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Abstract 
The purpose of this paper is to prove some theorems in alethic-deontic logic. 
Alethic-deontic logic is a kind of bimodal logic that combines ordinary 
alethic (modal) logic and deontic logic. Ordinary alethic logic is a branch of 
logic that deals with modal concepts, such as necessity and possibility, modal 
sentences, arguments and systems. Deontic logic is the logic of norms. It is 
about normative words, such as “ought”, “right” and “wrong”, normative 
sentences, arguments and systems. Alethic-deontic logic contains both modal 
and normative concepts and can be used to study how these interact. This 
paper contains some interesting theorems that can be proved in alethic-
deontic logic. I will show that all primitive deontic operators are redundant 
when prefixed to the alethic operators in some systems. I will prove that 
necessarily equivalent sentences have the same deontic status in many sys-
tems. I will establish that the set of sentences in some alethic-deontic systems 
can be partitioned into five, mutually exclusive, exhaustive subsets. Finally, I 
will show that there are exactly ten distinct modalities in some alethic-deontic 
systems. 
 
1. Introduction 
The purpose of this paper is to prove some theorems in alethic-deontic logic. 
Alethic-deontic logic is a kind of bimodal logic that combines ordinary 
alethic (modal) logic and deontic logic. Ordinary alethic logic is a branch of 
logic that deals with modal concepts, such as necessity and possibility, modal 
sentences, arguments and systems. For some introductions, see e.g. Chellas 
(1980), Blackburn, de Rijke, & Venema (2001), Blackburn, van Benthem, 
Wolter (eds.) (2007), Fitting & Mendelsohn (1998), Gabbay (1976), Gabbay 
& Guenthner (2001), Kracht (1999), Garson (2006), Girle (2000), Lewis & 
Langford (1932), Popkorn (1994), Segerberg (1971), and Zeman (1973). 
Deontic logic is the logic of norms. It deals with normative words, such as 
“ought”, “right” and “wrong”, normative sentences, arguments and systems. 
Introductions to this branch can be found in e.g. Gabbay, Horty, Parent, van 
der Meyden & van der Torre (eds.) (2013), Hilpinen (1971), (1981), 
Rönnedal (2010), and Åqvist (1987), (2002). Alethic-deontic logic contains 
both modal and normative concepts and can be used to study how these 
interact. In the paper Rönnedal (2012) I say more about various bimodal 
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systems. Alan R. Anderson was perhaps the first philosopher to combine 
alethic and deontic logic (see Anderson (1956)). Fine & Schurz (1996), 
Gabbay & Guenthner (2001), Gabbay, Kurucz, Wolter, Zakharyaschev 
(2003), Kracht (1999), and Kracht & Wolter (1991) include more information 
about how to combine various logical systems. 
 This paper contains some interesting theorems that can be proved in 
alethic-deontic logic. It is divided into 6 sections. Section 2 contains an 
introduction to the systems we study in this paper. In section 3 I will prove 
that all primitive deontic operators are redundant when prefixed to the alethic 
operators in some systems. Section 4 includes a proof of the fact that 
necessarily equivalent sentences have the same deontic status in many 
systems. In section 5 I will establish that the set of sentences in some alethic-
deontic systems can be partitioned into five, mutually exclusive, exhaustive 
subsets. Finally, in section 6, I will prove that there are exactly ten distinct 
modalities in some alethic-deontic systems. 
 
2. Alethic-deontic logic 
In this section I will briefly describe the alethic-deontic logics that we will 
study in this essay. In the paper Rönnedal (2012) I say more about them and 
about bimodal systems in general. For more background information, see 
Rönnedal (2012b). 
 
Syntax 
Alphabet. (i) A denumerably infinite set Prop of proposition letters p, q, r, s, 
t, p1, q1, r1, s1, t1, p2, q2, r2, s2, t2…, (ii) the usual primitive truth-functional 
connectives, (iii) the modal operators � and �, (iv) the deontic operators O 
and P, and (v) the brackets (, ). 
 Language. The language L is the set of well-formed formulas (wffs) 
generated by the usual clauses for proposition letters and propositionally 
compound sentences, and the following clauses: (i) if A is a wff, then �A, 
�A, OA and PA are wffs, and (iii) nothing else is a wff.   
 Capital letters A, B, C … are used to represent arbitrary (not necessarily 
atomic) formulas of the object language.  A, says that A is a theorem (in 
some system determined by the context). Outer brackets around sentences are 
usually dropped if the result is not ambiguous. 
 Definitions. �A = �¬A, FA = O¬A, KA = PA  P¬A, and NA = (OA  
O¬A). (falsum) and T (verum) are defined as usual. 
 The translationfunction t. To understand the intended interpretation of 
the formal language in this essay we can use the following translation 
function. t(¬A) = It is not the case that t(A). t(A  B) = If t(A), then t(B). 
And similarly for all other propositional connectives. t(�A) = It is necessary 
that t(A). t(�A) = It is possible that t(A). t(�A) = It is impossible that t(A). 
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t(OA) = It ought to be the case that t(A). t(PA) = It is permitted that t(A). 
t(KA) = It is optional (deontically contingent) that t(A). t(NA) = It is non-
optional (deontically non-contingent) that t(A). If t(p) is a sentence in 
English, we can use t to translate a formal sentence whose only atomic 
proposition letter is p into English. For instance, let t(p) be “You give money 
to every poor person in the whole world”. Then the t-translation of “¬�p  
¬Op” is “If it is not the case that it is possible that you give money to every 
poor person in the whole world, then it is not the case that it ought to be the 
case that you give money to every poor person in the whole world”. So, 
“¬�p  ¬Op” is the “contraposition” of one version of the so-called “ought 
implies can principle”. 
 There seem to be several different kinds of necessity and possibility: 
logical, metaphysical, natural, historical etc. It might be plausible to use 
different logical systems to symbolise these different kinds. However, we can 
use the same symbols in each case.  
 
