC − da4,◻A → O ◻ A is valid; in every model that
satisfiesC−da5,◇A→ O◇A is valid; in every model that satisfiesC−ad4,OA→ ◻OA
is valid; and in every model that satisfiesC − ad5, PA→ ◻PA is valid.

If a model satisfiesC −P◻ P, thenP◻ A→ ◻PA is valid in this model. If a model
satisfiesC − O ◻ P, thenO ◻ A → ◻OA is valid in this model. If a model satisfies
C − ◻OP, then◻OA→ O ◻ A is valid in this model.

‘◻W ’ in ‘ C−◻W ’ stands for ‘Must (or Necessity) Want’, and ‘W◇’ in ‘ C−W◇’
for ‘Want Can (or Possibility)’ (seeTable 6). C − ab4 (as in ‘alethic boulesic 4’) is
called ‘C−ab4’ because it is similar to the well-known alethic (modal) conditionC−4
and the alethic deontic conditionC − ad4, and similarly forC − ab5, C − ba4 and
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Table 6: Alethic boulesic interactions: Conditions concerningthe relation betweenR
andA

Condition Formalisation of condition
C − ◻W ∀δ∀τ∀ω∀ω

′

(Aδωω
′

τ→ Rωω
′

τ)

C −W◇ ∀δ∀τ∀ω∃ω
′

(Aδωω
′

τ ∧Rωω
′

τ)

C −W ◻W ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Aδω
′

ω

′′

τ) → Rω
′

ω

′′

τ)

C −WW◇ ∀δ∀τ∀ω∀ω
′

(Aδωω
′

τ→ ∃ω
′′

(Aδω
′

ω

′′

τ ∧Rω
′

ω

′′

τ))

C − ba4 ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Rω
′

ω

′′

τ) → Rωω
′′

τ)

C − ba5 ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Rωω
′′

τ) → Rω
′

ω

′′

τ)

C − ab4 ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Rωω
′

τ ∧Aδω
′

ω

′′

τ) → Aδωω
′′

τ)

C − ab5 ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Rωω
′

τ ∧Aδωω
′′

τ) → Aδω
′

ω

′′

τ)

C −A◻ P ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Rωω
′′

τ) → ∃ω
′′′

(Rω
′

ω

′′′

τ ∧Aδω
′′

ω

′′′

τ))

C −W ◻ P ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Rωω
′

τ ∧Aδω
′

ω

′′

τ) → ∃ω
′′′

(Aδωω
′′′

τ ∧Rω
′′′

ω

′′

τ))

C − ◻WP ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Rω
′

ω

′′

τ) → ∃ω
′′′

(Rωω
′′′

τ ∧Aδω
′′′

ω

′′

τ))

C− ba5. ‘A◻P’ in ‘ C−A◻P’ is an abbreviation of ‘Acceptance Must (or Necessity)
Permutation’; ‘W ◻P’ and ‘◻WP’ stand for ‘Want Must (or Necessity) Permutation’
and ‘Must (or Necessity) Want Permutation’, respectively.

The conditions inTable 6 are similar to the conditions inTable 5. They are
concerned with some possible relationships between the boulesic accessibility rela-
tion and the alethic accessibility relation.C − ◻W says: ‘For every (individual)δ,
for every (moment in time)τ, for every (possible world)ω and for every (possible
world) ω′, δ acceptsω′ in ω at τ only if ω′ is alethically accessible fromω at τ. In
other words, ifC − ◻W holds, then it is not the case thatδ acceptsω′ in ω at τ if
ω

′ is not alethically accessible fromω at τ. In every class of models that satisfies
this condition, the following version of the so-calledhypothetical imperativeis valid:
�Πx(Rx→ ((WxA∧ ◻(A→ B)) →WxB)), which says that ifx is perfectly rational,
then if x wantsA to be the case and it is necessary thatA only if B is the case thenx
wantsB to be the case. Hence, this condition is philosophically quite interesting.

C −W◇ is another philosophically interesting condition. According toC −W◇,
for every (individual)δ, for every (moment in time)τ, for every (possible world)ω
there is a (possible world)ω′ such thatδ acceptsω′ in ω at τ andω′ is alethically
accessible fromω at τ. In other words, in every possible world, at every moment in
time, δ accepts at least one possible world that is alethically accessible at that time.
This condition is similar to conditionC − bD (Table 4). C − W◇ entailsC − bD,
but C − bD (in itself) does not entailC −W◇. In every class of models that satisfies
this condition, the following schema is valid:Πx(Rx → (WxA → ◇A)), that is, if
an individualx is perfectly rational, thenx wants it to be the case thatA only if A is
possible. In other words, according to this condition, a perfectly rational individual
does not want anything impossible. This is an intuitively plausible principle. Ifx wants
something that is impossible,x’s want will inevitably be frustrated.

C −W ◻W is weaker thanC − ◻W , andC −WW◇ is weaker thanC −W◇. In
every model that satisfiesC −W ◻W (andC − UR),Πx(Rx→ Wx(◻A → WxA)) is
valid, and in every model that satisfiesC−WW◇ (andC−UR, orC−◻W andC−FT
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Table 7: Boulesic deontic interactions: Conditions concerningthe relation betweenS
andA

Condition Formalisation of condition
C −OW ∀δ∀τ∀ω∀ω

′

(Aδωω
′

τ→ Sωω
′

τ)

C −WO ∀δ∀τ∀ω∀ω
′

(Sωω
′

τ→ Aδωω
′

τ)

C −OA ∀δ∀τ∀ω∃ω
′

(Aδωω
′

τ ∧Sωω
′

τ)

C − bd4 ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Sω
′

ω

′′

τ) → Sωω
′′

τ)

C − bd5 ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Sωω
′′

τ) → Sω
′

ω

′′

τ)

C − db4 ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Aδω
′

ω

′′

τ) → Aδωω
′′

τ)

C − db5 ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Aδωω
′′

τ) → Aδω
′

ω

′′

τ)

C −AOP ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Sωω
′′

τ) → ∃ω
′′′

(Sω
′

ω

′′′

τ ∧Aδω
′′

ω

′′′

τ))

C −WOP ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Aδω
′

ω

′′

τ) → ∃ω
′′′

(Aδωω
′′′

τ ∧Sω
′′′

ω

′′

τ))

C −OWP ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Sω
′

ω

′′

τ) → ∃ω
′′′

(Sωω
′′′

τ ∧Aδω
′′′

ω

′′

τ))

C −OOW ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Aδω
′

ω

′′

τ) → Sω
′

ω

′′

τ)

C −OWO ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Sωω
′

τ ∧Sω
′

ω

′′

τ) → Aδω
′

ω

′′

τ)

C −OOA ∀δ∀τ∀ω∀ω
′

(Sωω
′

τ→ ∃ω
′′

(Aδω
′

ω

′′

τ ∧Sω
′

ω

′′

τ))

C −WOW ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Aδω
′

ω

′′

τ) → Sω
′

ω

′′

τ)

C −WWO ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Sω
′

ω

′′

τ) → Aδω
′

ω

′′

τ)

C −WOA ∀δ∀τ∀ω∀ω
′

(Aδωω
′

τ→ ∃ω
′′

(Aδω
′

ω

′′

τ ∧Sω
′

ω

′′

τ))

or C − FTR),Πx(Rx→Wx(WxA→◇A)) is valid.
In every model that satisfiesC− ba4,Πx(Rx→ (◻A→Wx ◻ A)) is valid; in every

model that satisfiesC − ba5,Πx(Rx→ (◇A→Wx ◇ A)) is valid; in every model that
satisfiesC − ab4 (andC − UR,C − FT or C − FTR),Πx(Rx→ (WxA → ◻WxA)) is
valid; and in every model that satisfiesC − ab5 (andC − UR, C − FT or C − FTR),
Πx(Rx→ (AxB→ ◻AxB)) is valid.

If a model satisfiesC−A◻P (andC−UR,C−FT orC−FTR), thenΠx(Rx→ (Ax◻
B→ ◻AxB)) is valid in this model. If a model satisfiesC−W◻P (andC−UR,C−FT
or C − FTR), thenΠx(Rx→ (Wx ◻ A → ◻WxA)) is valid in this model. If a model
satisfiesC−◻WP (andC−UR,C−FT orC−FTR), thenΠx(Rx→ (◻WxA→Wx◻A))
is valid in this model.

The conditions inTable 7 are concerned with some possible relations between
the boulesic and the deontic accessibility relations. According toC − OW , if ω′ is
boulesically accessible fromω to δ at τ, thenω′ is deontically accessible fromω at
τ, and according toC − WO, ω′ is boulesically accessible fromω to δ at τ if ω′

is deontically accessible fromω at τ. In everyC − OW-model,Πx(Rx → (OA →
WxA)) is valid; and in everyC − WO-model,Πx(Rx → (WxA → OA)) is valid.
Πx(Rx → (OA → WxA)) is a kind of internalism (‘If an individualx is perfectly
rational (reasonable or wise), then if it ought to be the case thatA then x wants it to
be the case thatA). Πx(Rx→ (WxA → OA)) (‘If an individual x is perfectly rational
(reasonable or wise), then ifx wants it to be the case thatA then it ought to be the case
that A’) is the ‘converse’ of this proposition. If a model satisfies bothC − OW and
C − WO, thenΠx(Rx→ (OA ↔ WxA)) is valid in this model.Πx(Rx→ (OA ↔
WxA)) says that ifx is perfectly rational (reasonable or wise), then it ought to be the
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Table 8: Temporal alethic interactions: Conditions concerningthe relation betweenR
and<

Condition Formalisation of condition
C − AS P ∀τ∀τ

′

∀ω∀ω
′

((τ < τ
′

∧Rωω
′

τ

′

) → Rωω
′

τ)

C − AR ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Rωω
′

τ ∧Rω
′

ω

′′

τ

′

) → Rωω
′′

τ)

case thatA iff x wantsit to be the case thatA. (See Section 5 for more on this.)
In everyC − OA-model,Πx(Rx → (OB → AxB)) is valid. Πx(Rx → (OB →

AxB)) says that ifx is perfectly rational (reasonable or wise), then if it ought to be the
case thatB thenx accepts that it is the case thatB.

In every model that satisfiesC − bd4,Πx(Rx→ (OA→WxOA)) is valid; in every
model that satisfiesC − bd5, Πx(Rx→ (PA → WxPA)) is valid; in every model that
satisfiesC−db4 (andC−UR, orC−◻O andC−FT or C−FTR),Πx(Rx→ (WxA→
OWxA)) is valid; and in every model that satisfiesC − db5 (andC − UR, orC − ◻O
andC − FT or C − FTR),Πx(Rx→ (AxB→ OAxB)) is valid.

If a model satisfiesC−AOP (andC−UR, orC−◻O andC−FT or C−FTR), then
Πx(Rx→ (AxOB→ OAxB)) is valid in this model. If a model satisfiesC−WOP (and
C −UR, orC − ◻O andC − FT or C − FTR), thenΠx(Rx→ (WxOA → OWxA)) is
valid in this model. If a model satisfiesC−OWP (andC−UR, orC−◻O andC−FT
or C − FTR), thenΠx(Rx→ (OWxA→WxOA)) is valid in this model.

C −OOW is weaker thanC −OW , C −OWO is weaker thanC −WO, and so on
for C −OOA, C −WOW , C −WWO, andC −WOA.

In every model that satisfiesC − OOW (andC − UR, orC − ◻O andC − FT or
C−FTR),Πx(Rx→ O(OA→WxA)) is valid; in every model that satisfiesC−OWO
(andC−UR, orC−◻O andC−FT orC−FTR),Πx(Rx→ O(WxA→ OA)) is valid; in
every model that satisfiesC−OOA (andC−UR, orC−◻O andC−FT or C−FTR),
Πx(Rx → O(OB → AxB)) is valid; in every model that satisfiesC − WOW (and
C−UR, orC−◻W andC−FT or C−FTR),Πx(Rx→Wx(OA→WxA)) is valid; in
every model that satisfiesC−WWO (andC−UR, orC−◻W andC−FT orC−FTR),
Πx(Rx→Wx(WxA→ OA)) is valid; and in every model that satisfiesC−WOA (and
C −UR, orC − ◻W andC − FT or C − FTR),Πx(Rx→Wx(OB→AxB)) is valid.

The conditions inTable 8 are concerned with some possible relations betweenR

and<. In the conditions in this table,AS Pstands for ‘alethic shared past’ andAR for
‘alethic ramification’.

According toC − AS P, it is true that if a worldω′ is alethically accessible from a
world ω at timeτ′, thenω′ is alethically accessible fromω at every momentτ that is
earlier thanτ′. This condition is plausible if we model reality as a tree-like structure
that branches towards the future and not as a set of entirely unconnected possible worlds
and moments in time. Then we can think of the possible worlds inW as possible
histories of one and the same world (reality) rather than as distinct worlds.

Note thatC − AR follows from C − AS PandC − a4. C − AR is, therefore, also
plausible if we model the world as a tree-like structure.

If a model satisfiesC − AS P, we can show that the following sentences are valid:
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Table 9: Temporal deontic interactions: Conditions concerningthe relation betweenS
and<

Condition Formalisation of condition
C −OGdT ∀τ∀τ

′

∀ω∀ω
′

((τ < τ
′

∧Sωω
′

τ) → Sω
′

ω

′

τ

′

)

C −OGdB ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Sωω
′

τ ∧Sω
′

ω

′′

τ

′

) → Sω
′′

ω

′

τ

′

)

C − DR ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Sωω
′

τ ∧Sω
′

ω

′′

τ

′

) → Sωω
′′

τ)

Table 10: Temporal boulesic interactions: Conditions concerningthe relation between
A and<

Condition Formalisation of condition
C −WGbT ∀δ∀τ∀τ

′

∀ω∀ω
′

((τ < τ
′

∧Aδωω
′

τ) → Aδω
′

ω

′

τ

′

)

C −WGbB ∀δ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Aδωω
′

τ ∧Aδω
′

ω

′′

τ

′

) → Aδω
′′

ω

′

τ

′

)

C − BR ∀δ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Aδωω
′

τ ∧Aδω
′

ω

′′

τ

′

) → Aδωω
′′

τ)

H ◻ A→ ◻HA, P ◻ A→ ◻PA,◻GA→ G ◻ A and◻A→ G ◻ PA.
If a model satisfiesC − AR, we can show that◻GA→ ◻G ◻ A is valid.
The conditions inTable 9 are concerned with some possible relations between the

temporal and the deontic accessibility relations.
In everyC−OGdT-model,OG(OA→ A) is valid, and in everyC−OGdB-model,

OG(A→ OPA) is valid. If a model satisfiesC − DR (‘deontic ramification’),OGA→
OGOA is valid in this model.

C−OGdT is weaker thanC−dT andC−OGdB is weaker thanC−dB; if a model
satisfiesC − dT, it also satisfiesC − OGdT, and if a model satisfiesC − dB, then it
satisfiesC −OGdB. However, we have already observed thatC − dT andC − dB are
intuitively implausible.OG(OA→ A) says that it ought to be that it is always going to
be that ifA ought to be thenA is true; in other words, it says that it ought to be that it is
always going to be the case thatdT is true (not thatdT is in fact true), and this seems
to be intuitively much more plausible thandT itself. OG(A→ OPA) says that it ought
to be that it is always going to be that ifA is true then it ought to be permitted thatA.
In other words, this sentence says that it ought to be that it is always going to be that
dB is true. This is intuitively more plausible thandB itself.

