
 

 
Alethic-Deontic Logic  

and the Alethic-Deontic Octagon 
 

Daniel Rönnedal 
 
 
 
Abstract 
This paper will introduce and explore a set of alethic-deontic systems. 
Alethic-deontic logic is a form of logic that combines ordinary (alethic) 
modal logic, which deals with modal concepts such as necessity, possibility 
and impossibility, and deontic logic, which investigates normative 
expressions such as “ought”, “right” and “wrong”. I describe all the systems 
axiomatically. I say something about their properties and prove some 
theorems in and about them. We will be especially interested in how the 
different deontic and modal concepts are related to each other in various 
systems. We will map these relationships in an alethic-deontic octagon, a 
figure similar to the classical so-called square of opposition. 
 
1. Introduction 
In this paper I introduce and explore a set of alethic-deontic systems. Alethic-
deontic logic is a kind of bimodal logic that combines ordinary (alethic) 
modal logic and deontic logic. Introductions to ordinary (alethic) modal logic 
can be found in e.g. Chellas (1980), Blackburn, de Rijke, & Venema (2001), 
Blackburn, van Benthem & Wolter (eds.) (2007), Fitting & Mendelsohn 
(1998), Gabbay (1976), Gabbay & Guenthner (2001), Kracht (1999), Garson 
(2006), Girle (2000), Lewis & Langford (1932), Popkorn (1994), Segerberg 
(1971), and Zeman (1973). This branch of logic deals with modal concepts, 
such as necessity, possibility and impossibility, modal sentences, arguments 
and systems. Introductions to deontic logic can be found in e.g. Gabbay, 
Horty, Parent, van der Meyden & van der Torre (eds.) (2013), Hilpinen 
(1971), (1981), Rönnedal (2010), and Åqvist (1987), (2002). Deontic logic 
deals with normative words, such as “ought”, “right” and “wrong”, normative 
sentences, arguments and systems. For more information about bimodal 
systems in general and alethic-deontic logics in particular, see e.g. Rönnedal 
(2012), (2012b), (2015), (2015b). Alethic-deontic logic combines ordinary 
alethic modal logic and deontic logic. Every axiomatic system in this paper is 
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sound and complete with respect to its semantics (see Rönnedal (2012) and 
(2012b) for a proof). The present paper includes more information about 
these systems; I prove several theorems in and about them. We will be 
especially interested in the relationships between the different modal and 
normative concepts in various systems. We will use an alethic-deontic 
octagon, a figure similar to the classical so-called square of opposition, to 
map these relationships.1 
 The paper is divided into five sections. Section 2 is about syntax and 
semantics and section 3 about proof theory. Section 4 is the main part of the 
paper, in which I describe a set of normal alethic-deontic systems. Finally, 
section 5 includes information about the relationships between the systems I 
describe. 
 
2. Syntax and semantics 
We use the same kind of syntax and semantics as in Rönnedal (2015). 
However, we introduce a new deontic operator, U (unobligatory), defined in 
the following way: Up  Op. Furthermore, we use slightly different 
symbols and treat O and � as primitive in this essay; all other operators are 
defined in terms of O and � in a standard way. Vp (alethic contingency) = 
�p  � p; Up (alethic non-contingency) = �p  � p; �p (unnecessary) 

= �p. T (Verum) = e.g. p  p,  (Falsum) = e.g. T. 
 Without further ado, let us turn to proof theory. 
 
3. Proof theory 
 
3.1 Systems of alethic-deontic logic 
In this paper a system is usually identified with a set of sentences, not a set of 
theorems together with a deductive apparatus. The concept of a theorem is 
defined in the standard way (see e.g. Rönnedal (2010)). 
 