Semantics 
We use the same kind of semantics as in Rönnedal (2012). The only 
difference is that we treat �, F, K and N as defined operators in this essay. 
The fundamental concepts are the same, the truth-conditions for various 
sentences are the same, the classifications of different systems are the same. 
 
Proof theory 
We will use two kinds of proof theories in this essay: one axiomatic and one 
that is based on semantic tableaux. Both are described in Rönnedal (2012). 
All fundamental axioms and tableau rules that are used in our proofs in the 
present paper are also described in that essay. All other rules are easily 
derived from the axioms and the primitive rules together with the definitions. 
In Rönnedal (2012) we called some axioms a-axioms (a as in “alethic), some 
b-axioms, and some ab-axioms. We will call the b-axioms “d-axioms” in this 
essay (d as in “deontic”), and the ab-axioms “ad-axioms”. And similarly for 
the tableau rules. 
 
3. Redundant operators 
Theorem 1. The deontic operators O and P are redundant when prefixed to 
the alethic operators � and � in (i) every tableau system that contains T-a4, 
T-a5, T-dD and T-MO (as primitive or derived rules), and in (ii) every 
axiomatic system that contains a4, a5, dD and MO (as axioms or theorems). 
I.e. A  * A, where = � or � and * = O or P, holds in the 
indicated systems. 
   Proof. (i) To prove this we must show that all of the following sentences 
are theorems in every tableau system that includes the tableau rules T-a4, T-
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a5, T-dD and T-MO: �A  O�A (O�R), �A  P�A (P�R), �A  O�A 
(O�R), �A  P�A (P�R). We begin by proving O�R. O�R states that it 
is necessary that A if and only if it is obligatory that it is necessary that A. 
 
O�R �A  O�A 

(1) (�A  O�A), 0 
O  P 

   (2) �A, 0 [1, ]    (14) �A, 0 [1, ] 
   (3) O�A, 0 [1, ]   (15) O�A, 0 [1, ] 

   (4) P �A, 0 [3, O]   (16) � A, 0 [14, �] 

   (5) 0s1 [4, P]      (17) 0r1 [16, �] 

   (6) �A, 1 [4, P]    (18) A, 1 [16, �] 

   (7) � A, 1 [6, �]    (19) 0s2 [T-dD] 

   (8) 1r2 [7, �]      (20) �A, 2 [15, 19, O] 

   (9) A, 2 [7, �]     (21) 0r2 [19, T-MO] 

   (10) 0r1 [5, T-MO]    (22) 2r1 [17, 21, T-a5] 

   (11) 0r2 [8, 10, T-a4]   (23) A, 1 [20, 22, �] 

   (12) A, 2 [2, 11, �]    (24) * [18, 23] 

   (13) * [9, 12] 
 
Hence, we see that O may be deleted when prefixed to a sentence of the form 
�A. Next we turn to P�R.  
 
P�R �A  P�A 

(1) (�A  P�A), 0 
O  P 

   (2) �A, 0 [1, ]    (14) �A, 0 [1, ] 
   (3) P�A, 0 [1, ]   (15) P�A, 0 [1, ] 

   (4) O �A, 0 [3, P]   (16) � A, 0 [14, �] 

   (5) 0s1 [T-dD]     (17) 0s1 [15, P] 

   (6) �A, 1 [4, 5, O]    (18) �A, 1 [15, P] 

   (7) � A, 1 [6, �]    (19) 0r2 [16, �] 

   (8) 1r2 [7, �]      (20) A, 2 [16, �] 

   (9) A, 2 [7, �]     (21) 0r1 [17, T-MO] 

   (10) 0r1 [5, T-MO]    (22) 1r2 [19, 21, T-a5] 

   (11) 0r2 [8, 10, T-a4]   (23) A, 2 [18, 22, �] 

   (12) A, 2 [2, 11, �]    (24) * [20, 23] 

   (13) * [9, 12] 
 
According to P�R, it is necessary that A if and only if it is permitted that it is 
necessary that A. Consequently, P may be deleted when prefixed to a 
sentence of the form �A. 
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The following tableau establishes that O�R is a theorem in the indicated 
systems.  
 