Note that if a model satisfies bothC − OGdT andC − OdT, thenOG(OA → A)
is valid in this model, that is, then it is true that it ought to be that it is and that it is
always going to be the case that if it ought to be the case thatA thenA. OG(OA→ A)
is by definition equivalent withO((OA → A)∧ G(OA → A)). Likewise, if a model
satisfies bothC − OGdB andC − OdB, thenOG(A → OPA) is valid in this model.
OG(A→ OPA) is by definition equivalent withO((A→ OPA)∧G(A→ OPA)).

The conditions inTable 10 are similar to the conditions inTable 9. They are
concerned with some possible connections betweenA and<. If a model satisfiesC −
WGbT (andC − UR),Πx(Rx→ WxG(WxB → B)) is valid in this model, and if a
model satisfiesC −WGbB (andC −UR),Πx(Rx→ WxG(B → WxAxB)) is valid in
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Table 11: Alethic boulesic deontic interactions: Conditionsconcerning the relation
betweenR, A andS

Condition Formalisation of condition
C −O ◻W ∀δ∀τ∀ω∀ω

′

∀ω
′′

((Sωω
′

τ ∧Aδω
′

ω

′′

τ) → Rω
′

ω

′′

τ)

C −W ◻O ∀δ∀τ∀ω∀ω
′

∀ω
′′

((Aδωω
′

τ ∧Sω
′

ω

′′

τ) → Rω
′

ω

′′

τ)

C −OW◇ ∀δ∀τ∀ω∀ω
′

(Sωω
′

τ→ ∃ω
′′

(Aδω
′

ω

′′

τ ∧Rω
′

ω

′′

τ))

C −WO◇ ∀δ∀τ∀ω∀ω
′

(Aδωω
′

τ→ ∃ω
′′

(Sω
′

ω

′′

τ ∧Rω
′

ω

′′

τ))

this model.Πx(Rx → (WxGB → WxGWxB)) is valid in every model that satisfies
C − BR(‘boulesic ramification’) (andC −UR).

Note that if a model satisfies bothC −WGbT andC −WbT (andC − UR), then
Πx(Rx→ WxG(WxB → B)) is valid in this model, that is, then it is true that ifx is
perfectly rational, thenx wants it to be that it is and that it is always going to be the
case that ifx wants it to be the case thatB thenB. Πx(Rx→ WxG(WxB→ B)) is by
definition equivalent withΠx(Rx→Wx((WxB→ B)∧G(WxB→ B))). Likewise, if a
model satisfies bothC−WGbBandC−WbB (andC−UR), thenΠx(Rx→WxG(B→
WxAxB)) is valid in this model. Πx(Rx → WxG(B → WxAxB)) is by definition
equivalent withΠx(Rx→Wx((B→WxAxB) ∧G(B→WxAxB))).

So far, we have considered some formal properties of single accessibility relations
and some possible interactions between two different accessibility relations. Now, let
us investigate some possible connections that involve three different accessibility rela-
tions.

The conditions inTable 11concern some possible interactions betweenR, A and
S.

C−◻W is stronger thanC−O◻W , C−◻O is stronger thanC−W ◻O, C−W◇
is stronger thanC −OW◇, andC −O◇ is stronger thanC −WO◇. Every sentence
that is valid in aC −O ◻W-model is therefore also valid in aC − ◻W-model, etc.

If a model satisfiesC − O ◻ W (andT − UR), thenΠx(Rx → O(◻A → WxA))
is valid in this model. If a model satisfiesC −W ◻ O (andT − UR), thenΠx(Rx→
Wx(◻A → OA)) is valid in this model.Πx(Rx→ O(WxA → ◇A)) is valid in every
model that satisfiesC −OW◇ (andT −UR), andΠx(Rx→Wx(OA→ ◇A)) is valid
in every model that satisfiesC −WO◇ (andT −UR).

If it is reasonable to acceptC−W◇, then it is also reasonable to acceptC−OW◇
since the latter is derivable from the former. However, some might think thatC−W◇ is
too strong. Such an individual might still believe thatC−OW◇ is reasonable. Accord-
ing toΠx(Rx→ (WxA → ◇A)), every perfectly rational individual wants something
only if it is possible. However, according toΠx(Rx→ O(WxA → ◇A)), this is not
necessarily the case. Even if this sentence is true, it is possible that someone that is
perfectly rational wants something that is impossible. But it is true that if someone
is perfecty rational, then it ought to be that she wants something only if it is possible
according to this formula. Similar remarks apply to the other conditions inTable 11.
In this paper, I will not try to decide whether or not this position is plausible, but it is
clearly interesting enough to be worth mentioning.
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Table 12: Temporal boulesic deontic interactions: Conditionsconcerning the relation
betweenA, S and<

Condition Formalisation of condition
C −OGbT ∀δ∀τ∀τ

′

∀ω∀ω
′

((τ < τ
′

∧Sωω
′

τ) → Aδω
′

ω

′

τ

′

)

C −OGbB ∀δ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Sωω
′

τ ∧Aδω
′

ω

′′

τ

′

) → Aδω
′′

ω

′

τ

′

)

C −OGOW ∀δ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Sωω
′

τ ∧Aδω
′

ω

′′

τ

′

) → Sω
′

ω

′′

τ

′

)

C −OGWO ∀δ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Sωω
′

τ ∧Sω
′

ω

′′

τ

′

) → Aδω
′

ω

′′

τ

′

)

C −OGOA ∀δ∀τ∀τ
′

∀ω∀ω
′

((τ < τ
′

∧Sωω
′

τ) → ∃ω
′′

(Aδω
′

ω

′′

τ

′

∧Sω
′

ω

′′

τ

′

))

C −WGdT ∀δ∀τ∀τ
′

∀ω∀ω
′

((τ < τ
′

∧Aδωω
′

τ) → Sω
′

ω

′

τ

′

)

C −WGdB ∀δ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Aδωω
′

τ ∧Sω
′

ω

′′

τ

′

) → Sω
′′

ω

′

τ

′

)

C −WGOW ∀δ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Aδωω
′

τ ∧Aδω
′

ω

′′

τ

′

) → Sω
′

ω

′′

τ

′

)

C −WGWO ∀δ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Aδωω
′

τ ∧Sω
′

ω

′′

τ

′

) → Aδω
′

ω

′′

τ

′

)

C −WGOA ∀δ∀τ∀τ
′

∀ω∀ω
′

((τ < τ
′

∧Aδωω
′

τ) → ∃ω
′′

(Aδω
′

ω

′′

τ

′

∧Sω
′

ω

′′

τ

′

))

The conditions inTable 12concern some possible relationships betweenA, S and
<.

If a model satisfiesC − OGbT (andC − UR), thenΠx(Rx→ OG(WxA → A)) is
valid in this model, and if a model satisfiesC − OGbB (andC − UR), thenΠx(Rx→
OG(B → WxAxB)) is valid in this model.Πx(Rx→ OG(OA → WxA)) is valid in
every model that satisfiesC −OGOW (andC −UR);Πx(Rx→ OG(WxA→ OA)) is
valid in every model that satisfiesC−OGWO (andC−UR); andΠx(Rx→ OG(OB→
AxB)) is valid in every model that satisfiesC − OGOA (andC − UR). If a model
satisfiesC −WGdT (andC −UR),Πx(Rx→WxG(OA→ A)) is valid in this model,
and if a model satisfiesC−WGdB (andC−UR),Πx(Rx→WxG(A→ OPA)) is valid
in this model. Πx(Rx → WxG(OA → WxA)) is valid in every model that satisfies
C − WGOW (andC − UR); Πx(Rx→ WxG(WxA → OA)) is valid in every model
that satisfiesC−WGWO (andC−UR); andΠx(Rx→WxG(OB→AxB)) is valid in
every model that satisfiesC −WGOA (andC −UR).

C − OGOW is weaker thanC − OW , C − OGWO is weaker thanC −WO, C −
OGOA is weaker thanC −OA, C −WGOW is weaker thanC −OW , C −WGWO
is weaker thanC−WO, andC−WGOA is weaker thanC−OA. Every sentence that
is valid in aC −OGOW-model is therefore also valid in aC −OW-model, etc.

Suppose a model satisfiesC −OGbT andC −ObT (andC −UR). ThenΠx(Rx→
OG(WxA → A)) is valid in this model. Suppose a model satisfiesC − OGbB and
C − ObB (andC − UR). ThenΠx(Rx→ OG(B → WxAxB)) is valid in this model.
Πx(Rx→ OG(OA → WxA)) is valid in every model that satisfiesC − OGOW and
C − OOW (andC − UR); Πx(Rx→ OG(WxA → OA)) is valid in every model that
satisfiesC −OGWO andC −OWO (andC −UR); andΠx(Rx→ OG(OB→ AxB))
is valid in every model that satisfiesC − OGOA andC − OOA (andC − UR). If a
model satisfiesC −WGdT andC −WdT (andC −UR),Πx(Rx→ WxG(OA → A))
is valid in this model, and if a model satisfiesC−WGdBandC−WdB (andC−UR),
Πx(Rx→ WxG(A → OPA)) is valid in this model.Πx(Rx→ WxG(OA → WxA))
is valid in every model that satisfiesC − WGOW and C − WOW (and C − UR);
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Table 13: Temporal alethic deontic interactions: Conditionsconcerning the relation
betweenR, S and<

Condition Formalisation of condition
C −OG ◻O ∀τ∀τ

′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Sωω
′

τ ∧Sω
′

ω

′′

τ

′

) → Rω
′

ω

′′

τ

′

)

C −OGO◇ ∀τ∀τ
′

∀ω∀ω
′

((τ < τ
′

∧Sωω
′

τ) → ∃ω
′′

(Sω
′

ω

′′

τ

′

∧Rω
′

ω

′′

τ

′

))

Table 14: Temporal alethic boulesic interactions: Conditionsconcerning the relation
betweenR, A and<

Condition Formalisation of condition
C −WG ◻W ∀δ∀τ∀τ

′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Aδωω
′

τ ∧Aδω
′

ω

′′

τ

′

) → Rω
′

ω

′′

τ

′

)

C −WGW◇ ∀δ∀τ∀τ
′

∀ω∀ω
′

((τ < τ
′

∧Aδωω
′

τ) → ∃ω
′′

(Aδω
′

ω

′′

τ

′

∧Rω
′

ω

′′

τ

′

))

Πx(Rx→WxG(WxA→ OA)) is valid in every model that satisfiesC −WGWO and
C −WWO (andC −UR); andΠx(Rx→ WxG(OB → AxB)) is valid in every model
that satisfiesC −WGOA andC −WOA (andC −UR).

The conditions inTable 13are concerned with some possible interactions between
R, S and<. In everyC − OG ◻ O-model, OG(◻A → OA) is valid, and in every
C − OGO◇-model,OG(OA → ◇A) is valid. If a model satisfiesC − OG ◻ O and
C−O◻O, OG(◻A→ OA) is valid in this model, and if a model satisfiesC−OGO◇
andC −OO◇, OG(OA→◇A) is valid in this model.

The conditions inTable 14are concerned with some possible interactions between
R, A and<. If a model satisfiesC −WG ◻W (andC − UR),Πx(Rx→ WxG(◻A →
WxA)) is valid in this model; and if a model satisfiesC − WGW◇ (andC − UR),
Πx(Rx→WxG(WxA→◇A)) is valid in this model. If a model satisfiesC−WG◻W
andC−W◻W (andC−UR),Πx(Rx→WxG(◻A→WxA)) is valid in this model, and
if it satisfiesC−WGW◇ andC−WW◇ (andC−UR),Πx(Rx→WxG(WxA→◇A))
is valid in this model.

Finally, let us consider some possible interactions between all four accessibility
relations (seeTable 15).

If a model satisfiesC−OG◻W (andC−UR),Πx(Rx→ OG(◻A→WxA)) is valid

Table 15: Temporal alethic boulesic deontic interactions: Conditions concerning the
relation betweenR, A, S and<

Condition Formalisation of condition
C −OG ◻W ∀δ∀τ∀τ

′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Sωω
′

τ ∧Aδω
′

ω

′′

τ

′

) → Rω
′

ω

′′

τ

′

)

C −OGW◇ ∀δ∀τ∀τ
′

∀ω∀ω
′

((τ < τ
′

∧Sωω
′

τ) → ∃ω
′′

(Aδω
′

ω

′′

τ

′

∧Rω
′

ω

′′

τ

′

))

C −WG ◻O ∀δ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Aδωω
′

τ ∧Sω
′

ω

′′

τ

′

) → Rω
′

ω

′′

τ

′

)

C −WGO◇ ∀δ∀τ∀τ
′

∀ω∀ω
′

∀ω
′′

((τ < τ
′

∧Aδωω
′

τ) → ∃ω
′′

(Sω
′

ω

′′

τ

′

∧Rω
′

ω

′′

τ

′

))
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Table 16: Conditions on the valuation functionv in a model

Condition Formalisation of condition
C − FT If Rω1ω2τ andA is an atomic sentence

(or a sentence of the formWcB,AcB,RcB, IcB orNcB,
given that¬Rc is true inω1 atτ) that is true inω1 atτ, thenA is true inω2 atτ.

C − BT If Rω1ω2τ andA is an atomic sentence
(or a sentence of the formWcB,AcB,RcB, IcB orNcB,
given that¬Rc is true inω2 atτ) that is true inω2 atτ, thenA is true inω1 atτ.

C − FTR If Rω1ω2τ andRc is true inω1 atτ, thenRc is true inω2 atτ (for anyc).
C −UR If Rc is true inω1 atτ1, thenRc is true inω2 atτ2 (for anyc).

in this model; if it satisfiesC −OGW◇ (andC −UR),Πx(Rx→ OG(WxA → ◇A))
is valid in this model; if it satisfiesC −WG◻O (andC −UR),Πx(Rx→WxG(◻A→
OA)) is valid in this model; and if it satisfiesC −WGO◇ (andC − UR),Πx(Rx→
WxG(OA→◇A)) is valid in this model.

If a model satisfiesC−OG◻W andC−O◻W (andC−UR),Πx(Rx→ OG(◻A→
WxA)) is valid in this model; if it satisfiesC −OGW◇ andC −OW◇ (andC −UR),
Πx(Rx→ OG(WxA → ◇A)) is valid in this model; if it satisfiesC − WG ◻ O and
C −W ◻O (andC −UR),Πx(Rx→ WxG(◻A → OA)) is valid in this model; and if
it satisfiesC−WGO◇ andC−WO◇ (andC−UR),Πx(Rx→WxG(OA→◇A)) is
valid in this model.

We have now considered some possible interactions between the different accessi-
bility relations in our models. It is also possible to impose conditions that involve the
valuation functionv. Let us consider four conditions of this kind.