Definition 1 (Alethic-deontic system). A set of sentences S is a system of 
alethic-deontic logic or simply an alethic-deontic logic or an alethic-deontic 
system (“ad” for short) if and only if:  
 (i)  it contains all propositional tautologies, 
                                                           
1 Anderson was perhaps the first philosopher to combine alethic and deontic logic (see Anderson 
(1956)). Fine & Schurz (1996), Gabbay & Guenthner (2001), Gabbay, Kurucz, Wolter & 
Zakharyaschev (2003), Kracht (1999), and Kracht & Wolter (1991) offer more information about 
how to combine various logical systems. 
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 (ii)  it is closed under modus ponens (MP) (if A is in S and A  B is in 
S, then so is B), and 

 (iii) it is closed under uniform substitution (if A belongs to S, then 
every (immediate) substitution instance of A is in S). 

The concept of a substitution instance of A is defined in the usual way 
(see e.g. Rönnedal (2010)). “PL” (as in “propositional logic”) contains every 
sentence that is valid due to its truth-functional nature. When we are talking 
about ad systems we presuppose that we are using a language that includes 
both deontic and alethic operators and not just alethic or just deontic terms. 
So, PL will include sentences that are not theorems in ordinary propositional 
logic or in pure deontic or alethic systems. For example PL contains not just 

(p  p) and p  p, but also for instance (�Op �Op) and �Pp �Pp. 
In a proof, “PL” may also indicate that the step is propositionally correct. 

If it is clear from the context that we are speaking of alethic-deontic 
systems and alethic-deontic logics we will sometimes drop the word “alethic-
deontic” and speak only of logics and of systems. 
 Example 2 (ad systems). (i) The inconsistent system, i.e. the set of all 
sentences is an alethic-deontic logic. This system is the largest alethic-deontic 
system, since every logic is included in it. (ii) Let L be a collection of alethic-
deontic systems. Then the intersection of L is an alethic-deontic system too, 
where the intersection of L is defined in the standard way. (iii) The logic of 
any alethic-deontic frame is an alethic-deontic system. (iv) This is also true 
for logics of classes of alethic-deontic frames. (iv) PL (“propositional logic”) 
is an alethic-deontic system. Since PL is a subset of every alethic-deontic 
logic, PL is the smallest alethic-deontic system.   
 We shall say that an alethic-deontic system S is generated by a set of 
sentences G iff S is the smallest alethic-deontic logic containing every 
sentence in G. PL, the set of all “tautologies” is generated by the empty set. 
 Definition 3 (Normal alethic-deontic system). An alethic-deontic 
system is normal if and only if:  
 (i) it contains the sentences �(p  q)  (�p  �q), �p  � p, �p 

 � p, �p  �p, Vp  ( �p  � p), Up  (�p  � p), 
O(p  q)  (Op  Oq), Pp  O p, Fp  O p, Up  Op, Kp 

 ( Op  O p), Np  (Op  O p), and 
 (ii) it is closed under the rules of �-necessitation and O-necessitation (i.e 

if  A, then  �A, and if  A, then  OA). 
 Example 4 (Normal ad systems). (i) The inconsistent system is a normal 
aletic-deontic logic. (ii) PL is not a normal ad system. However, PL is 
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included in every normal ad system. (iii) Let L be a collection of normal 
alethic-deontic systems. Then the intersection of L is a normal alethic-deontic 
system too. (iv) The logic of any alethic-deontic frame is a normal alethic-
deontic system. (v) This is true also for the logic of every class of alethic-
deontic frames. (vi) The pure deontic system dK (= OK) (Rönnedal (2010)) 
is not a normal alethic-deontic logic. Neither is the pure alethic system aK 
(Chellas (1980)). However, it follows from the definition that every normal 
ad system includes the minimal normal alethic logic aK and the minimal 
normal deontic logic dK. 
 The smallest normal ad system will be called “minimal alethic-deontic 
logic” (MADL) or aKdK. 
 When we speak of alethic-deontic systems in this essay, it is usually 
normal alethic-deontic systems we mean. 
 