O�R �A  O�A 

(1) (�A  O�A), 0 
O  P 

   (2) �A, 0 [1, ]    (14) �A, 0 [1, ] 
   (3) O�A, 0 [1, ]   (15) O�A, 0 [1, ] 

   (4) P �A, 0 [3, O]   (16) � A, 0 [14, �] 

   (5) 0s1 [4, P]      (17) 0s1 [T-dD] 

   (6) �A, 1 [4, P]    (18) �A, 1 [15, 17, O] 

   (7) � A, 1 [6, �]    (19) 1r2 [18, �] 

   (8) 0r2 [2, �]      (20) A, 2 [18, �] 

   (9) A, 2 [2, �]     (21) 0r1 [17, T-MO] 

   (10) 0r1 [5, T-MO]    (22) 0r2 [19, 21, T-a4] 

   (11) 1r2 [8, 10, T-a5]   (23) A, 2 [16, 22, �] 

   (12) A, 2 [7, 11, �]   (24) * [20, 23] 

   (13) * [9, 12] 
 
According to O�R, it is possible that A if and only if it is obligatory that it is 
possible that A. O may thus be deleted when prefixed to a sentence of the 
form �A. Finally, we prove P�R.  
 
P�R �A  P�A 

(1) (�A  P�A), 0 
O  P 

   (2) �A, 0 [1, ]    (14) �A, 0 [1, ] 
   (3) P�A, 0 1, ]   (15) P�A, 0 [1, ] 

   (4) O �A, 0 [3, P]   (16) � A, 0 [14, �] 

   (5) 0r1 [2, �]      (17) 0s1 [15, P] 

   (6) A, 1 [2, �]     (18) �A, 1 [15, P] 

   (7) 0s2 [T-dD]     (19) 1r2 [18, �] 

   (8) �A, 2 [4, 7, O]    (20) A, 2 [18, �] 

   (9) � A, 2 [8, �]    (21) 0r1 [17, T-MO] 

   (10) 0r2 [7, T-MO]    (22) 0r2 [19, 21, T-a4] 

   (11) 2r1 [5, 10, T-a5]   (23) A, 2 [16, 22, �] 

   (12) A, 1 [9, 11, �]   (24) * [20, 23] 

   (13) * [6, 12] 
 
P�R says that it is possible that A if and only if it is permitted that it is 
possible that A. We conclude that P may be deleted when prefixed to a 
sentence of the form �A in the systems we have mentioned. 
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 (ii) follows immediately from (i) and the soundness and completeness 
theorems found in Rönnedal (2012) and (2012b). However, in section 6 we 
will also consider some explicit axiomatic arguments.  
 The proof of theorem 1 is now finished. Due to this theorem, we may 
always delete the deontic operators O and P when they are prefixed to � or 
� in any part of any formula in the indicated systems. O�R, P�R etc. can be 
viewed as a kind of reduction principles similar to other well known 
principles of this sort. 
 What happens if we add F, K and N to our language? Does any of the 
following “reduction laws” hold: �A  F�A, �A  F�A, �A  K�A, 
�A  K�A, �A  N�A, �A  N�A? The answer to this question is no. 
However we have: F�A  �A, F�A  �A, K�A  , K�A  , 
N�A  T, and N�A  T. So, in one sense F, K and N are redundant when 
prefixed to � or �. However, if we delete them from a formula this might 
affect the formula’s truth-value. 
 
4. Necessarily equivalent sentences and deontic status 
Theorem 2. Necessarily equivalent sentences have the same deontic status 
with respect to O, P, F, K and N in (i) every tableau system that contains T-
MO, and in (ii) every axiomatic system that contains MO. More precisely: 

 �(A  B)  (*A  *B), where * = O, P, F, K and N, hold in the 
indicated systems. If two sentences do not have the same deontic status with 
respect to O, P, F, K and N in a tableau system that contains T-MO or in an 
axiomatic system that contains MO, then they are not necessarily equivalent. 
More precisely:  (*A  *B)  �(A  B), where * = O, P, F, K and 
N, holds in (iii) every tableau system that contains T-MO, and in (iv) every 
axiomatic system that contains MO.1 
 Proof. (i) To prove this theorem we have to show that all of the following 
sentences are theorems in every tableau system that contains T-MO: �(A  
B)  (PA  PB) (PE), �(A  B)  (OA  OB) (OE), �(A  B)  (FA 

 FB) (FE), �(A  B)  (KA  KB) (KE), and �(A  B)  (NA  
NB) (NE). The tableau proofs of (OE) and (NE) are left to the reader. 
However, we will see how it is easy (by an axiomatic argument)  to establish 
(NE) once we have proven (KE). All we have to do then is to prove (PE), 
(FE), and (KE). Let us begin with (PE). 
 
(PE) says that if it is necessary that t(A) if and only if t(B), then it is 
permitted that t(A) if and only if it is permitted that t(B), according to the t-
translation of this sentence. 