The conditions inTable 16are concerned with some possible relations between the
alethic accessibility relationR and the valuation functionv. ‘FT’ stands for ‘forward
transfer’, ‘BT’ for ‘backward transfer’, ‘R’ for ‘rationality’ and ‘U’ for ‘universal’. In
every model that satisfiesC−UR, we can show that every perfectly rational individual
(at every moment in time) is necessarily perfectly rational; in every model that satisfies
C− FTR(andC−◻W), we can show that every perfectly rational individual (at every
moment in time) wants to be perfectly rational. According toC − FT, every atomic
formula (and every sentence of the formWcB, AcB, RcB, IcB or NcB, given that
¬Rc is true) is historically settled, and according toC − BT every atomic formula (and
every sentence of the formWcB,AcB,RcB, IcB orNcB, given that¬Rc is true) that is
historically possible is true.C − FT andC − BT are plausible if we think of the world
as a tree-like structure. Note that they do not entail thateverysentence is historically
necessary, nor thateverysentence that is historically possible is true. Even if we assume
thatC − FT andC − BT hold, various ‘future-directed sentences’, such asGFa and
FRa, are, for example, not necessarily historically settled.

The conditions mentioned in this section can be used to obtain a categorisation of
the set of all models into various kinds. LetM(C1, . . . ,Cn) be the class of (all) models
that satisfy the conditionsC1, . . . ,Cn. Then, for example,M(C − bD,C − b4,C − b5)
is the class of (all) models that satisfy the conditionsC − bD, C − b4 andC − b5, etc.
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We can now define the concept of a system of a class of models.

Definition 4 (System of a class of models)The set of all sentences in the languageL
that are valid in a class of modelsM is called the (logical) system ofM, or the logic
ofM, S(M).

By imposing different conditions on our models we can generate many logical sys-
tems that are non-equivalent.S(M(C − bD,C − b4,C − b5)) (the system ofM(C −
bD,C − b4,C − b5)) is, for example, the class of sentences inL that are valid in the
class of (all) models that satisfy the conditionsC − bD, C − b4 andC − b5.

We have now described the semantics of our systems. Let us turn to the proof
theory.

4 Proof theory

In Section 4, I will describe several tableau rules that can be used to construct a set of
tableau systems. Every tableau system is an extension of propositional logic (for more
on semantic tableau and propositional logic, see, for example, [136] and [86]). Every
system also includes a modal part, a temporal part, a deontic part, a boulesic part and
rules for a pair of (possibilist) quantifiers. For more information on the tableau method
and various kinds of tableau systems, see, for example, [48], [59] and [118].

The tableau rules in this section correspond to the semantic conditions introduced
in Section 3.3. The interpretation of the rules is standard. For example, according to
� (Table 18), we may addA,w j tl (for anyw j andtl) to any open branch in a tree that
includes�A,wi tk; according to¬∧, we may extend the tip of any open branch in a tree
on which¬(A∧ B),wi tk occurs into two new branches, with¬A,wi tk at the tip of one
new branch and¬B,wi tk at the other, etc.

Intuitively, ‘Rc,wi tk’ in the ‘boulesic rules’ says that the individual denoted by
‘c’ is perfectly rational in the world denoted by ‘wi ’ at the time denoted by ‘tk’, and
‘Acwiw j tk’ says that the world denoted by ‘wj ’ is boulesically accessible (acceptable)
to the individual denoted by ‘c’ in the world denoted by ‘wi ’ at the time denoted by
‘t k’. Note thatc can be replaced by any constant in the rules inTable 21−22. The same
is true of other rules in this section that include something of the formAcwiw j tk; that
is, in every rule of this kind,c can be replaced by any constant.

The quantifier rules (Table 23) are never instantiated with variables;a in A[a/x] is
any constant on the branch (or a new one if there are no constants on the branch) andc
in A[c/x] is a constant that is new to the branch, that is, that does not already occur on
the branch.

In theCUT rule (Table 24),A can be replaced by any sentence. However, in the
completeness proofs, I will use a weaker rule,CUTR, and notCUT. In CUTR,A is of
the formRc, wherec is a constant (that occurs as an index to some boulesic operator)
on the branch.T − Ii andT − Iii are redundant in any system that does not include
T − FC, T − PC or T −C (seeTable 27).

(T−T Ii) is interpreted in the following way.A(ti) is a line in a tableau that includes
‘t i ’, andA(t j) is like A(ti) except that ‘ti ’ is replaced by ‘tj ’. That is, if A(ti) is A,wkti ,
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Table 17: Propositional rules

¬¬ ∧ ¬∧

¬¬A,wi tk (A∧ B),wi tk ¬(A∧ B),wi tk
↓ ↓ ↲↳

A,wi tk A,wi tk ¬A,wi tk ¬B,wi tk
B,wi tk

∨ ¬∨ →

(A∨ B),wi tk ¬(A∨ B),wi tk (A→ B),wi tk
↲↳ ↓ ↲↳

A,wi tk B,wi tk ¬A,wi tk ¬A,wi tk B,wi tk
¬B,wi tk

¬ → ↔ ¬↔

¬(A→ B),wi tk (A↔ B),wi tk ¬(A↔ B),wi tk
↓ ↲↳ ↲↳

A,wi tk A,wi tk ¬A,wi tk A,wi tk ¬A,wi tk
¬B,wi tk B,wi tk ¬B,wi tk ¬B,wi tk B,wi tk

Table 18: Basic alethic rules (ba-rules)

� � ◻ ◇

�A,wi tk �A,wi tk ◻A,wi tk ◇A,wi tk
↓ ↓ rwiw j tk ↓

A,w j tl A,w j tl ↓ rwiw j tk
for anyw j andtl wherew j andtl arenew A,w j tk A,w j tk

wherew j is new
¬� ¬� ¬◻ ¬◇

¬�A,wi tk ¬�A,wi tk ¬ ◻ A,wi tk ¬◇ A,wi tk
↓ ↓ ↓ ↓

�¬A,wi tk �¬A,wi tk ◇¬A,wi tk ◻¬A,wi tk
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Table 19: Basic temporal rules (bt-rules)

A ¬A S ¬S

AA,wi t j ¬AA,wi t j SA,wi t j ¬SA,wi t j

↓ ↓ ↓ ↓

A,wi tk S¬A,wi t j A,wi tk A¬A,wi t j

for everytk wheretk is new
on the branch to the branch

G ¬G F ¬F

GA,wi t j ¬GA,wi t j FA,wi t j ¬FA,wi t j

t j < tk ↓ ↓ ↓

↓ F¬A,wi t j t j < tk G¬A,wi t j

A,wi tk A,wi tk
wheretk is new

H ¬H P ¬P

HA,wi t j ¬HA,wi t j PA,wi t j ¬PA,wi t j

tk < t j ↓ ↓ ↓

↓ P¬A,wi t j tk < t j H¬A,wi t j

A,wi tk A,wi tk
wheretk is new

Table 20: Basic deontic rules (bd-rules)

O P ¬O ¬P
OB,wi tk PB,wi tk ¬OB,wi tk ¬PB,wi tk
swiw j tk ↓ ↓ ↓

↓ swiw j tk P¬B,wi tk O¬B,wi tk
B,w j tk B,w j tk

wherew j is new

Table 21: Basic boulesic rules (bb-rules)

W A R ¬W ¬A ¬R

Rc,wi tk Rc,wi tk Rc,wi tk Rc,wi tk Rc,wi tk Rc,wi tk
WcB,wi tk AcB,wi tk RcB,wi tk ¬WcB,wi tk ¬AcB,wi tk ¬RcB,wi tk
Acwiw j tk ↓ Acwiw j tk ↓ ↓ ↓

↓ Acwiw j tk ↓ Ac¬B,wi tk Wc¬B,wi tk AcB,wi tk
B,w j tk B,w j tk ¬B,w j tk

wherew j is new
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Table 22: Basic boulesic rules II (bb-rules)

I N ¬I ¬N

Rc,wi tk Rc,wi tk Rc,wi tk Rc,wi tk
IcB,wi tk NcB,wi tk ¬IcB,wi tk ¬NcB,wi tk
↓ ↲↳ ↓ ↓

AcB,wi tk WcB,wi tk Wc¬B,wi tk NcB,wi tk IcB,wi tk
Ac¬B,wi tk

Table 23: Possibilist quantifiers

Π Σ ¬Π ¬Σ

ΠxA,wi t j ΣxA,wi t j ¬ΠxA,wi t j ¬ΣxA,wi t j

↓ ↓ ↓ ↓

A[a/x],wi t j A[c/x],wi t j Σx¬A,wi t j Πx¬A,wi t j

for every constanta wherec is new
on the branch, to the branch

a new if there are no
constants on the branch

Table 24: TheCUT-rule (CUT), (CUTR) and temporal identity rules

CUT T − T Ii T − T Iii
wi tk A(ti) A(ti)
↲ ↳ ti = t j t j = ti

A,wi tk ¬A,wi tk ↓ ↓

for everyA, wi andtk A(t j) A(t j)
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Table 25: Identity rules

T −R= T −S = T − N =, T − A =
∗ s= t,wi tk a = b,wi tk a = b,wi tl
↓ A[s/x],wi tk ↓ Aawjwktm

t = t,wi tk ↓ a = b,w j tl ↓

for everyt A[t/x],wi tk for anyw j andtl Abwjwktm
on the branch whereA

is of a certain form
(see explanation in the text)

Table 26: Alethic accessibility rules (a-rules)

T − aD T − aT T − aB T − a4 T − a5
wi tk wi tk rwiw j tk rwiw j tl rwiw j tl
↓ ↓ ↓ rw jwktl rwiwktl

rwiw j tk rwiwi tk rw jwi tk ↓ ↓

wherew j is new rwiwktl rw jwktl

thenA(t j) is A,wkt j ; if A(ti) is rwkwl ti , thenA(t j) is rwkwl t j ; if A(ti) is ti = tk, then
A(t j) is t j = tk, etc. If A(ti) is A,wkti , we only apply the rule whenA is atomic or of
the formWtD,AtD,RtD, ItD orNtD given that¬Rt,wkti is on the branch.T −T Iii is
interpreted similarly.

Table 25 includes some ‘identity rules’.R in (T − R =) stands for ‘reflexive’,S
in (T − S =) for ‘substitution (of identities)’,N in (T − N =) for ‘necessary identity’,
andA in (T − A =) for ‘(boulesic) accessibility’. (T−R =) is a rule without premises;
t = t,wi tk may be added to any open branch in a tree.

(T − S =) is applied only ‘within world-moment pairs’ and it may be applied to
any atomic formula. However, we shall also allow substitutions of the following kind.
Let M be a matrix wherexm is the first free variable inM andam is the constant in
M[a1, . . . ,a, . . . ,an/

→

x] that replacesxm. Furthermore, assume that we havea = b,wi tk,

M[a1, . . . ,a, . . . ,an/
→

x],wi tk and¬Ram,wi tk on the branch. Then we may apply (T−

S =) to generate an extension of the branch that includesM[a1, . . . ,b, . . . ,an/
→

x],wi tk.
Table 42 includes some ‘transfer rules’. ‘FT’ in ‘T − FT’ and ‘T − FTR’ is an

abbreviation of ‘Forward Transfer’, ‘BT’ in ‘T − BT’ of ‘Backward Transfer’, and ‘R’
in ‘T − FTR’ and ‘T−UR’ of ‘Rationality’. Note thatA in T − FT (T − BT) is atomic
or of the formWcB, AcB, RcB, IcB or NcB given that¬Rc,wi tl (¬Rc,w j tl) is on the
branch.T − FT is stronger thanT − FTR;T − FTR is derivable in every system that
includesT − FT.

If a system includesT −UR, we can show that the following sentence is a theorem
in this system:Πx(Rx→ �Rx), which says that every perfectly rational individual is
necessarily perfectly rational. Intuitively, it is not obvious that this principle is true.
Individuals that are contingently perfectly rational are conceivable and appear to be
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Table 27: Temporal accessibility rules (t-rules)

T − t4 T − PD T − FD
ti < t j t j t j

t j < tk ↓ ↓

↓ tk < t j t j < tk
ti < tk wheretk is new wheretk is new

T − DE T − FC T − PC
ti < t j ti < t j t j < ti
↓ ti < tk tk < ti

ti < tk ↲↓↳ ↲↓↳

tk < t j t j < tk t j = tk tk < t j t j < tk t j = tk tk < t j

wheretk is new
T −C T −UB T − LB
ti , t j ti < t j t j < ti

↲ ↓ ↳ ti < tk tk < ti
ti < t j ti = t j t j < ti ↓ ↓

t j < tl tl < t j

tk < tl tl < tk
wheretl is new wheretl is new
to the branch to the branch

Table 28: Deontic accessibility rules (d-rules)

T − dD T − d4 T − d5 T −OdT T −OdB
wi tk swiw j tl swiw j tl swiw j tl swiw j tl
↓ swjwktl swiwktl ↓ swjwktl

swiw j tk ↓ ↓ swjw j tl ↓

wherew j is new swiwktl swjwktl swkw j tl

Table 29: Boulesic accessibility rules (b-rules)

T − bD T − b4 T − b5 T −WbT T −WbB
wi tk Acwiw j tl Acwiw j tl Acwiw j tl Acwiw j tl
↓ Acwjwktl Acwiwktl ↓ Acwjwktl

Acwiw j tk ↓ ↓ Acwjw j tl ↓

wherew j is new Acwiwktl Acwjwktl Acwkw j tl
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Table 30: Alethic-deontic accessibility rules (ad-rules)

T − ◻O T −O◇ T −O ◻O T −OO◇ T − da4 T − da5
swiw j tk wi tk swiw j tl swiw j tl swiw j tl swiw j tl
↓ ↓ swjwktl ↓ rw jwktl rwiwktl

rwiw j tk swiw j tk ↓ rw jwktl ↓ ↓

rwiw j tk rw jwktl swjwktl rwiwktl rw jwktl
wherew j wherewk

is new is new
T − ad4 T − ad5 T −P◻ P T −O ◻ P T − ◻OP
rwiw j tl rwiw j tl swiw j tm rwiw j tm swiw j tm
swjwktl swiwktl rwiwktm swjwktm rw jwktm
↓ ↓ ↓ ↓ ↓

swiwktl swjwktl rw jwl tm swiwl tm rwiwl tm
swkwl tm rwlwktm swlwktm
wherewl wherewl wherewl

is new is new is new

Table 31: Alethic-boulesic accessibility rules (ab-rules)

T − ◻W T −W◇ T −W ◻W T −WW◇ T − ba4 T − ba5
Acwiw j tk wi tk Acwiw j tl Acwiw j tl Acwiw j tl Acwiw j tl
↓ ↓ Acwjwktl ↓ rw jwktl rwiwktl

rwiw j tk Acwiw j tk ↓ rw jwktl ↓ ↓

rwiw j tk rw jwktl Acwjwktl rwiwktl rw jwktl
wherew j wherewk

is new is new
T − ab4 T − ab5 T −A◻ P T −W ◻ P T − ◻WP
rwiw j tl rwiw j tl Acwiw j tm rwiw j tm Acwiw j tm

Acwjwktl Acwiwktl rwiwktm Acwjwktm rw jwktm
↓ ↓ ↓ ↓ ↓

Acwiwktl Acwjwktl rw jwl tm Acwiwl tm rwiwl tm
Acwkwl tm rwlwktm Acwlwktm
wherewl wherewl wherewl

is new is new is new
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Table 32: Boulesic-deontic accessibility rules (b-d-rules)