3.2 Normal alethic-deontic systems 
 
3.2.1 Axioms 
A normal alethic-deontic system can be represented by adding axioms to the 
minimal alethic-deontic logic MADL. We will consider three different kinds 
of axioms in this essay: pure deontic axioms, pure (alethic) modal axioms and 
bimodal (alethic) modal deontic axioms. And we will use these axioms to 
construct some normal alethic-deontic systems. The (alethic) modal axioms 
include aK, aT, aD, a4, aB and a5 (see table 1), well known from ordinary 
modal logic. The deontic axioms include dK, dD, d4, dT′, dB′ and d5 (see 
table 2), well know from pure deontic logic. We also consider nine bimodal 
axioms, i.e. axioms that contain both deontic and (alethic) modal operators, 
namely, MO, OC, OC′, MO′, ad4, ad5, PMP, OMP, MOP (see table 3). aK 
and dK are theorems in every normal alethic-deontic system. However, no 
other axiom is a theorem in MADL. Accordingly, we obtain a whole range of 
normal alethic-deontic systems by adding any subset of these to MADL. A 
system that fuses two monomodal systems, without any bimodal axioms, will 
be called an alethic-deontic combination (fusion) or ad combination (fusion) 
for short. See section 3.2.3 below.2 
 All in all we describe 21 different axioms, 19 besides aK and dK. Every 
ad system we consider will contain aK and dK and zero or more of the other 
                                                           
2 All systems in this paper are generated from various axioms, rules of inference and the rule of 
substitution. An alternative is to use axiom schemas and dispense with the substitution rule. Both 
“methods” generate the same systems. 
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19 axioms. In fact, we will focus on the 16 systems that can be constructed 
from the axioms aD, dD, OC and MO. Some of these are deductively 
equivalent (see section 5). 
 
3.2.1.1 Pure a-axioms 
 
 a-axiom Corresponding condition on R
aK 
aT 
aD 
aB 
a4 
a5 

�(p  q)  (�p  �q) 
�p  p 
�p  �p 
p  ��p 
�p  ��p 
�p  ��p 

-
∀xxRx 
∀x∃yxRy 
∀x∀y(xRy  yRx) 
∀x∀y∀z((xRy  yRz)  xRz) 
∀x∀y∀z((xRy  xRz)  yRz) 

Table 1 
3.2.1.2 Pure d-axioms 
 
 d-axiom Corresponding condition on S 
dK 
dD 
d4 
d5 
dT′ 
dB′ 

O(p  q)  (Op  Oq) 
Op  Pp 
Op  OOp 
Pp  OPp 
O(Op  p) 
O(POp  p) 

-
∀x∃yxSy 
∀x∀y∀z((xSy  ySz)  xSz) 
∀x∀y∀z((xSy  xSz)  ySz) 
∀x∀y(xSy  ySy) 
∀x∀y∀z((xSy  ySz)  zSy) 

Table 2 
3.2.1.3 Mixed ad-axioms 
 
 ad-axiom Corresponding semantic condition 
MO 
OC 
OC′ 
MO′ 
ad4 
ad5 
PMP 
OMP 
MOP 

�p  Op 
Op  �p 
O(Op  �p) 
O(�p  Op) 
Op  �Op 
Pp  �Pp 
P�p  �Pp 
O�p  �Op 
�Op  O�p 

∀x∀y(xSy  xRy) 
∀x∃y(xSy  xRy) 
∀x∀y(xSy  ∃z(yRz  ySz)) 
∀x∀y∀z((xSy  ySz)  yRz) 
∀x∀y∀z((xRy  ySz)  xSz) 
∀x∀y∀z((xRy  xSz)  ySz) 
∀x∀y∀z((xSy  xRz)  ∃w(yRw  zSw)) 
∀x∀y∀z((xRy  ySz)  ∃w(xSw  wRz)) 
∀x∀y∀z((xSy  yRz)  ∃w(xRw  wSz)) 