                                                           
1 Of course, �(A  B)  (�A  �B) and �(A  B)  (�A  �B) are also theorems in 
every alethic-deontic system described in Rönnedal (2012). 
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�(A  B)  (PA  PB) 
 

(1) �(A  B)  (PA  PB), 0 
(2) �(A  B), 0 

(3) (PA  PB), 0 
O  P 

      (4) PA, 0     (18) PA, 0 
      (5) PB, 0    (19) PB, 0 
      (6) O B, 0    (20) O A, 0 
      (7) 0s1      (21) 0s1 
      (8) A, 1     (22) B, 1 
      (9) B, 1     (23) A, 1 
      (10) 0r1     (24) 0r1 
      (11) A  B, 1   (25) A  B, 1 
      O  P     O  P 
   (12) A, 1  (15) A, 1  (26) A, 1  (29) A, 1 
   (13) B, 1  (16) B, 1  (27) B, 1  (30) B, 1 
   (14) *   (17) *     (28) *   (31) * 
 
Next we continue with (FE). The t-translation of (FE) looks like this: If it is 
necessary that t(A) if and only if t(B), then it is forbidden that t(A) if and only 
if it is forbidden that t(B). 

 
�(A  B)  (FA  FB) 
 

(1) (�(A  B)  (FA  FB)), 0 
(2) �(A  B), 0 

(3) (FA  FB), 0 
O  P 

      (4) FA, 0     (19) FA, 0 
      (5) FB, 0    (20) FB, 0 
      (6) O A, 0    (21) O B, 0 
      (7) PB, 0     (22) PA, 0 
      (8) 0s1      (23) 0s1 
      (9) B, 1     (24) A, 1 
      (10) A, 1    (25) B, 1 
      (11) 0r1     (26) 0r1 
      (12) A  B, 1   (27) A  B, 1 
      O  P     O  P 
   (13) A, 1  (16) A, 1  (28) A, 1  (31) A, 1 
   (14) B, 1  (17) B, 1  (29) B, 1  (32) B, 1 
   (15) *    (18) *   (30) *   (33) * 
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Since we have not introduced any special rules for deontic contingency and 
non-contingency, or optionality and non-optionality, we must first translate 
the sentence (KE) to be able to decide whether it is valid or not by use of the 
tableau method. By definition, �(A  B)  (KA  KB) is equivalent to 
�(A  B)  ((PA  P A)  (PB  P B)). To prove that the former is a 
theorem in our indicated systems, it thus suffices to prove the latter.  
 If we apply the t-translation function to (KE), it says that if it is necessary 
that t(A) if and only if t(B), then it is optional that t(A) if and only if it is 
optional that t(B). Here is the tableau proof. 

 
�(A  B)  (KA  KB) 
 

(1) (�(A  B)  ((PA  P A)  (PB  P B))), 0 
(2) �(A  B), 0 

(3) ((PA  P A)  (PB  P B)), 0 
O P 

     (4) PA  P A, 0   (34) (PA  P A), 0 
     (5) (PB  P B), 0  (35) PB  P B, 0 
     (6) PA, 0     (36) PB, 0 
     (7) P A, 0    (37) P B, 0 
     (8) 0s1      (38) 0s1 
     (9) A, 1     (39) B, 1 
     (10) 0s2     (40) 0s2 
     (11) A, 2    (41) B, 2 
     (12) 0r1     (42) 0r1 
     (13) 0r2     (43) 0r2 
     (14) A  B, 1   (44) A  B, 1 
     (15) A  B, 2   (45) A  B, 2 
      O  P     O  P 
   (16) A, 1  (31) A, 1 (46) A, 1  (61) A, 1 
   (17) B, 1  (32) B, 1 (47) B, 1  (62) B, 1 
   O  P  (33) *   O  P  (63) * 
 (18) A, 2  (21) A, 2 (48) A, 2  (51) A, 2 
 (19) B, 2  (22) B, 2 (49) B, 2  (52) B, 2 
 (20) *   O  P  (50) *    O  P 
   (23) PB, 0 (27) P B, 0   (53) PA, 0 (57) P A, 0 
   (24) O B, 0 (28) O B, 0  (54) O A, 0 (58) O A, 0 
   (25) B, 1 (29) B, 2   (55) A, 1 (59) A, 2 
   (26) *   (30) *     (56) *   (60) * 
 
I will omit the tableau proof of (NE). It is similar to the one just given. 
Instead we establish the result by the following reasoning. 1. �(A  B)  
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(KA  KB) [From the tableau proof above]. 2. �(A  B)  ( KA  
KB) [1, propositional logic]. 3. �(A  B)  (NA  NB) [by 2 and the 

definitions of K and N]. We know that this kind of reasoning (and the kind 
exhibited in the proof of KE) is correct, since we have proved that all our 
axiomatic systems as well as our tableau systems are sound and complete 
with respect to the same semantics (Rönnedal (2012), (2012b)).  
 (ii) follows immediately from (i) and the soundness and completeness 
theorems found in Rönnedal (2012) and (2012b). 
 (iii) and (iv). This is essentially the contrapositive of part (i) and part (ii), 
respectively. (Details are easy and are left to the reader.)  
 