T −OW T −WO T −OA T − bd4 T − bd5
Acwiw j tk swiw j tk wi tk swiw j tl swiw j tl
↓ ↓ ↓ Acwjwktl Acwiwktl

swiw j tk Acwiw j tk swiw j tk ↓ ↓

Acwiw j tk Acwiwktl Acwjwktl
T − db4 T − db5 T −AOP T −WOP T −OWP
Acwiw j tl Acwiw j tl Acwiw j tm swiw j tm Acwiw j tm
swjwktl swiwktl swiwktm Acwjwktm swjwktm
↓ ↓ ↓ ↓ ↓

swiwktl swjwktl swjwl tm Acwiwl tm swiwl tm
Acwkwl tm swlwktm Acwlwktm
wherewl wherewl wherewl

is new is new is new

Table 33: Boulesic-deontic accessibility rules (b-d-rules)

T −OOW T −OWO T −OOA
swiw j tl swiw j tl swiw j tl

Acwjwktl swjwktl ↓
↓ ↓ Acwjwktl

swjwktl Acwjwktl swjwktl
wherewk is new

T −WOW T −WWO T −WOA
Acwiw j tl Acwiw j tl Acwiw j tl
Acwjwktl swjwktl ↓

↓ ↓ Acwjwktl
swjwktl Acwjwktl swjwktl

wherewk is new

Table 34: Temporal-alethic accessibility rules

T − AS P T − AR
rwiw j tl rwiw j tl
tk < tl tl < tm
↓ rw jwktm

rwiw j tk ↓

rwiwktl
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Table 35: Temporal-deontic accessibility rules

T −OGdT T −OGdB T − DR
swiw j tl swiw j tl swiw j tl
tl < tm tl < tm tl < tm
↓ swjwktm swjwktm

swjw j tm ↓ ↓

swkw j tm swiwktl

Table 36: Temporal-boulesic accessibility rules

T −WGbT T −WGbB T − BR
Acwiw j tl Acwiw j tl Acwiw j tl
tl < tm tl < tm tl < tm
↓ Acwjwktm Acwjwktm

Acwjw j tm ↓ ↓

Acwkw j tm Acwiwktl

Table 37: Alethic-boulesic-deontic accessibility rules

T −O ◻W T −W ◻O T −OW◇ T −WO◇
swiw j tl Acwiw j tl swiw j tl Acwiw j tl

Acwjwktl swjwktl ↓ ↓

↓ ↓ Acwjwktl swjwktl
rw jwktl rw jwktl rw jwktl rw jwktl

wherewk is new wherewk is new

Table 38: Temporal-boulesic-deontic accessibility rules

T −OGbT T −OGbB T −OGOW T −OGWO T −OGOA
swiw j tl swiw j tl swiw j tl swiw j tl swiw j tl
tl < tm tl < tm tl < tm tl < tm tl < tm
↓ Acwjwktm Acwjwktm swjwktm ↓

Acwjw j tm ↓ ↓ ↓ Acwjwktm
Acwkw j tm swjwktm Acwjwktm swjwktm

wherewk is new
T −WGdT T −WGdB T −WGOW T −WGWO T −WGOA

Acwiw j tl Acwiw j tl Acwiw j tl Acwiw j tl Acwiw j tl
tl < tm tl < tm tl < tm tl < tm tl < tm
↓ swjwktm Acwjwktm swjwktm ↓

swjw j tm ↓ ↓ ↓ Acwjwktm
swkw j tm swjwktm Acwjwktm swjwktm

wherewk is new
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Table 39: Temporal-alethic-deontic accessibility rules

T −OG ◻O T −OGO◇
swiw j tl swiw j tl
tl < tm tl < tm

swjwktm ↓

↓ rw jwktm
rw jwktm swjwktm

wherewk

is new

Table 40: Temporal-alethic-boulesic accessibility rules

T −WG ◻W T −WGW◇

Acwiw j tl Acwiw j tl
tl < tm tl < tm

Acwjwktm ↓

↓ rw jwktm
rw jwktm Acwjwktm

wherewk

is new

Table 41: Temporal-alethic-boulesic-deontic accessibilityrules

T −OG ◻W T −OGW◇ T −WG ◻O T −WGO◇
swiw j tl swiw j tl Acwiw j tl Acwiw j tl
tl < tm tl < tm tl < tm tl < tm

Acwjwktm ↓ swjwktm ↓

↓ rw jwktm ↓ rw jwktm
rw jwktm Acwjwktm rw jwktm swjwktm

wherewk wherewk

is new is new

Table 42: Transfer rules, etc.

T − FT T − BT T − FTR T −UR
A,wi tl A,w j tl Rc,wi tk Rc,wi tk
rwiw j tl rwiw j tl rwiw j tk ↓

↓ ↓ ↓ Rc,w j tl
A,w j tl A,wi tl Rc,w j tk for anyw j andtl

whereA is of whereA is of
a certain form a certain form

(see explanation in the text) (see explanation in the text)
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(logically) possible. So, it is a good thing that not all systemsassume that this principle
is true. Whether the transfer rules inTable 42should be added to our systems appears
to be a matter of choice.T − FT andT −BT seem to be plausible if we think of reality
as a tree like structure that branches towards the future but is determined in the past
(and the present). But for some applications, we may want to exclude them. (For more
on this, see Section 5.)

Let us now introduce some important concepts.
A tree is a kind of structure that consists of a set ofnodesordered by a successor

relation. Every tree has aroot that is a node that is not a successor of any node. Every
other node in a tree is a successor of the root. A node without successors is atip or a
leaf. A path from the root to a tip is called abranch. For more on the concept of a tree,
see [135] and [136], pp. 3−4.

A (semantic) tableau is a tree where the nodes have the following shape:A,wi t j ,
whereA is a formula inL andi, j ∈ {0,1,2,3, . . .}, or rwiw j tk, swiw j tk, Acwiw j tk, ti < t j ,
or ti = t j wherei, j, k ∈ {0,1,2,3, . . .} andc is a constant inL.

A branch in a tableau is closed just in case bothA,wi t j and¬A,wi t j occur on the
branch (for someA, wi andt j); it is open iffit is not closed. Intuitively, this means that
a branch is closed iffit contains a contradiction and it is open precisely when it does
not contain any contradiction. A tableau is closed iffevery branch in it is closed; it is
open just in case it is not closed.

Semantic tableaux can be used to test whether or not a sentence or argument is
valid. Intuitively, a tableau rule shows us how to ‘extend branches’ from given nodes
in a way that preserves satisfiability. We can think of the construction of a tableau
as a systematic search for a model that makes the sentence we are testing false or the
argument that we are testing invalid. If the tableau is closed, it is not possible to find
a model of this kind, since it is not possible to find a consistent model in which all
sentences on some branch in the tableau are true. Hence, if it is a sentence that we are
testing, this sentence cannot be false, and if it is an argument that we are testing, this
argument cannot have true premises and a false conclusion. Consequently, the sentence
or argument that we are investigating is valid. If a branch in a tree is open (and every
rule that can be applied has been applied), it is possible to use this branch to read offa
countermodel to the sentence or argument that we are interested in. This countermodel
shows that it is possible that the sentence we are testing is false or that the argument
that we are testing has true premises and a false conclusion. Accordingly, this sentence
or argument is invalid.8

Let us now define some important proof-theoretical concepts.

Definition 5 (Tableau systems) Tableau system:A tableau system is a class of tableau
rules.Quantified temporal alethic boulesic deontic tableau system:a quantified tem-
poral alethic boulesic deontic tableau system is a tableau system that includes all
propositional rules, all basic temporal rules, all basic alethic rules, all basic boulesic
rules, all basic deontic rules, the rules for the possibilist quantifiers, the CUT-rule (or
CUTR) and all the identity rules.

The smallest quantified temporal alethic boulesic deontic tableau system is called

8This‘intuitive’ line of thought is developed in more detail in the section on soundness and completeness.
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Q. By adding various tableau rules, it is possible to construct a large class of stronger
quantifiedtemporal alethic boulesic deontic tableau systems. Let the name of a quan-
tified temporal alethic boulesic deontic tableau system be a list of the names of the
(non-basic) rules that the system contains. The initial ‘T’ in a tableau rule may usually
be omitted. So, ‘aTdDbD’, for example, is the name of the quantified temporal alethic
boulesic deontic tableau system that includes all the rules that every system of this kind
contains and the rulesT − aT, T − dD andT − bD, etc.

Definition 6 (Proof-theoretical concepts)In the following definitions, let S be a (quan-
tified temporal alethic boulesic deontic) tableau system and let an S -tableau be a
tableau generated in accordance with the rules in S .Proof in a system:A proof of
a sentence A in S is a closed S -tableau for¬A,w0t0, that is, a closed S -tableau that
starts with¬A,w0t0. Theorem in a system:A sentence A is a theorem in S (is provable
in S ) iff there is a proof of A in S , that is, iffthere is a closed S -tableau for¬A,w0t0.
Derivation in a system:A derivation of a sentence B from a set of sentencesΓ in S is
a closed S -tableau that starts with A,w0t0 for every A∈ Γ and¬B,w0t0. The sentences
in Γ are called the premises and B the conclusion of the derivation.Proof-theoretic
consequence in a system:The sentence B is a proof-theoretic consequence of the set
of sentencesΓ in S (B is derivable fromΓ in S ,Γ ⊢ S B) iff there is a derivation of B
fromΓ in S , that is, just in case there is a closed S -tableau that starts with A,w0t0 for
every A∈ Γ and¬B,w0t0.

Definition 7 (The logic of a tableau system)The logic L(S) of a tableau system S is
the class of all sentences inL that are provable in this system.

For example,L(aTdDbD), the logic ofaTdDbD, is the class of all sentences inL
that are provable inaTdDbD, that is, in the quantified temporal alethic boulesic deontic
tableau system that includes all the rules that every system of this kind contains and the
rulesT − aT, T − dD andT − bD.

5 Examples of theorems

In this section, I will mention some interesting formulas that are theorems in some
tableau systems. The proofs are usually straightforward and are omitted.

Some ‘boulesic’ sentences that are theorems in every system.All the following
sentences (schemas) are theorems in every system in this paper:Πx(Rx→ (WxB↔
¬Ax¬B)), Πx(Rx→ (¬WxB ↔ Ax¬B)), Πx(Rx→ (Wx¬B ↔ ¬AxB)), Πx(Rx→
(AxB↔ ¬Wx¬B)), Πx(Rx→ (Wx(A∧ B)↔ (WxA∧WxB))), Πx(Rx→ ((WxA∨
WxB)→Wx(A∨ B))), Πx(Rx→ (Ax(A∧ B)→ (AxA∧AxB))), Πx(Rx→ (Ax(A∨
B) ↔ (AxA ∨ AxB))), Πx(Rx → (Wx(A → B) → (WxA → WxB))), Πx(Rx →
((WxA∧Wx(A → B)) → WxB)), Πx(Rx→ (Wx(A → B) → (¬WxB → ¬WxA))),
Πx(Rx→ ((¬WxB∧Wx(A→ B)) → ¬WxA)), Πx(Rx→ (Wx(A→ B) → (Wx¬B→
Wx¬A))), Πx(Rx → ((Wx¬B ∧ Wx(A → B)) → Wx¬A)), Πx(Rx → (Wx(A →
B) → (AxA → AxB))), Πx(Rx → ((AxA ∧ Wx(A → B)) → AxB)), Πx(Rx →
(Wx(A → B) → (¬AxB → ¬AxA))), Πx(Rx→ ((¬AxB∧Wx(A → B)) → ¬AxA)),
Πx(Rx→ (Wx(A → B) → (Ax¬B→ Ax¬A))), Πx(Rx→ ((Ax¬B∧Wx(A → B)) →
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Ax¬A)), Πx(Rx → (Wx(A↔ B) → (WxA↔ WxB))), Πx(Rx→ (Wx(A↔ B) →
(¬WxA ↔ ¬WxB))), Πx(Rx → (Wx(A ↔ B) → (Wx¬A ↔ Wx¬B))), Πx(Rx →
(Wx(A↔ B) → (AxA↔ AxB))), Πx(Rx→ (Wx(A↔ B) → (¬AxA↔ ¬AxB))),
Πx(Rx → (Wx(A ↔ B) → (Ax¬A ↔ Ax¬B))), Πx(Rx → (RxB ↔ ¬AxB)),
Πx(Rx → (RxB ↔ Wx¬B)), Πx(Rx → (NxB ↔ ¬IxB)), Πx(Rx → (IxB ↔
(AxB∧Ax¬B))), Πx(Rx→ (NxB↔ (WxB∨Wx¬B))), Πx(Rx→ (IxB↔ Ix¬B)),
Πx(Rx→ (NxB↔ Nx¬B)), Πx(Rx→ (Wx(A → B) → (RxB → RxA))), Πx(Rx→
((RxB ∧ Wx(A → B)) → RxA)), Πx(Rx→ (Wx(A → B) → (¬RxA → ¬RxB))),
Πx(Rx→ ((¬RxA∧Wx(A → B)) → ¬RxB)), Πx(Rx→ (Wx(A → B) → (Rx¬A →
Rx¬B))), Πx(Rx → ((Rx¬A ∧ Wx(A → B)) → Rx¬B)), Πx(Rx → (Wx(A ↔
B) → (RxA↔ RxB))), Πx(Rx→ (Wx(A↔ B) → (¬RxA↔ ¬RxB))), Πx(Rx→
(Wx(A ↔ B) → (Rx¬A ↔ Rx¬B))), Πx(Rx→ (Wx(A ↔ B) → (IxA ↔ IxB))),
Πx(Rx→ (Wx(A↔ B) → (¬IxA↔ ¬IxB))), Πx(Rx→ (Wx(A↔ B) → (Ix¬A↔
Ix¬B))), Πx(Rx→ (Wx(A ↔ B) → (NxA ↔ NxB))), Πx(Rx→ (Wx(A ↔ B) →
(¬NxA↔ ¬NxB))), Πx(Rx→ (Wx(A↔ B)→ (Nx¬A↔Nx¬B))).

Some sentences that include one type of operator that can be proved in every
system.The dual of� is�, the dual of◻ is◇, the dual ofA is S, the dual ofG is F,
the dual ofH is P, the dual ofO is P, the dual ofG is F, and the dual ofH is P. Let ◾ be
�, ◻, A, G, H, O, G or H, and let◆ be the dual of◾. Then, all the following sentences
(schemas) are theorems in every system in this paper:◾B ↔ ¬ ◆ ¬B, ¬ ◾ B ↔ ◆¬B,
◾¬B↔ ¬◆B, ◆B↔ ¬◾¬B, ◾(A∧B)↔ (◾A∧◾B), (◾A∨◾B)→ ◾(A∨B), ◆(A∧B)→
(◆A∧ ◆B), ◆(A∨ B)↔ (◆A∨ ◆B), ◾(A→ B) → (◾A→ ◾B), (◾A∧ ◾(A→ B)) → ◾B,
◾(A→ B)→ (¬◾B→ ¬◾A), (¬◾B∧◾(A→ B))→ ¬◾A, ◾(A→ B)→ (◾¬B→ ◾¬A),
(◾¬B ∧ ◾(A → B)) → ◾¬A, ◾(A → B) → (◆A → ◆B), (◆A ∧ ◾(A → B)) → ◆B,
◾(A→ B)→ (¬◆B→ ¬◆A), (¬◆B∧◾(A→ B))→ ¬◆A, ◾(A→ B)→ (◆¬B→ ◆¬A),
(◆¬B∧ ◾(A → B)) → ◆¬A, ◾(A↔ B) → (◾A↔ ◾B), ◾(A↔ B) → (¬ ◾ A↔ ¬ ◾ B),
◾(A↔ B)→ (◾¬A↔ ◾¬B), ◾(A↔ B)→ (◆A↔ ◆B), ◾(A↔ B)→ (¬ ◆ A↔ ¬ ◆ B),
◾(A↔ B)→ (◆¬A↔ ◆¬B).