5. A partition of the sentences in T-dD and dD systems 
Theorem 3. The set of all sentences (in our formal language) can be 
partitioned into the following, mutually exclusive, exhaustive subsets in (i) 
every tableau system that includes T-dD (as a primitive or derived rule), and 
in (ii) every axiomatic system that includes dD (as an axiom or theorem). 
 

 
�A  OA 

 

 
OA  �A 

 
PA  P A 

 
FA  �A 

 
FA  �A 

 
Proof. (i) To prove this theorem we must show that every sentence is 
contained in at least one of these categories and that it is contained in at most 
one of them. This amounts to proving the following theorems. 
 

P = (�A  OA)  (OA  �A)  
   (PA  P A)  (FA  �A)  (FA  �A). 
A = (�A  OA)   
 ( (OA  �A)  (PA  P A)  (FA  �A)  (FA  �A)). 
B = (OA  �A)   
 ( (�A  OA)  (PA  P A)  (FA  �A)  (FA  �A)). 
C = (PA  P A)   
 ( (OA  �A)  (�A  OA)  (FA  �A)  (FA  �A)). 
D = (FA  �A)   
 ( (OA  �A)  (PA  P A)  (�A  OA)  (FA  �A)). 
E = (FA  �A)   
 ( (OA  �A)  (PA  P A)  (FA  �A)  (�A  OA)). 
 A is equivalent to the conjunction of the following sentences:  
A1 (�A  OA)  (OA  �A), A2 (�A  OA)  (PA  P A), 
A3 (�A  OA)  (FA  �A), A4 (�A  OA)  (FA  �A). 
 B is equivalent to the conjunction of the following sentences:  
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B1 (OA  �A)  (�A  OA), B2 (OA  �A)  (PA  P A), 
B3 (OA  �A)  (FA  �A), B4 (OA  �A)  (FA  �A). 
 C is equivalent to the conjunction of the following sentences:  
C1 (PA  P A)  (OA  �A), C2 (PA  P A)  (�A  OA), 
C3 (PA  P A)  (FA  �A), C4 (PA  P A)  (FA  �A). 
 D is equivalent to the conjunction of the following sentences:  
D1 (FA  �A)  (OA  �A), D2 (FA  �A)  (PA  
P A), D3 (FA  �A)  (�A  OA), D4 (FA  �A)  (FA  
�A). 
 E is equivalent to the conjunction of the following sentences:  
E1 (FA  �A)  (OA  �A), E2 (FA  �A)  (PA  P A), E3 
(FA  �A)  (FA  �A), E4 (FA  �A)  (�A  OA). 

 
So, it is enough that we show that P, A1-A4, B1-B4, C1-C4, D1-D4 and E1-
E4 are theorems in our systems. A1, B1, D4 and E3 are true by propositional 
logic alone. We continue to prove A3 and A4. 
 
A3 (�A  OA)  (FA  �A) A4 (�A  OA)  (FA  �A) 

 
(1) ((�A  OA)  (FA  �A)), 0

(2) �A  OA, 0 [1, ] 
(3) (FA  �A), 0 [1, ] 

(4) FA  �A, 0 [3, ] 
(5) �A, 0 [2, ] 
(6) OA, 0 [2, ] 
(7) FA, 0 [4, ] 

(8) �A, 0 [4, ] 
 (9) 0s1 [T-dD] 

(10) A, 1 [6, 9, O] 
(11) A, 1 [7, 9, F’] 

(12) * [10, 11] 

(1) ((�A  OA)  (FA  �A)), 0
(2) �A  OA, 0 [1, ] 

(3) (FA  �A), 0 [1, ] 
(4) FA  �A, 0 [3, ] 

(5) �A, 0 [2, ] 
(6) OA, 0 [2, ] 
(7) FA, 0 [4, ] 
(8) �A, 0 [4, ] 
(9) 0s1 [T-dD] 

(10) A, 1 [6, 9, O] 
(11) A, 1 [7, 9, F’] 

(12) * [10, 11] 
 
B3 (OA  �A)  (FA  �A) B4 (OA  �A)  (FA  �A) 

 
(1) ((OA  �A)  (FA  �A)), 0 

(2) OA  �A, 0 [1, ] 
(3) (FA  �A), 0 [1, ] 

(4) FA  �A, 0 [3, ] 
(5) OA, 0 [2, ] 

(6) �A, 0 [2, ] 
(7) FA, 0 [4, ] 

(8) �A, 0 [4, ] 

(1) ((OA  �A)  (FA  �A)), 0 
(2) OA  �A, 0 [1, ] 

(3) (FA  �A), 0 [1, ] 
(4) FA  �A, 0 [3, ] 

(5) OA, 0 [2, ] 
(6) �A, 0 [2, ] 
(7) FA, 0 [4, ] 
(8) �A, 0 [4, ] 
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(9) 0s1 [T-dD] 
(10) A, 1 [5, 9, O] 

(11) A, 1 [7, 9, F’] 
(12) * [10, 11] 

(9) 0s1 [T-dD] 
(10) A, 1 [5, 9, O] 

(11) A, 1 [7, 9, F’] 
(12) * [10, 11] 

 
D1 is equivalent to B3 and E1 is equivalent to B4. Consequently, D1 and E1 
are theorems in all T-dD systems. For the tableaux above prove that both B3 
and B4 are theorems in systems of this kind. 
 
A2 (�A  OA)  (PA  P A) B2 (OA  �A)  (PA  P A) 

 
(1) ((�A  OA)  (PA  P A)), 0 

(2) �A  OA, 0 [1, ] 
(3) (PA  P A), 0 [1, ] 

(4) PA  P A, 0 [3, ] 
(5) �A, 0 [2, ] 
(6) OA, 0 [2, ] 
(7) PA, 0 [4, ] 

(8) P A, 0 [4, ] 
(9) 0s1 [8, P] 

(10) A, 1 [8, P] 
(11) A, 1 [6, 9, O] 

(12) * [10, 11] 

(1) ((OA  �A)  (PA  P A)), 0 
(2) OA  �A, 0 [1, ] 

(3) (PA  P A), 0 [1, ] 
(4) PA  P A, 0 [3, ] 

(5) OA, 0 [2, ] 
(6) �A, 0 [2, ] 
(7) PA, 0 [4, ] 

(8) P A, 0 [4, ] 
(9) 0s1 [8, P] 

(10) A, 1 [8, P] 
(11) A, 1 [5, 9, O] 

(12) * [10, 11] 
 
We now know that A2 and B2 are theorems in all T-dD systems. C2 is the 
contrapositive of A2 and C1 is the contrapositive of B2. It follows that also 
C2 and C1 are theorems in all systems of this kind. 
 
D2 (FA  �A)  (PA  P A) E2 (FA  �A)  (PA  P A) 

 
(1) ((FA  �A)  (PA  P A)), 0

(2) FA  �A, 0 [1, ] 
(3) (PA  P A), 0 [1, ] 

(4) PA  P A, 0 [3, ] 
(5) FA, 0 [2, ] 

(6) �A, 0 [2, ] 
(7) PA, 0 [4, ] 

(8) P A, 0 [4, ] 
(9) 0s1 [7, P] 

(10) A, 1 [7, P] 
(11) A, 1 [5, 9, F’] 

(12) * [10, 11] 

(1) ((FA  �A)  (PA  P A)), 0 
(2) FA  �A, 0 [1, ] 

(3) (PA  P A), 0 [1, ] 
(4) PA  P A, 0 [3, ] 

(5) FA, 0 [2, ] 
(6) �A, 0 [2, ] 
(7) PA, 0 [4, ] 

(8) P A, 0 [4, ] 
(9) 0s1 [7, P] 

(10) A, 1 [7, P] 
(11) A, 1 [5, 9, F’] 

(12) * [10, 11] 
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These tableaux prove that D2 and E2 are theorems in all T-dD systems. D2 is 
the contrapositive of C3 and E2 is the contrapositive of C4. Hence, C3 and 
C4 are also theorems in every T-dD system. D3 is the contrapositive of A3 
and E4 is the contrapositive of A4. It follows that D3 and E3 are theorems in 
all T-dD systems. 
 We have now established A, B, C, D and E. All that is left to prove is that 
(P) is a theorem in all tableau systems that include T-dD. 
 Consider (P) (�A  OA)  (OA  �A)  (PA  P A)  (FA  �A)  
(FA  �A). We can prove this sentence directly by constructing a semantic 
tableau that starts with the negation of (P). But the proof is quite long. So, I 
will combine axiomatic and tableau techniques. First we show that OA  (PA 

 P A)  FA is a theorem in every system that includes T-dD. Indeed, this 
sentence is a theorem even in the weakest so-called normal deontic logic, 
sometimes called OK. The theorem states that everything is obligatory, 
optional or forbidden. 
 
P OA  ((PA  P A)  FA) 
 

(1) (OA  ((PA  P A)  FA)), 0 
(2) OA, 0 [1, ] 

(3) ((PA  P A)  FA), 0 [1, ] 
(4) (PA  P A), 0 [3, ] 

(5) FA, 0 [3, ] 
(6) P A, 0 [2, O] 
(7) PA, 0 [5, F] 

(8) 0s1 [7, P] 
(9) A, 1 [7, P] 
(10) 0s2 [6, P] 

(11) A, 2 [6, P] 
O P 

(12) PA, 0 [4, ]    (16) P A, 0 [4, ] 
(13) O A, 0 [12, P]   (17) O A, 0 [16, P] 
(14) A, 1 [8, 13, O]    (18) A, 2 [10, 17, O] 

(15) * [9, 14]   (19) * [11, 18] 
 
Now we can reason as follows. We know that A is equivalent to (A  B)  (A 

 B). Hence, OA is equivalent to (OA  �A)  (OA  �A) and FA is 
equivalent to (FA  �A)  (FA  �A). So, we substitute OA by (OA  
�A)  (OA  �A) and FA by (FA  �A)  (FA  �A) in OA  (PA  
P A)  FA. It follows that (�A  OA)  (OA  �A)  (PA  P A)  (FA  
�A)  (FA  �A) is a theorem. Our proof of theorem 3 is now finished.  