Some ‘boulesic’ sentences that are theorems in everybD-system.All the follow-
ing sentences (schemas) are theorems in every system in this paper that includesbD:
Πx(Rx→ (WxB→ AxB)), Πx(Rx→ ¬(WxB∧Wx¬B)), Πx(Rx→ (AxB∨Ax¬B)),
Πx(Rx→ ¬(Wx(A∨ B) ∧ (Wx¬A∧Wx¬B))), Πx(Rx→ (Wx(A → B) → (WxA →
AxB))), Πx(Rx → ((WxA ∧ Wx(A → B)) → AxB)), Πx(Rx → (Wx(A → B) →
(¬AxB → ¬WxA))), Πx(Rx → ((¬AxB ∧ Wx(A → B)) → ¬WxA)), Πx(Rx →
(Wx(A→ B)→ (Wx¬B→ ¬WxA))), Πx(Rx→ ((Wx¬B∧Wx(A→ B))→ ¬WxA)),
Πx(Rx → (WxB → ¬RxB)), Πx(Rx → (RxB → ¬WxB)), Πx(Rx → ¬(RxB ∧
Rx¬B)), Πx(Rx → ¬(WxB ∧ RxB)), Πx(Rx → ¬(Wx(A ∨ B) ∧ (RxA ∧ RxB))),
Πx(Rx→ (Wx(A → B) → (WxA → ¬RxB))), Πx(Rx→ ((WxA∧Wx(A → B)) →
¬RxB)), Πx(Rx→ (Wx(A→ B) → (RxB→ ¬WxA))), Πx(Rx→ ((RxB∧Wx(A→
B))→ ¬WxA)).

Some ‘alethic-boulesic’ sentences that are theorems in every◻W-system.All
the following sentences (schemas) are theorems in every◻W-system in this paper:
Πx(Rx→ (◻(A→ B)→ (WxA→WxB))),Πx(Rx→ ((WxA∧◻(A→ B))→WxB)),
Πx(Rx→ (◻(A → B) → (¬WxB → ¬WxA))), Πx(Rx→ ((¬WxB∧ ◻(A → B)) →
¬WxA)), Πx(Rx → (◻(A → B) → (Wx¬B → Wx¬A))), Πx(Rx → ((Wx¬B ∧
◻(A → B)) → Wx¬A)), Πx(Rx → (◻(A → B) → (AxA → AxB))), Πx(Rx →

Daniel Rönnedal

244



((AxA ∧ ◻(A → B)) → AxB)), Πx(Rx → (◻(A → B) → (¬AxB → ¬AxA))),
Πx(Rx → ((¬AxB ∧ ◻(A → B)) → ¬AxA)), Πx(Rx → (◻(A → B) → (Ax¬B →
Ax¬A))), Πx(Rx → ((Ax¬B ∧ ◻(A → B)) → Ax¬A)), Πx(Rx → (◻(A ↔ B) →
(WxA↔WxB))), Πx(Rx→ (◻(A↔ B) → (¬WxA↔ ¬WxB))), Πx(Rx→ (◻(A↔
B) → (Wx¬A ↔ Wx¬B))), Πx(Rx→ (◻(A ↔ B) → (AxA ↔ AxB))), Πx(Rx→
(◻(A↔ B) → (¬AxA↔ ¬AxB))), Πx(Rx→ (◻(A↔ B) → (Ax¬A↔ Ax¬B))),
Πx(Rx→ (◻(A→ B) → (RxB→ RxA))), Πx(Rx→ ((RxB∧ ◻(A→ B)) → RxA)),
Πx(Rx→ (◻(A → B) → (¬RxA → ¬RxB))), Πx(Rx→ ((¬RxA ∧ ◻(A → B)) →
¬RxB)), Πx(Rx→ (◻(A → B) → (Rx¬A → Rx¬B))), Πx(Rx→ ((Rx¬A∧ ◻(A →
B)) → Rx¬B)), Πx(Rx → (◻(A ↔ B) → (RxA ↔ RxB))), Πx(Rx → (◻(A ↔
B) → (¬RxA↔ ¬RxB))), Πx(Rx→ (◻(A↔ B) → (Rx¬A↔ Rx¬B))), Πx(Rx→
(◻(A ↔ B) → (IxA ↔ IxB))), Πx(Rx → (◻(A ↔ B) → (¬IxA ↔ ¬IxB))),
Πx(Rx → (◻(A ↔ B) → (Ix¬A ↔ Ix¬B))), Πx(Rx → (◻(A ↔ B) → (NxA ↔
NxB))), Πx(Rx → (◻(A ↔ B) → (¬NxA ↔ ¬NxB))), Πx(Rx → (◻(A ↔ B) →
(Nx¬A↔Nx¬B))).

Some ‘alethic-boulesic’ sentences that are theorems in every system that in-
cludes◻W and bD (or W◇). Πx(Rx→ (◻(A → B) → (WxA → AxB))), Πx(Rx→
((WxA ∧ ◻(A → B)) → AxB)), Πx(Rx → (◻(A → B) → (¬AxB → ¬WxA))),
Πx(Rx → ((¬AxB ∧ ◻(A → B)) → ¬WxA)), Πx(Rx → (◻(A → B) → (Wx¬B →
¬WxA))), Πx(Rx → ((Wx¬B ∧ ◻(A → B)) → ¬WxA)), Πx(Rx → ¬(◻(A ∨ B) ∧
(Wx¬A∧Wx¬B))),Πx(Rx→ ¬(◻(A∨B)∧(RxA∧RxB))),Πx(Rx→ (◻(A→ B)→
(WxA → ¬RxB))), Πx(Rx→ ((WxA∧ ◻(A → B)) → ¬RxB)), Πx(Rx→ (◻(A →
B)→ (RxB→ ¬WxA))), Πx(Rx→ ((RxB∧ ◻(A→ B))→ ¬WxA)).

Some ‘deontic boulesic’ sentences that are theorems in every system that in-
cludesT − OW (and the definitions in Definition 1). Πx(Rx → (OA → WxA)),
Πx(Rx→ (FA → RxA)), Πx(Rx→ (AxB → PB)), OA → Πx(Rx→ WxA), FA →
Πx(Rx→ RxA), ΣxRx→ (Πx(Rx→ AxB) → PB), Σx(Rx∧ AxB) → PB, ΣxRx→
(OA → Σx(Rx∧WxA)), ΣxRx→ (FA → Σx(Rx∧RxA)). The sentence�Πx(Rx→
(OA→WxA)), which is a theorem in everyT −OW-system, says that it is absolutely
necessary that for every individualx, if x is perfectly rational, then if it it ought to be the
case thatA, thenx wants it to be the case thatA. This is a version of a philosophically
very interesting principle often called ‘internalism’ (see Introduction). More precisely,
it is a kind of conditional existence internalism. The following sentence is an instance
of this schema: ‘it is absolutely necessary that if the individualc is perfectly rational,
then if c ought to do the actionH, thenc wants to doH’. Nevertheless, ifc is not
perfectly rational, it is not necessary that she wants to doH. Accordingly, this kind of
internalism is compatible with the existence of amoralists and with the phenomenon of
weakness of will.OA → Πx(Rx→ WxA) is similar. It says that if it ought to be the
case thatA, then everyone who is perfectly rational wants it to be the case thatA. The
other theorems mentioned in this paragraph are also closely connected to the theory of
internalism.9

Some ‘boulesic deontic’ sentences that are theorems in every system that in-
cludes T − WO (and the definitions in Definition 1). Πx(Rx → (PB → AxB)),

9For more on internalism and various interpretations of this thesis and for an introduction to some argu-
ments for and against it, see, for example, [23], [24] and [151].
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Πx(Rx→ (WxA → OA)), Πx(Rx→ (RxA → FA)), PB → Πx(Rx→ AxB), ΣxRx→
(Πx(Rx→ WxA)→ OA), ΣxRx→ (Πx(Rx→ RxA)→ FA), Σx(Rx∧WxA)→ OA,
Σx(Rx∧ RxA) → FA, ΣxRx → (PB → Σx(Rx∧ AxB)). The converse ofOA →
Πx(Rx→WxA) isΠx(Rx→WxA)→ OA. We cannot prove the latter formula. How-
ever, we can establish something similar in everyT−WO-system, namely the following
principle:ΣxRx→ (Πx(Rx→WxA)→ OA). This theorem says that if there is some-
one who is perfectly rational, then if everyone who is perfectly rational wants it to be
the case thatA then it ought to be the case thatA. Πx(Rx→ (WxA→ OA)) says that if
x is perfectly rational, then ifx wants it to be the case thatA then it ought to be the case
thatA (to prove this theorem we do not have to assume that there is someone who is per-
fectly rational). If no one is perfectly rational, thenΣxRx→ (Πx(Rx→WxA)→ OA)
is vacuously true.PB→ Πx(Rx→ AxB) says that it is permitted thatB only if every-
one who is perfectly rational acceptsB (if it is permitted thatB then everyone who is
perfectly rational acceptsB).

Some ‘deontic boulesic’ sentences that are theorems in every system that in-
cludesT −OA. Πx(Rx→ (OB→ AxB)), Πx(Rx→ (WxB→ PB)), OB→ Πx(Rx→
AxB), ΣxRx→ (Πx(Rx→WxA)→ PA). OB→ Πx(Rx→ AxB) says that it ought to
be the case thatB only if everyone who is perfectly rational acceptsB (if it ought to be
the case thatB then everyone who is perfectly rational accepts that it is the case that
B). Πx(Rx→ (OB → AxB)) says that ifx is perfectly rational, then if it ought to be
the case thatB thenx accepts that it is the case thatB. Πx(Rx→ (WxB → PB)) says
that if x is perfectly rational thenx wantsB only if it is permitted thatB.

Some ‘boulesic deontic’ sentences that are theorems in every system that in-
cludesT −OW and T −WO (and the definitions in Definition 1).Πx(Rx→ (OA↔
WxA)), Πx(Rx → (FA ↔ RxA)), Πx(Rx → (PB ↔ AxB)), Πx(Rx → (WxA ↔
OA)), Πx(Rx→ (RxA↔ FA)), Πx(Rx→ (AxB↔ PB)), ΣxRx→ (OA↔ Πx(Rx→
WxA)), ΣxRx → (FA ↔ Πx(Rx → RxA)), ΣxRx → (PB ↔ Πx(Rx → AxB)),
ΣxRx→ (OA↔ Σx(Rx∧WxA)), ΣxRx→ (FA↔ Σx(Rx∧RxA)), ΣxRx→ (PB↔
Σx(Rx∧ AxB)). Πx(Rx → (OA ↔ WxA)) says that ifx is perfectly rational then
it ought to be the case thatA iff x wants it to be the case thatA. This is a prin-
ciple that a Kantian might want to include in his or her system (see Introduction).
Πx(Rx→ (AxB↔ PB)) says that ifx is perfectly rational thenx accepts that it is the
case thatB iff it is permitted thatB, etc. So, suppose thatx is perfectly rational. Then,
it ought to be the case thatA iff x wants it to be the case thatA (andx wants it to be
the case thatA iff it ought to be the case thatA), it is forbidden (wrong) thatA iff x
rejectsA (andx rejectsA iff it is forbidden (wrong) thatA), it is permitted (right) that
A iff x accepts that it is the case thatA (andx acceptsA iff it is permitted (right) that
A), etc. Hence, in every system that includesT − OW andT −WO (and the defini-
tions in Definition 1), we can show that every perfectly rational individual has boulesic
attitudes that are perfectly aligned with all the norms (all obligations, permissions and
prohibitions).ΣxRx→ (OA↔ Πx(Rx→ WxA)) says that if there is someone who is
perfectly rational, then it ought to be the case thatA iff everyone who is perfectly ratio-
nal wants it to be the case thatA; ΣxRx→ (PB↔ Πx(Rx→ AxB)) says that if there
is someone who is perfectly rational then it is permitted thatB iff everyone who is per-
fectly rational accepts that it is the case thatB, etc. Suppose that there is someone who
is perfectly rational. Then, if our system includesT −OW andT −WO, we can prove
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the following equivalences: it ought to be the case thatA iff everyone who is perfectly
rational wants it to be the case thatA; it is permitted thatA iff everyone who is perfectly
rational accepts that it is the case thatA; and it is forbidden thatA iff everyone who is
perfectly rational rejectsA. Accordingly (if we assume that there is someone who is
perfectly rational), the theorems in this paragraph can be interpreted as a kind of ideal
observer theory for normative propositions.10 If a system includesT−OW andT−WO
we can also prove the following formulas:ΠxΠy((Rx∧ Ry) → (WxB → WyB)),
Πx(Rx→ (WxB→ Πy(Ry→ WyB)), ΠxΠy((Rx∧Ry)→ (AxB→ AyB)), Πx(Rx→
(AxB → Πy(Ry→ AyB))), ΠxΠy((Rx∧Ry)→ (RxB → RyB)), Πx(Rx→ (RxB →
Πy(Ry → RyB)), Σx(Rx∧ WxB) → Πx(Rx → WxB), Σx(Rx∧ AxB) → Πx(Rx →
AxB), Σx(Rx∧RxB) → Πx(Rx→ RxB). ΠxΠy((Rx∧Ry)→ (WxB → WyB)) says
that if x is perfectly rational andy is perfectly rational, then ifx wants it to be the case
that B theny wants it to be the case thatB; ΠxΠy((Rx∧ Ry)→ (AxB → AyB)) says
that if x is perfectly rational andy is perfectly rational, then ifx accepts that it is the
case thatB theny accepts that it is the case thatB, etc. So, if a system includesT−OW
andT −WO we can prove that all perfectly rational individuals want, accept and reject
the same things.11

Some ‘boulesic’ and ‘alethic boulesic’ sentences that are theorems in various
systems.In every system that includesT−b4,Πx((Rx∧WxRx)→ (WxB→WxWxB))
is a theorem. In every system that includesT − b5, Πx((Rx∧ WxRx) → (AxB →
WxAxB)) is a theorem. In every system that includesT −WbT, Πx((Rx∧WxRx) →
Wx(WxB → B)) is a theorem. In every system that includesT − WbB and b4,
Πx((Rx∧WxRx)→Wx(AxWxA→ A)) is a theorem.Πx((Rx∧WxRx)→Wx(◻A→
WxA)) is a theorem in every system that includesT −W◻W andΠx((Rx∧WxRx)→
Wx(WxA→◇A)) is a theorem in every system that includesT −WW◇.