 72



Alethic-Deontic Logic: Some Theorems 

6. Modalities in some systems 
Theorem 4. In theorem 4 we use a language without the defined concepts in 
section 2. (i) In every axiomatic (normal) alethic-deontic logic that contains 
the deontic system OS5+, the alethic system S52, MO, OC, ad4 OA  �OA, 
and ad5 PA  �PA (as axioms and/or theorems) there are at most ten 
distinct modalities: A, A, �A, �A, PA, OA, �A, �A, PA and OA. 
(ii) In the axiomatic alethic-deontic system aS5dOS5+adMOOC453 there are 
exactly ten distinct modalities: A, A, �A, �A, PA, OA, �A, �A, PA 
and OA. (iii) In every normal alethic-deontic tableau system that includes 
T-aT, T-aB, T-a4, T-dD, T-d4, T-d5, T-MO, T-OC, T-ad4, and T-ad5 (as 
primitive and/or derived rules) there are at most ten distinct modalities: A, 

A, �A, �A, PA, OA, �A, �A, PA and OA. (iv) In the alethic-
deontic tableau system T-aTB4dD45adMOOC454 there are exactly ten 
distinct modalities: A, A, �A, �A, PA, OA, �A, �A, PA and OA. 
(v) In the axiomatic alethic-deontic system aS5dOS5+adMOOC45 and in the 
alethic-deontic tableau system T-aTB4dD45adMOOC45 (and in all systems 
that are deductively equivalent) a string of modal operators reduces to its 
innermost modality. E.g. all of the following equivalences hold in these 
systems: OO�A  �A, ��OPA  PA, �� �POOA  OA, 
P��� P PA  PA, ��OP�A  �A, ��� OA  OA, 

P ��� �A  �A, O ����O �A  �A. 
 Proof. (i) The proof of this theorem consists of two parts. First we show 
that the systems we are interested in contain the following reduction laws:  
 

(i) A  A, (ii) �A  ��A, (iii) �A  ��A, (iv) �A  ��A,  
(v) �A  ��A, (vi) PA  PPA, (vii) OA  OOA, (viii) PA  
OPA, (ix) OA  POA, (x) �A  P�A, (xi) �A  O�A, (xii) �A 

 P�A, (xiii) �A  O�A, (xiv) PA  �PA, (xv) PA  �PA, 
(xvi) OA  �OA, (xvii) OA  �OA. 

 
Then we prove that given these reduction laws any modality is equivalent to 
one of the ten modalities mentioned above. To prove the first step, we use 
axiomatic techniques. It is a well known fact that (ii)-(v) hold in S5 and it has 
been established that (vi)-(ix) are theorems in OS5+.5 All that remains to 
show then is (i) and (x)-(xvii). (i) is simply the law of double negation and 
(xii)-(xvii) can be obtained in the following manner. 

                                                           
2 See e.g. Rönnedal (2010), chapter 7, for more information about OS5+ (also called KD45). S5 
is described in almost every introduction to (alethic) modal logic. 
3 This system contains some redundancy and there are a number a different deductively 
equivalent systems. Therefore, the conclusion also holds in many “other” systems. 
4 See the comment in footnote 3. 
5 See e.g. Rönnedal (2010), pp. 260-265. 
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(x) �A  P�A  (xi) �A  O�A 
 
1. ��A  P�A 
2. �A  ��A 
3. �A  P�A 
4. P�A  ��A 
5. ��A  �A 
6. P�A  �A 
7. �A  P�A 
 
 
1. P�A  ��A 

[OC’ �A/A]
[S5]

[1, 2, PL]
[MO’ �A/A]

[S5]
[4, 5, PL]
[3, 6, PL]

 
 

[MO’ �A/A]

 2. ��A  �A 
3. P�A  �A 
4. �A  P�A 
5. � A  P� A
6. �A  P �A 
7. �A  O�A 
8. O�A  ��A 
9. ��A  �A 
10. O�A  �A 
11. �A  O�A 

[S5]
[1, 2, PL]

[3, PL]
[4, A/A]
[5, ��I]
[6, OPI]

[OC �A/A]
[S5]

[8, 9, PL]
[7, 10, PL]

 
Theorem 4(i), part (x)-(xi) 

 
(xii) �A  P�A  (xiii) �A  O�A 

 
1. ��A  P�A 
2. �A  ��A 
3. �A  P�A 
4. P�A  ��A 
5. ��A  �A 
6. P�A  �A 
7. �A  P�A 

[OC’ �A/A]
[S5]

[1, 2, PL]
[MO’ �A/A]

[S5]
[4, 5, PL]
[3, 6, PL]

 1. ��A  O�A 
2. �A  ��A 
3. �A  O�A 
4. O�A  ��A 
5. ��A  �A 
6. O�A  �A 
7. �A  O�A 

[MO �A/A]
[S5]

[1, 2, PL]
[OC �A/A]

[S5]
[4, 5, PL]
[3, 6, PL]