Barcan-like formulas. The following Barcan-like formulas can be proved in ev-
ery system in this paper:Πx(Rx → (ΠyWxB ↔ WxΠyB)), Πx(Rx → (ΣyAxB ↔
AxΣyB)), Πx(Rx→ (AxΠyB→ ΠyAxB)), andΠx(Rx→ (ΣyWxB → WxΣyB)). Let
◾ be�, ◻, A, G, H, O, G or H, and let◆ be the dual of◾. Then, all the follow-
ing sentences (schemas) are theorems in every system in this paper:Πx ◾ B↔ ◾ΠxB,
Σx◆ B↔ ◆ΣxB, ◆ΠxB→ Πx◆ B, andΣx ◾ B→ ◾ΣxB.

Some theorems that can be proved in systems that include the transfer rules.
In every system that includesT − UR or T − FTR andT − ◻W, we can prove that
the following sentence is a theorem:Πx(Rx → WxRx), which says that everyone
who is perfectly rational wants to be perfectly rational. In every system that includes
T −URor T −FTRandT −◻W, andT −bD, we can prove that the following sentence
is a theorem:Πx(Rx → AxRx), which says that everyone who is perfectly rational
accepts that she is perfectly rational. In every system that includesT − UR, we can

10For more on ideal observer theories, see, for example, [56] and [90]. I will not try to decide whether
or not it is reasonable to assume that there is someone who is perfectly rational in this paper. However,
note that our systems do not exclude that there are things that do not exist and that non-existing things have
properties. So, the statement that there is someone who is perfectly rational does not necessarily entail
that this individual exists. If being perfectly rational is not an existence-entailing property, our systems are
compatible with the proposition that there are non-existing perfectly rational individuals.

11This does not entail that every perfectly rational individual wants every individual to do the same things
and have the same properties. For example, the view is compatible with the proposition that bothc andd
wante to beP and that bothc andd want f to be not-P.
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prove the following sentence:Πx(Rx→�Rx), which says that every perfectly rational
individual is necessarily perfectly rational.

Some theorems that include the identity sign.LetO be a boulesic operator (W,
A, R, I or N ). Then, if a system includes (T− S =) and (T− A =), we can prove
the following theorems in this system:(OcB∧ c = d) → OdB andΠxΠy((OxB∧ x =
y)→ OyB), which are intuitively plausible. By using (T− N =), we can show that all
identities and non-identities are (absolutely and historically) necessary and eternal, that
is, we can prove all the following theorems:ΠxΠy(x = y → �x = y), ΠxΠy(x = y →
◻x = y), ΠxΠy(¬x = y → �¬x = y), ΠxΠy(¬x = y → ◻¬x = y), ΠxΠy(x = y → Ax =
y) andΠxΠy(¬x = y→ A¬x = y). Since every constant is treated as a rigid designator
in this paper, this is plausible.

Some theorems that include temporal and boulesic operators.In every system
that includesT −WGbT, Πx((Rx∧WxGRx) → WxG(WxA → A)) is a theorem and
Πx(Rx→ WxG(WxA → A)) can be proved in every system that includesT −WGbT
andT −UR. Πx((Rx∧WxGRx∧WxGWxRx) → WxG(B → WxAxB)) is a theorem
in every system that containsT − WGbB andΠx(Rx → WxG(B → WxAxB)) is a
theorem in every system that containsT −WGbBandT −UR.Πx((Rx∧WxGRx)→
(WxGA→WxGWxA)) can be proved in every system that includesT − BR.

Some theorems in various systems.Let A be a formula in Section 3.3. Then ifA
is valid in every model that satisfies the semantic conditionsC−X1, . . ., C−Xn, thenA
is a theorem in every quantified temporal alethic boulesic deontic tableau system that
includes the tableau rulesT − X1, . . ., T − Xn. We observed that if a model satisfies
C − bD, thenΠx(Rx→ ¬(WxB∧ Wx¬B)) is valid in this model. Hence,Πx(Rx→
¬(WxB∧Wx¬B)) is a theorem in every quantified temporal alethic boulesic deontic
tableau system that includesT −bD. We observed that if a model satisfiesC−OG◻W
andC − UR,Πx(Rx→ OG(◻A → WxA)) is valid in this model. Hence,Πx(Rx→
OG(◻A → WxA)) is a theorem in every quantified temporal alethic boulesic deontic
tableau system that includesT −OG ◻W andT −UR, etc.

6 Soundness and completeness theorems

This section establishes the soundness and completeness of every system in this paper.
Let us begin by defining these concepts.

Definition 8 (Soundness and completeness) Let S= T −A1, ...,T −An be a quantified
temporal alethic boulesic deontic tableau system as defined in Section 4 (Definition 5)
above (where T− A1, ...,T − An are the non-basic tableau rules in S ). Then we shall
say that the class of models,M, corresponds to S iffM =M(C − A1, ...,C − An).

S is sound with respect toM iff Γ ⊢S A entailsM, Γ ⊩ A, and S is complete with
respect toM just in caseM, Γ ⊩ A entailsΓ ⊢S A (whereM corresponds to S ).

Lemma 9 (Locality)
LetM1 = ⟨D,W,T,<,R,A,S,v1⟩ andM2 = ⟨D,W,T,<,R,A,S,v2⟩ be two models.
SinceM1 andM2 have the same domain, the language ofM1 is the same as the
language ofM2. Let us call this languageL. Moreover, let A be any closed formula
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of L such that v1 andv2 agree on the denotations of all the predicates, constants and
matrices in it. Then for allω ∈W andτ ∈ T: M1, ω, τ ⊩ A iffM2, ω, τ ⊩ A.

Proof. The result is established by recursion on formulas; ‘the IH’ is an abbrevia-
tion of ‘the induction hypothesis’.

Atomic formulas. M1, ω, τ ⊩ Pa1 . . .an iff ⟨v1(a1), . . . ,v1(an)⟩ ∈ v1ωτ(P) iff
⟨v2(a1), . . . ,v2(an)⟩ ∈ v2ωτ(P) iffM2, ω, τ ⊩ Pa1 . . .an.

Suppose thatM1, ω, τ ⊮ Ram, that M is a matrix wherexm is the first free vari-

able in M and thatam is the constant inM[a1, . . . ,an/
→

x] that replacesxm. Then:

M2, ω, τ ⊮ Ram andM1, ω, τ ⊩ M[a1, . . . ,an/
→

x] iff ⟨v1(a1), . . . ,v1(an)⟩ ∈ v1ωτ(M)

iff ⟨v2(a1), . . . ,v2(an)⟩ ∈ v2ωτ(M) iffM2, ω, τ ⊩ M[a1, . . . ,an/
→

x].
Truth-functional connectives. Straightforward.
(◻). M1, ω, τ ⊩ ◻B iff for all ω′ such thatRωω′τ,M1, ω

′

, τ ⊩ B iff for all ω′ such
thatRωω′τ, M2, ω

′

, τ ⊩ B [the IH] iffM2, ω, τ ⊩ ◻B.
Other alethic, temporal and deontic operators. Similar.
(WcD). A is of the formWcD. Assume thatM1, ω, τ ⊩ WcD. We have two

cases:M1, ω, τ ⊮ Rc or M1, ω, τ ⊩ Rc. SupposeM1, ω, τ ⊮ Rc. ThenM2, ω, τ ⊮
Rc. Hence,M2, ω, τ ⊩ WcD. And vice versa. SupposeM1, ω, τ ⊩ Rc. Then
for all ω′ such thatAv1(c)ωω′τ: M1, ω

′

, τ ⊩ D. Accordingly, for allω′ such that
Av2(c)ωω′τ: M2, ω

′

, τ ⊩ D [by assumption and the IH]. Moreover,M2, ω, τ ⊩ Rc.
Hence,M2, ω, τ ⊩ WcD. And vice versa. It follows thatM1, ω, τ ⊩ WcD iff
M2, ω, τ ⊩WcD.

Other boulesic operators. Similar.
(Π). M1, ω, τ ⊩ ΠxB iff for all kd ∈ L, M1, ω, τ ⊩ B[kd/x] iff for all kd ∈

L, M2, ω, τ ⊩ B[kd/x] [by the IH, and the fact thatv1ωτ(kd) = v2ωτ(kd) = d] iff
M2, ω, τ ⊩ ΠxB.

The particular quantifier. Similar.

Lemma 10 (Denotation) Let M = ⟨D,W,T,<,R,A,S,v⟩ be any model. Let A be
any formula of the language ofM (L(M)) with at most one free variable, x, and a
and b be any two constants such that v(a) = v(b). Then for anyω ∈ W andτ ∈ T:
M, ω, τ ⊩ A[a/x] iffM, ω, τ ⊩ A[b/x].

Proof. The proof is by recursion on sentences.
Atomic formulas. (To illustrate, we assume that the formula has one occurrence of

‘a’ distinct from eachai .) M, ω, τ ⊩ Pa1 . . .a . . .an iff ⟨v(a1), . . . ,v(a), . . . ,v(an)⟩ ∈
v
ωτ
(P) iff ⟨v(a1), . . . ,v(b), . . . ,v(an)⟩ ∈ v

ωτ
(P) iffM, ω, τ ⊩ Pa1 . . .b . . .an.

SupposeM, ω, τ ⊮ Ram, that M is a matrix wherexm is the first free variable

in M and thatam is the constant inM[a1, . . . ,a, . . . ,an/
→

x] (M[a1, . . . ,b, . . . ,an/
→

x])
that replacesxm. (To illustrate, we assume that the formula has one occurrence of ‘a’

distinct from eachai and thatam is nota (b).) Then:M, ω, τ ⊩ M[a1, . . . ,a, . . . ,an/
→

x]
iff ⟨v(a1), . . . ,v(a), . . . ,v(an)⟩ ∈ v

ωτ
(M) iff ⟨v(a1), . . . ,v(b), . . . ,v(an)⟩ ∈ v

ωτ
(M) iff

M, ω, τ ⊩ M[a1, . . . ,b, . . . ,an/
→

x].
Truth-functional connectives. Straightforward.
(◻). M, ω, τ ⊩ ◻B[a/x] iff for all ω′ such thatRωω′τ, M, ω′, τ ⊩ B[a/x] iff for

all ω′ such thatRωω′τ, M, ω′, τ ⊩ B[b/x] [the IH] iffM, ω, τ ⊩ ◻B[b/x].
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Other alethic, temporal and deontic operators. Similar.
(Wt). A is of the formWtD. EitherM, ω, τ ⊩ RtorM, ω, τ ⊮ Rt. We have already

established that the result holds ifM, ω, τ ⊮ Rt. So, suppose thatM, ω, τ ⊩ Rt. Since
x is the only free variable,t cannot be a variable distinct fromx. So, t is eitherx or
a constant. Supposet is x. ThenM, ω, τ ⊩ WxD[a/x] iff M, ω, τ ⊩ WaD[a/x] iff
for all ω′ such thatAv(a)ωω′τ,M, ω′, τ ⊩ D[a/x] iff for all ω′ such thatAv(b)ωω′τ,
M, ω′, τ ⊩ D[b/x] [by the fact thatv(a) = v(b) and the IH] iffM, ω, τ ⊩ WbD[b/x]
iffM, ω, τ ⊩WxD[b/x]. Supposet is a constant, sayc. ThenM, ω, τ ⊩WcD[a/x] iff
for all ω′ such thatAv(c)ωω′τ, M, ω′, τ ⊩ D[a/x] iff for all ω′ such thatAv(c)ωω′τ,
M, ω′, τ ⊩ D[b/x] [by the IH] iffM, ω, τ ⊩WcD[b/x].

Other boulesic operators. Similar.
(Π). Let A be of the formΠyB. If x = y, thenA[a/x] = A[b/x] = A, so the result is

trivial. Hence, suppose thatx andy are distinct. Then,(ΠyB)[b/x] = Πy(B[b/x]) and
(B[b/x])[a/y] = (B[a/y])[b/x]. M, ω, τ ⊩ (ΠyB)[a/x] iff M, ω, τ ⊩ Πy(B[a/x])
iff for all kd ∈ L(M), M, ω, τ ⊩ (B[a/x])[kd/y] iff for all kd ∈ L(M), M, ω, τ ⊩
(B[kd/y])[a/x] iff for all kd ∈ L(M), M, ω, τ ⊩ (B[kd/y])[b/x] [the IH] iff for
all kd ∈ L(M), M, ω, τ ⊩ (B[b/x])[kd/y] iff M, ω, τ ⊩ Πy(B[b/x]) iff M, ω, τ ⊩
(ΠyB)[b/x].

The case for the particular quantifier (Σ) is similar.

6.1 Soundness theorem

LetM = ⟨D,W,T,<,R,A,S,v⟩ be any model andB any branch of a tableau. ThenB
is satisfiable inM iff there is a functionf from w0,w1,w2, . . . to W, and a functiong
from t0, t1, t2, . . . to T such that

(i) A is true in f (wi) atg(t j) in M, for every nodeA,wi t j onB;
(ii) if rwiw j tk is onB, thenR f (wi) f (w j)g(tk) in M;
(iii) if Acwiw j tk is onB, thenAv(c) f (wi) f (w j)g(tk) in M;
(iv) if swiw j tk is onB, thenS f (wi) f (w j)g(tk) in M;
(v) if ti < t j is onB, theng(ti) < g(t j) in M;
(vi) if ti = t j is onB, theng(ti) = g(t j) in M.
If these conditions are fulfilled, we say thatf andg show thatB is satisfiable inM.

Lemma 11 (Soundness Lemma)Let B be any branch of a tableau andM be any
model. IfB is satisfiable inM and a tableau rule is applied to it, then there is a model
M′ and an extension ofB, B′, such thatB′ is satisfiable inM′.

Proof. The proof is by induction on the height of the derivation. Letf andg be
functions that show that the branchB is satisfiable inM.

Connectives and modal, temporal and deontic operators. Straightforward.
(W). Suppose thatRc,wi tk, WcD,wi tk, andAcwiw j tk are onB, and that we apply

theW-rule. Then we get an extension ofB that includesD,w j tk. SinceB is satisfiable
in M,WcD andRcare true inf (wi) atg(tk). Furthermore, for anywi andw j such that
Acwiw j tk is onB, Av(c) f (wi) f (w j)g(tk). Thus by the truth conditions forWcD, D is
true in f (w j) atg(tk).
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(A). Suppose thatRc,wi tk, AcD,wi tk are onB and that we apply theA-rule to get
an extension ofB that includes nodes of the formAcwiw j tk and D,w j tk. SinceB is
satisfiable inM, AcD andRc are true in f (wi) at g(tk). Hence, for someω in W,
Av(c) f (wi)ωg(tk) andD is true inω atg(tk) [by the truth conditions forAcD and the
fact thatRc is true in f (wi) at g(tk)]. Let f ′ be the same asf except thatf ′(w j) = ω.
Since f and f ′ differ only atw j , f ′ andg show thatB is satisfiable inM. Furthermore,
by definitionAv(c) f ′(wi) f ′(w j)g(tk), andD is true in f ′(w j) atg(tk).