 
Theorem 4(i), part (xii)-(xiii) 

 
(xiv) PA  �PA  (xvi) OA �OA 

 
1. PA  �PA 
2. OA  �OA 
3. �OA  OA 
4. �O A  

 O A 
5. � PA  PA 
6. �PA  PA 
7. PA  �PA 

[aT’ PA/A]
[ad4]

[2, PL]

[3, A/A]
[4, OPI]

[5, ��I]
[1, 6, PL]

 1. OA  �OA 
2. PA  �PA 
3. �PA  PA 
4. �P A  

 P A 
5. � OA  OA 
6. �OA  OA 
7. OA  �OA 

[aT’ OA/A]
[ad5]

[2, PL]

[3, A/A]
[4, OPI]

[5, ��I]
[1, 6, PL]

 
Theorem 4(i), part (xiv), (xvi) 

 
Note that �PA  PA is the dual of OA  �OA and that �OA  OA is the 
dual of PA  �PA. 
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(xv) PA  �PA  (xvii) OA  �OA 
 
1. PA  �PA 
2. �PA  PA 
3. PA  �PA 

[ad5]
[aT PA/A]
[1, 2, PL]

 1. OA  �OA 
2. �OA  OA 
3. OA  �OA 

[ad4]
[aT OA/A]

[1, 2, PL]
 

Theorem 4(i), part (xv), (xvii) 
 
We have now proved that all of the reduction laws mentioned above hold in 
every system that contains S5, OS5+, MO, OC, OA  �OA, and PA  
�PA.6 It remains to show that any system that contains these laws have at 
most the ten distinct modalities listed in the theorem. We do this by 
systematically adding single modalities to the empty modality and show how 
the result ultimately reduces to one of the ten modalities.  
 So, start with the empty modality (0) *A. Add one modality. Then we get 
(1) A, (2) �A, (3) �A, (4) PA, or (5) OA.  
 Add one modality to (1). Then we get (1.1) A, which is equivalent to 
(1), (1.2) � A, which is equivalent to �A, (1.3) � A, which is equivalent 
to �A, (1.4) P A, which is equivalent to OA, or (1.5) O A, which is 
equivalent to PA. Add one modality to (1.2). Then we get (1.2.1) � A, 
which is equivalent to �A (see (3)), or we get (1.2.2) �� A, (1.2.3) 
�� A, (1.2.4) P� A, or (1.2.5) O� A, all of which are equivalent to 
(1.2). Add one modality to 1.3. Then we get (1.3.1) � A, which is 
equivalent to �A (see (2)), or we get (1.3.2) �� A, (1.3.3) �� A, (1.3.4) 
P� A, or (1.3.5) O� A, all of which are equivalent to (1.3). Add one 
modality to (1.4). Then we get (1.4.1) P A, which is equivalent to OA (see 
(5)), or we get (1.4.2) �P A, (1.4.3) �P A, (1.4.4) PP A, or (1.4.5) 
OP A, all of which are equivalent to (1.4). Add one modality to (1.5). Then 
we get (1.5.1) O A, which is equivalent to PA (see (2)), or we get (1.5.2) 
�O A, (1.5.3) �O A, (1.5.4) PO A, or (1.5.5) OO A, all of which are 
equivalent to (1.5).  
 Add one modality to (2). Then we get (2.1) �A (see (1.3)), (2.2) ��A, 
(2.3) ��A, (2.4) P�A, or (2.5), all of which are equivalent to (2).  
 Add one modality to (3). Then we get (3.1) �A (see (1.2)), (3.2) ��A, 
(3.3) ��A, (3.4) P�A, or (3.5) O�A, all of which are equivalent to (3).  
 Add one modality to (4). Then we get (4.1) PA (see (1.5)), (4.2) �PA, 
(4.3) �PA, (4.4) PPA, or (4.5) OPA, all of which are equivalent to (4).  

                                                           
6 In the proofs above, PL means that the step follows by propositional logic. S5 means that the 
sentence is a theorem in the alethic system S5. aT’ is the dual of aT, MO’ is the dual of MO, and 
OC’ is the dual of OC. ��I includes the usual relationships between � and � and OPI the usual 
relationships between O and P. 
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 Add one modality to (5). Then we get (5.1) OA (see (1.4)), (5.2) �OA, 
(5.3) �OA, (5.4) POA, or (5.5) OOA, all of which are equivalent to (5). This 
takes care of all the possibilities. 
 (ii) To prove (ii) we must show that the system aS5dOS5+adMOOC45 
doesn’t contain any more reduction laws, i.e. we must show that it is not the 
case that �A  �A, OA  PA, �A  OA, �A  PA etc. We can do this 
by describing a countermodel for each equivalence of this kind. Details are 
left to the reader. 
 (iii) Follows directly from (i) by the soundness and completeness 
theorems in Rönnedal (2012). See also Rönnedal (2012b). 
 (iv) To prove part (iv) we can use the same countermodels as in (ii). 
 (v) Follows from the previous parts of this theorem. 
 The proof of theorem 4 is now finished.  
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