Other boulesic operators. Similar.
(Π). Suppose thatΠxA,wi t j is onB and that we apply theΠ-rule to get an extension

of B that includes a node of the formA[a/x],wi t j . M makesΠxA true in f (wi) at
g(t j). ForB is satisfiable inM. Hence,A[kd/x] is true in f (wi) at g(t j) in M, for all
kd ∈ L(M). Let d be such thatv(a) = v(kd). By the Denotation Lemma,A[a/x] is
true in f (wi) atg(t j) in M. Accordingly, we can takeM′ to beM.

(Σ). Suppose thatΣxA,wi t j is onB and that we apply theΣ-rule to get an extension
ofB that includes a node of the formA[c/x],wi t j (wherec is new). SinceB is satisfiable
in M, ΣxA is true in f (wi) at g(t j) in M. Consequently, there is somekd ∈ L(M)
such thatM makesA[kd/x] true in f (wi) at g(t j). LetM′ = ⟨D,W,T,<,R,A,S,v′⟩
be the same asM except thatv′(c) = d. Sincec does not occur inA[kd/x], A[kd/x] is
true in f (wi) at g(t j) in M′, by the Locality Lemma. By the Denotation Lemma and
the fact thatv′(c) = d = v′(kd), A[c/x] is true in f (wi) at g(t j) in M′. Moreover,M′

makes all other formulas on the branch true at their respective world-moment pairs as
well, by the Locality Lemma. Forc does not occur in any other formula on the branch.

(¬Π) and (¬Σ). Straightforward.
Accessibility rules. I will consider three examples to illustrate the method.
(T − ab5). Suppose thatrwiw j tl and Acwiwktl are onB, and that we apply (T−

ab5) to give an extended branch containingAcwjwktl . SinceB is satisfiable inM,
R f (wi) f (w j)g(tl) andAv(c) f (wi) f (wk)g(tl). Hence,Av(c) f (w j) f (wk)g(tl) since
M satisfies conditionC − ab5. Consequently, the extension ofB is satisfiable inM.

(T − WGOA). Suppose thatAcwiw j tl and tl < tm are onB, and that we apply
(T−WGOA) to give an extended branch containingAcwjwktm andswjwktm, wherewk

is new. SinceB is satisfiable inM, Av(c) f (wi) f (w j)g(tl) andg(tl) < g(tm). Hence,
for someω in W, Av(c) f (w j)ωg(tm) andS f (w j)ωg(tm), sinceM satisfies condition
C −WGOA. Let f ′ be the same asf except thatf ′(wk) = ω. Sincewk does not occur
onB, f ′ andg show thatB is satisfiable inM. Moreover,Av(c) f ′(w j) f ′(wk)g(tm)
andS f ′(w j) f ′(wk)g(tm) by construction. Hence,f ′ andg show that the extension of
B is satisfiable inM.

(T − OG ◻ O). Suppose thatswiw j tl , tl < tm and swjwktm are onB, and that we
apply (T−OG ◻O) to give an extended branch containingrw jwktm. SinceB is satis-
fiable inM, S f (wi) f (w j)g(tl), g(tl) < g(tm) andS f (w j) f (wk)g(tm). Accordingly,
R f (w j) f (wk)g(tm), forM satisfies conditionC−OG◻O. In conclusion, the extension
of B is satisfiable inM.

Theorem 12 (SoundnessTheorem)Every system S in this paper is sound with respect
to its semantics.

Proof. Assume thatB does not follow fromΓ in M , whereM is the class of models
that corresponds toS. Then every premise inΓ is true and the conclusionB false in
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some worldω at some timeτ in some modelM in M . Consider anS-tableau whose
first nodes consists ofA,w0t0 for everyA ∈ Γ and¬B,w0t0, where ‘w0’ refers toω and
‘t0’ refers toτ. The initial list in this tableau is satisfiable inM. Every time we apply a
rule to our tree it produces at least one extension that is satisfiable in a modelM′ in M
(by the Soundness Lemma). Accordingly, we can find a whole branch such that every
initial section of this branch is satisfiable in some modelM′′ in M . It is impossible
that this branch is closed, for if it were closed, then some sentence would be both true
and false in some possible world at some time inM′′. Therefore, the whole tableau
is open. It follows thatB is not derivable fromΓ in S. Consequently, ifB is derivable
from Γ in S, thenB follows fromΓ in M .

6.2 Completeness theorem

In this section, I will prove that every system in this paper is complete with respect to
its semantics. First, I will define some important concepts.

We can think of acompletetableau as a tableau where every rule that can be applied
has been applied. There can be several different (complete) tableaux for the same
sentence or set of sentences, some more complex than others, for the tableau rules
can be applied in different orders. To produce a complete tableau, we shall use the
following method.12 (1) For every open branch, one at a time, begin at its root and
move towards its tip. Apply any rule that produces somethingnewto the branch. If a
rule has multiple applications (such as◻ andΠ), then make all possible applications
at once. (2) Once we have done this for all open branches in the tableau, we repeat
the procedure. Some rules, such asT − aD andT − W◇ (T − FD), introduce new
‘possible worlds’ (‘moments in time’). Every rule of this kind is applied once at the
tip of every open branch at the end of every cycle (given that it produces something
new). If a system includes more than one rule of this kind (R1,R2 . . .), we alternate
between them. The first time we useR1; the second time we useR2, etc. Before we
conclude a cycle in this process we split the end of every open branch in the tree and
addRc,wi t j to the left node and¬Rc,wi t j to the right node, for every constantc (that
occurs as an index to some boulesic operator on the tree),wi andt j on the branch. If
there is still something to do according to this process, the tableau is incomplete; if not,
it is complete.

Definition 13 (Induced Model) Suppose thatB is an open and complete branch of
a tableau and that I is the set of numbers onB immediately preceded by a ‘t’. Let
i ⇌ j iff i = j, or ‘t i = t j ’ or ‘t j = ti ’ is on B. ⇌ is an equivalence relation and[i]
is the equivalence class of i. Furthermore, let C be the set of all constants onB. We
shall say that a∼ b just in case a= b,w0t0 occurs on the branch. Obviously, a∼ b
is an equivalence relation. Let[a] be the equivalence class of a under∼. The model
M = ⟨D,W,T,<,R,A,S,v⟩ induced byB is defined as follows. D= {[a] ∶ a ∈ C} (or,
if C = ∅, D = {o} for an arbitrary o). (o is not in the extension of anything.) W=
{ωi ∶ wi occurs onB}, T = {τ[i] ∶ i ∈ I}, τ[i] < τ[ j] iff ti < t j occurs onB, Rωiω jτ[k]

iff rwiw j tk occurs onB, Av(a)ωiω jτ[k] iff Aawiw j tk occurs onB and Sωiω jτ[k] iff

12Note that it is often possible to produce shorter proofs or derivations by using some more ‘intuitive’
method instead.
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swiw j tk occurs onB. v(a) = [a], and⟨[a1], . . . , [an]⟩ ∈ v
ωiτ[ j]
(P) iff Pa1 . . .an,wi t j is

onB, given that P is any n-place predicate other than identity. If¬Ram,wi t j occurs on
B and M is an n-place matrix with instantiations on the branch (where xm is the first

free variable in M and am is the constant in M[a1, . . . ,an/
→

x] that replaces xm), then

⟨[a1], . . . , [an]⟩ ∈ v
ωiτ[ j]
(M) iff M[a1, . . . ,an/

→

x],wi t j occurs onB. (Due to the identity
rules this is well defined.) When we have a= b,w0t0, b = c,w0t0, etc. we choose one
single object for all constants to denote.

If our tableau system includes neitherT − FC, T − PC nor T −C, ⇌ is reduced to
identity and[i] = {i}. Hence, in such systems, we may takeT to be{τi ∶ ti occurs onB}
and dispense with the equivalence classes.

Lemma 14 (Completeness Lemma)Let B be an open branch in a complete tableau
and letM be a model induced byB. Then, for every formula A:

(i) if A,wi t j is onB, thenM, ωi , τ[ j] ⊩ A, and
(ii) if ¬A,wi t j is onB, thenM, ωi , τ[ j] ⊮ A.

Proof. The proof is by induction on the complexity ofA.
(i) Atomic formulas. Pa1 . . .an,wi t j is on B ⇒ ⟨[a1], . . . , [an]⟩ ∈ v

ωiτ[ j]
(P) ⇒

⟨v(a1), . . . ,v(an)⟩ ∈ v
ωiτ[ j]
(P)⇒M, ωi , τ[ j] ⊩ Pa1 . . .an.

a = b,wi t j is onB ⇒ a ∼ b (T − N =) ⇒ [a] = [b]⇒ v(a) = v(b)⇒M, ωi , τ[ j] ⊩
a = b.

Suppose thatM is a matrix wherexm is the first free variable andam is the constant

in M[a1, . . . ,an/
→

x] that replacesxm and thatM, ωi , τ[ j] ⊮ Ram. Then:M[a1, . . . ,an/
→

x],wi t j occurs onB ⇒ ⟨[a1], . . . , [an]⟩ ∈ v
ωiτ[ j]
(M)⇒ ⟨v(a1), . . . ,v(an)⟩ ∈ v

ωiτ[ j]
(M)

⇒M, ωi , τ[ j] ⊩ M[a1, . . . ,an/
→

x].
Other truth-functional connectives and modal, temporal and deontic operators.
Straightforward.
Boulesic operators. (W). SupposeWcD,wi tk is on B. Moreover, suppose that

Rc,wi tk is not onB. Then¬Rc,wi tk is onB [by CUTR]. Hence,WcD is true inωi at
τ[k] by definition and previous steps. SupposeRc,wi tk is onB. Then since the branch
is complete, theW-rule has been applied and for everyw j such thatAcwiw j tk is onB,
D,w j tk is onB. By the induction hypothesis,D is true in everyω j at τ[k] such that
Av(c)ωiω jτ[k]. SinceRc,wi tk is onB, v(c) is perfectly rational inωi atτ[k]. It follows
thatWcD is true inωi atτ[k], as required.

Other boulesic operators. Similar.
Quantifiers. (Σ). Suppose thatΣxD,wi t j is on the branch. Since the tableau is

complete (Σ) has been applied. Accordingly, for somec, D[c/x],wi t j is on the branch.
Hence,M, ωi , τ[ j] ⊩ D[c/x], by (IH). For somekd ∈ L(M), v(c) = d, andv(kd) =
d. Consequently,M, ωi , τ[ j] ⊩ D[kd/x], by the Denotation Lemma. It follows that
M, ωi , τ[ j] ⊩ ΣxD.

The case forΠ is similar.
(ii) Atomic formulas.
¬Pa1 . . .an,wi t j is onB ⇒ Pa1 . . .an,wi t j is not onB (B open)⇒ ⟨[a1], . . . , [an]⟩ ∉

v
ωiτ[ j]
(P)⇒ ⟨v(a1), . . . ,v(an)⟩ ∉ v

ωiτ[ j]
(P)⇒M, ωi , τ[ j] ⊮ Pa1 . . .an.
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¬a = b,wi t j is on B ⇒ a = b,w0t0 is not onB (B open)⇒ it is not the case that
a ∼ b⇒ [a] ≠ [b]⇒ v(a) ≠ v(b)⇒M, ωi , τ[ j] ⊮ a = b.

Suppose thatM is a matrix wherexm is the first free variable andam is the constant

in M[a1, . . . ,an/
→

x] that replacesxm and thatM, ωi , τ[ j] ⊮ Ram. Then:¬M[a1, . . . ,an

/
→

x],wi t j occurs onB ⇒ M[a1, . . . ,an/
→

x],wi t j is not onB (B open)⇒ ⟨[a1], . . . , [an]⟩

∉ v
ωiτ[ j]
(M)⇒ ⟨v(a1), . . . ,v(an)⟩ ∉ v

ωiτ[ j]
(M)⇒M, ωi , τ[ j] ⊮ M[a1, . . . ,an/

→

x].
Other truth-functional connectives and modal, temporal and deontic operators.
Straightforward.
Boulesic operators. (¬W). Suppose¬WcD,wi tk is onB. Furthermore, suppose that

Rc,wi tk is not onB. Then¬Rc,wi tk is onB [by CUTR]. Hence,WcD is false inωi at
τ[k] by definition and previous steps. SupposeRc,wi tk is onB. Then the¬W-rule has
been applied to¬WcD,wi tk and we haveAc¬D,wi tk onB. For the branch is complete.
Then theA-rule has been applied toAc¬D,wi tk, since the branch is complete. Hence,
for some neww j , Acwiw j tk and¬D,w j tk occur onB. By the induction hypothesis,
Av(c)ωiω jτ[k], andD is false inω j at τ[k]. SinceRc,wi tk is onB, v(c) is perfectly
rational inωi atτ[k]. Consequently,WcD is false inωi atτ[k], as required.

Other boulesic operators. Similar.
Quantifiers. (¬Σ). Suppose that¬ΣxD,wi t j is on the branch. Since the tableau is

complete (¬Σ) has been applied. So,Πx¬D,wi t j is on the branch. Again, since the
tableau is complete (Π) has been applied. Thus, for allc ∈ C, ¬D[c/x],wi t j is on the
branch. Consequently,M, ωi , τ[ j] ⊮ D[c/x] for all c ∈ C [by the induction hypothesis].
If kd ∈ L(M), then for somec ∈ C, v(c) = v(kd). By the Denotation Lemma, for all
kd ∈ L(M), M, ωi , τ[ j] ⊮ D[kd/x]. Consequently,M, ωi , τ[ j] ⊮ ΣxD.

(¬Π). Straightforward.

Theorem 15 (CompletenessTheorem)Every system in this paper is complete with
respect to its semantics.

Proof. First, I will show that the theorem holds for our weakest systemQ. Then,
I will extend the theorem to all stronger systems. LetM be the class of models that
corresponds toQ.

Suppose thatB is not derivable fromΓ in Q. Then it is not the case that there is
a closedQ-tableau that starts withA,w0t0 for everyA in Γ and¬B,w0t0. Let t be a
completeQ-tableau whose first nodes comprisesA,w0t0 for everyA in Γ and¬B,w0t0.
Obviously,t is not closed; it is open. It follows that there is at least one open branch in
t. LetB be an open branch int. According to the model induced byB, all the premises
in Γ are true andB false inω0 atτ[0]. Hence, it is not the case thatB follows fromΓ in
M . Consequently, ifB follows fromΓ in M , thenB is derivable fromΓ in Q.

I will now show that all extensions ofQ are complete with respect to their seman-
tics. To establish this we have to verify that the model induced by the open branch
B is of the right kind in every case. First, we must go through every single semantic
condition and prove that the induced model is of the right kind. Then we combine our
proofs. The following steps illustrate the method:

C − b5. Suppose thatAv(c)ωiω jτ[l] andAv(c)ωiωkτ[l]. Then, bothAcwiw j tl and
Acwiwktl occur onB [by the definition of an induced model]. SinceB is complete,
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(T − b5) has been applied andAcwjwktl occursonB. It follows thatAv(c)ω jωkτ[l], as
required [by the definition of an induced model].

C − t4. Suppose thatτ[i] < τ[ j] andτ[ j] < τ[k]. Thenti < t j andt j < tk occur onB
[by the definition of an induced model]. SinceB is complete (T− t4) has been applied.
Hence,ti < tk occurs onB. It follows thatτ[i] < τ[k], as required [by the definition of
an induced model].

C − ad5. Assume thatRωiω jτ[l] andSωiωkτ[l]. Then, bothrwiw j tl andswiwktl
occur onB [by the definition of an induced model]. SinceB is complete, (T−ad5) has
been applied andswjwktl occurs onB. Hence,Sω jωkτ[l], as required [by the definition
of an induced model].

C−◻W. Suppose thatAv(c)ωiω jτ[k]. ThenAcwiw j tk occurs onB [by the definition
of an induced model]. SinceB is complete, (T− ◻W) has been applied andrwiw j tk
occurs onB. Consequently,Rωiω jτ[k], as required [by the definition of an induced
model].

C − AS P. Suppose thatRωiω jτ[l] andτ[k] < τ[l]. Thenrwiw j tl andtk < tl occur
onB [by the definition of an induced model]. SinceB is complete (T−AS P) has been
applied. Hence,rwiw j tk occurs onB. It follows thatRωiω jτ[k], as required [by the
definition of an induced model].

C − OGO◇. Suppose thatSωiω jτ[l] andτ[l] < τ[m]. Then swiw j tl and tl < tm
occur onB [by the definition of an induced model]. SinceB is complete (T−OGO◇)
has been applied. Hence, for somewk, rw jwktm andswjwktm are onB. Accordingly,
for someωk, Rω jωkτ[m] andSω jωkτ[m], as required [by the definition of an induced
model].

C −WG ◻W . Suppose thatAv(c)ωiω jτ[l], τ[l] < τ[m] andAv(c)ω jωkτ[m]. Then
Acwiw j tl , tl < tm andAcwjwktm occur onB [by the definition of an induced model].
SinceB is complete (T−WG◻W) has been applied. Accordingly,rw jwktm occurs on
B. Consequently,Rω jωkτ[m], as required [by the definition of an induced model].

7 Examples

In this section, I will consider one example of a valid sentence, one example of an
invalid sentence and one example of a valid argument. I will show how one can use
semantic tableaux to construct proofs and derivations and to read offcountermodels
from open and complete trees. All the examples in this section were mentioned in the
introduction.

7.1 Example 1: A valid sentence

I will now show that the following sentence is a theorem in every system that includes
T − ◻W13:

E1. It is (absolutely) necessary that if a perfectly rational individualx wants it to be
the case thatA sometime in the future and it is (historically) necessary that it is always

13In a strict senseE1 is not a sentence but a schema. When we say that this sentence is a theorem we mean
that every instance of it is a theorem.
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going to be the case that ifA thenB, thenx wants it to be the case thatB sometime in
the future.

This sentence can be symbolised in the following way in our systems:�Πx(Rx→
((WxFA∧◻G(A→ B))→WxFB)). A proof of a sentenceA in a systemS is a closed
S-tableau that begins with¬A,w0t0. If there is a proof ofA in S, A is a theorem inS
(see Definition 6). Consequently, to prove that�Πx(Rx→ ((WxFA∧◻G(A→ B))→
WxFB)) is a theorem in everyT − ◻W-system we construct a closedT − ◻W-tableau
for the negation of this sentence. More precisely, we construct a closedT − ◻W-
tableau whose root consists of (1) below. Here is the proof (MP is an abbreviation of
the derived rule Modus Ponens):

(1) ¬�Πx(Rx→ ((WxFA∧ ◻G(A→ B))→WxFB)),w0t0
(2)�¬Πx(Rx→ ((WxFA∧ ◻G(A→ B))→WxFB)),w0t0 [1, ¬�]

(3) ¬Πx(Rx→ ((WxFA∧ ◻G(A→ B))→WxFB)),w1t1 [2,�]
(4) Σx¬(Rx→ ((WxFA∧ ◻G(A→ B))→WxFB)),w1t1 [3, ¬Π]

(5) ¬(Rc→ ((WcFA∧ ◻G(A→ B))→WcFB)),w1t1 [4, Σ]
(6) Rc,w1t1 [5, ¬ →]

(7) ¬((WcFA∧ ◻G(A→ B))→WcFB),w1t1 [5, ¬ →]
(8)WcFA∧ ◻G(A→ B),w1t1 [7, ¬ →]

(9) ¬WcFB,w1t1 [7, ¬ →]
(10)WcFA,w1t1 [8, ∧]

(11)◻G(A→ B),w1t1 [8, ∧]
(12)Ac¬FB,w1t1 [6, 9,¬W]

(13) Acw1w2t1 [6, 12,A]
(14)¬FB,w2t1 [6, 12,A]
(15)G¬B,w2t1 [14,¬F]

(16)FA,w2t1 [6, 10, 13,W ]
(17) rw1w2t1 [13, T − ◻W]

(18)G(A→ B),w2t1 [11, 17,◻]
(19) t1 < t2 [16, F]
(20) A,w2t2 [16, F]

(21) A→ B,w2t2 [18, 19,G]
(22)¬B,w2t2 [15, 19,G]
(23) B,w2t2 [20, 21,MP]

(24)∗ [22, 23]

The smallest system that includesT − ◻W is valid with respect to the class of all
C−◻W-models (see Section 6). It follows that�Πx(Rx→ ((WxFA∧◻G(A→ B))→
WxFB)) is valid in the class of all models that satisfyC − ◻W.

7.2 Example 2: An invalid sentence and a countermodel

We have seen that�Πx(Rx→ ((WxFA∧◻G(A→ B))→WxFB)) is valid in the class
of all C − ◻W-models. However, the sentence is not valid in the class of all models.
Nor can we show that the following proposition is valid: it is (absolutely) necessary
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that if some individualx wantsit to be the case thatA sometime in the future and it
is (historically) necessary that it is always going to be the case that ifA thenB, then
x wants it to be the case thatB sometime in the future. In fact, this sentence cannot
be proved in any system in this paper. In the proof above (Section 7.1), it is essential
that we are quantifying over perfectly rational individuals. All of this is intuitively
plausible.

I will now show that the following sentence is not valid in the class of all models:

E2. If an individual x wants it to be the case thatx sometime in the future will be
a citizen of Great Britain and it is (historically) necessary that it is always going to be
the case that ifx is a citizen of Great Britain thenx is a citizen of Europe, thenx wants
it to be the case thatx sometime in the future will be a citizen of Europe.

E2 can be symbolised in the following way:Πx((WxFGx∧ ◻G(Gx → Ux)) →
WxFUx), where ‘Gx’ reads as ‘x is a citizen of Great Britain’ and ‘Ux’ reads as ‘x
is a citizen of Europe’. To show that a sentenceA is not valid we construct an open
complete tableau for the negation of this sentence. More precisely, we construct an
open semantic tableau that begins with¬A,w0t0. Then we use an open branch in the
tree to read offa countermodel. Here is our tableau:

(1) ¬Πx((WxFGx∧ ◻G(Gx→ Ux))→WxFUx),w0t0
(2) Σx¬((WxFGx∧ ◻G(Gx→ Ux))→WxFUx),w0t0 [1, ¬Π]

(3) ¬((WcFGc∧ ◻G(Gc→ Uc))→WcFUc),w0t0 [2, Σ]
(4)WcFGc∧ ◻G(Gc→ Uc),w0t0 [3, ¬ →]

(5) ¬WcFUc,w0t0 [3, ¬ →]
(6)WcFGc,w0t0 [4, ∧]

(7) ◻G(Gc→ Uc),w0t0 [4, ∧]
↲ ↳

(8) Rc,w0t0 (9) ¬Rc,w0t0 [CUTR]
(10)c = c,w0t0 [T −R=]

The left branch in this tree can be developed further. However, at this stage we
cannot apply any more rules to the right branch, which is open (and complete). Hence,
the whole tableau is open (and complete). So,Πx((WxFGx∧ ◻G(Gx → Ux)) →
WxFUx) is not a theorem in our weakest systemQ.14 Accordingly, the formula is
invalid in the class of all models (by the completeness results in Section 6).

Let us now verify this claim. Since the right branch in the tree is open and com-
plete, we can use it to read offa countermodelM. The matrix ofWcFUc isWx1FUx2,
and the matrix ofWcFGc is Wx1FGx2. W = {ω0}, T = {τ0}, D = {[c]}, v(c) = [c],
and the extensions ofG and U are empty inω0 at τ0. <, R, A and S are empty.
v
ω0τ0(Wx1FUx2) is the extension ofWx1FUx2 in ω0 at τ0, andv

ω0τ0(Wx1FGx2) is
the extension ofWx1FGx2 in ω0 at τ0. If ¬Ram,wi t j occurs on the branchB and
M is an n-place matrix with instantiations on the branch (wherexm is the first free
variable in M and am is the constant inM[a1, . . . ,an/x1, . . . , xn] that replacesxm),

14In fact, the sentence is not a theorem inany system in this paper. However, it is left to the reader to
verify this.
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then ⟨[a1], . . . , [an]⟩ is an element ofv
ωiτ j(M) iff M[a1, . . . ,an/x1, . . . , xn],wi t j oc-

curs onB. ¬Rc,w0t0 occurs on the branch, whileWx1FUx2[c,c/x1, x2],w0t0 (that is,
WcFUc,w0t0) does not occur on the branch.x1 is the first free variable inWx1FUx2

andc is the constant inWx1FUx2[c,c/x1, x2] that replacesx1. So,⟨[c], [c]⟩ is not an
element inv

ω0τ0(Wx1FUx2) (v
ω0τ0(Wx1FUx2) is empty). Since¬Rc,w0t0 occurs on

B, Rc is false inω0 at τ0. If M, ω0, τ0 ⊮ Rc, thenM, ω0, τ0 ⊩ Wx1FUx2[c,c/x1, x2]
iff ⟨v(c),v(c)⟩ is in v

ω0τ0(Wx1FUx2). Hence,M, ω0, τ0 ⊩ Wx1FUx2[c,c/x1, x2] iff
⟨v(c),v(c)⟩ is in v

ω0τ0(Wx1FUx2). ⟨v(c),v(c)⟩ is not in v
ω0τ0(Wx1FUx2). There-

fore, it is not the case thatM, ω0, τ0 ⊩ Wx1FUx2[c,c/x1, x2]. Wx1FUx2[c,c/x1, x2] =
WcFUc. It follows that it is not the case thatM, ω0, τ0 ⊩ WcFUc, that is,WcFUc is
false inω0 atτ0.

Wx1FGx2[c,c/x1, x2],w0t0 (that is,WcFGc,w0t0) occurs on the branch.x1 is the
first free variable inWx1FGx2 andc is the constant inWx1FGx2[c,c/x1, x2] that re-
placesx1. Accordingly,⟨[c], [c]⟩ is an element inv

ω0τ0(Wx1FGx2). If M, ω0, τ0 ⊮ Rc,
thenM, ω0, τ0 ⊩ Wx1FGx2[c,c/x1, x2] iff ⟨v(c),v(c)⟩ is in v

ω0τ0(Wx1FGx2). Hence,
M, ω0, τ0 ⊩ Wx1FGx2[c,c/x1, x2] iff ⟨v(c),v(c)⟩ is in v

ω0τ0(Wx1FGx2). ⟨v(c),v(c)⟩
is in v

ω0τ0(Wx1FGx2). Therefore,M, ω0, τ0 ⊩ Wx1FGx2[c,c/x1, x2]. It follows that
M, ω0, τ0 ⊩ WcFGc, forWx1FGx2[c,c/x1, x2] =WcFGc. In other words,WcFGc is
true inω0 atτ0.

SinceR is empty,◻G(Gc→ Uc) is vacuously true inω0 at τ0. Hence,WcFGc∧
◻G(Gc→ Uc) is true inω0 atτ0. Accordingly,(WcFGc∧◻G(Gc→ Uc))→WcFUc
is false inω0 atτ0. Since[c] is an object in the domain, it follows thatΠx((WxFGx∧
◻G(Gx → Ux)) → WxFUx) is false inω0 at τ0. In conclusion,�Πx((WxFGx∧
◻G(Gx→ Ux))→WxFUx) is not valid in the class of all models. Q.E.D.

7.3 Example 3: A valid argument

In this section, I will show that the following argument is valid in the class of all mod-
els:

E3. P1.�(¬Σx(Rx∧AxFPu)→ ¬PFPu) (‘u’ refers to you and ‘Px’ says that ‘x
rapes someone’15). It is (absolutely) necessary that if no perfectly rational individual
accepts that you will rape someone in the future, then it is not permitted that you will
rape someone in the future.

P2. Πx(Rx→ WxG¬Pu). Everyone who is perfectly rational wants it to be the
case that it is always going to be the case that you do not rape someone.

Hence,
C. OG¬Pu. It ought to be the case that it is always going to be the case that you

do not rape someone.

To show that the conclusion (C) is derivable from the premises (P1) and (P2) in ev-
ery system in this paper, we construct a closed tableau that starts withP1,w0t0, P2,w0t0
and¬C,w0t0. Since we do not use any special tableau rules in the tree, the conclusion

15‘ x rapessomeone’ can also be symbolised in the following way:ΣyPxy, where ‘Pxy’ says thatx rapes
y, but we do not need to use this more ‘sophisticated’ analysis to prove that the argument is valid. So, we
will stick to the monadic predicateP.
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is derivable from the premises in our weakest system. Consequently, it is derivable
in every other system too. By the soundness results in Section 6, it follows that the
argument is valid in the class of all models. This establishes the desired result.

Here is the tableau that proves that the conclusion is derivable from the premises in
every system:

(1)�(¬Σx(Rx∧AxFPu)→ ¬PFPu),w0t0
(2)Πx(Rx→WxG¬Pu),w0t0

(3) ¬OG¬Pu,w0t0
(4) P¬G¬Pu,w0t0 [3, ¬O]

(5) sw0w1t0 [4, P]
(6) ¬G¬Pu,w1t0 [4, P]

(7) F¬¬Pu,w1t0 [6, ¬G]
(8) t0 < t1 [7, F]

(9) ¬¬Pu,w1t1 [7, F]
(10)¬Σx(Rx∧AxFPu)→ ¬PFPu,w0t0 [1,�]

↲ ↳
(11)¬¬Σx(Rx∧AxFPu),w0t0 [10,→] (12) ¬PFPu,w0t0 [10,→]
(13)Σx(Rx∧AxFPu),w0t0 [11,¬¬] (14) O¬FPu,w0t0 [12,¬P]

(15)Rc∧AcFPu,w0t0 [13,Σ] (16) ¬FPu,w1t0 [5, 14,O]
(17)Rc,w0t0 [15,∧] (18)G¬Pu,w1t0 [16,¬F]
(19)AcFPu,w0t0 [15,∧] (20) ¬Pu,w1t1 [8, 18,G]

(21)Rc→WcG¬Pu,w0t0 [2, Π] (22) ∗ [9, 20]
(23)WcG¬Pu,w0t0 [17, 21,MP]

(24) Acw0w2t0 [17, 19,A]
(25)FPu,w2t0 [17, 19,A]

(26)G¬Pu,w2t0 [17, 23, 24,W ]
(27) t0 < t2 [25, F]

(28) Pu,w2t2 [25, F]
(29)¬Pu,w2t2 [26, 27,G]

(30)∗ [28, 29]
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