Table 3 
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3.2.2 Axiomatic systems 
We are now in a position to say something more systematic about alethic-
deontic systems. 
 We have seen that MADL is the smallest normal alethic-deontic logic. 
This means that MADL is included in every other normal ad system. By 
adding axioms to the axiomatic basis it is possible to extend this logic. 
 As usual, we shall say that the normal alethic-deontic logic generated or 
represented by a set of sentences  is the smallest normal alethic-deontic 
logic that includes all sentences in . MADL is represented by the empty set, 
extensions of this system by some non-empty set. 
 Let “S” be the name of a normal alethic-deontic system and “ ” the name 
of a set of axioms. Then S +  is the smallest normal ad system that includes 
both S and every sentence in . A special type of ad systems is called ad 
combinations (fusions). The name of an ad combination will often have the 
following form: “aXdY”, where X is a set of alethic axioms and Y is a set of 
deontic axioms (see below). More generally, we shall often write aXdYadZ 
for a normal ad system that can be represented by a set X of alethic axioms, a 
set Y of deontic axioms and a set Z of bimodal axioms (axioms that include 
both alethic and deontic operators). The ad combination aXdY = aXdYad . 
Sometimes we will replace X, Y and Z by names of alethic, deontic or 
alethic-deontic axioms or systems, respectively.  
 Example 5. a d ad  = MADL. Let X = {aT}, Y = {dD} and Z = 
{MO, OC}. Then aXdYadZ = aTdDadMOOC = MADL + {aT}  {dD}  

{MO, OC} = MADL + {aT, dD, MO, OC} = MADL + {�p  p, Op  Pp, 
�p  Op, Op  �p}. Let X = {aT, aB, a4}, Y = {} and Z = {OC′}. Then 
aXdYadZ = aTB4d adOC′ = MADL + {aT, aB, a4}  {}  {OC′} = 
MADL + {aT, aB, a4, OC′} = MADL + {�p  p, p  ��p, �p  ��p, 
O(Op  �p)}. a dSDLad  = MADL + {dD} = MADL + {Op  Pp}. 
aS5dOS5+adMOOC = MADL + {aT, aD, aB, a4, a5, dD, dT′, dB′, d4, d5, 
MO, OC}. Since aK and dK are included in every normal ad system, it is not 
necessary to mention them in the name of a system. E.g. the following 
identities hold: aKdKad  = a d ad , aKTdK5adOC = aTd5adOC and 
aK45dKad  = a45d ad . 
 
3.2.3 ad combinations (fusions) 
Let us say something more about ad combinations (fusions). A (normal) 
alethic-deontic system adS is called the combination (fusion) of a (normal) 
alethic modal system aS and a (normal) deontic system dS, written aS + dS, if 
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and only if adS is the smallest (normal) ad system that includes both aS and 
dS. If aS is representable as aX and dS as dY, then aS + dS is representable 
as aXdY, where X and Y is a set of alethic and a set of deontic axioms, 
respectively. Hence, aX + dY = aXdY.  
 Note that aXdY  aX  dY, i.e. the ad combination of aX and dY is not 
identical to the union of the pure alethic system aX and the pure deontic 
system dY. For aXdY contains sentences that are not included in aX  dY. 
Every normal ad system contains O-nec and �-nec. So, both �O(p  p) and 
O�(p  p) are, for instance, elements in aXdY, but not in aX  dY. Other 
examples are the following sentences: �O(p  q)  (�Op  �Oq), �O(p  

q)  �(Op  Oq) and (�Fr  �O((p  q)  r))  (�Fp  �Fq). Furthermore, 
additional axioms together with one or more rules of inference may generate 
sentences that are theorems of the combination of aS and dS that are not 
theorems in the union of aS and dS. E.g. suppose that �p  p  X, then �Pp 

 Pq  aXdY but not �Pp  Pq  aX  dY (since �Pp  Pq is neither an 
element in aX nor in dY), or that Op  Pp  Y, then �Op  �Pp  aXdY, but 
not �Op  �Pp  aX  dY (since �Op  �Pp is neither an element in aX 
nor in dY). However, the union of the pure alethic system aX and the pure 
deontic system dY is of course a subset of the combination of aX and dY, aX 

 dY  aXdY, i.e. everything included in aX  dY is also included in aXdY. 
It follows that aX  dY  aXdY. 
 
4. Some normal alethic-deontic systems 
I will now consider some normal alethic-deontic systems and I will prove 
some theorems in and about these systems. 
 
4.1 Minimal alethic-deontic logic 
Minimal alethic-deontic logic (MADL, aKdK, aKdKad or a d ad ) is 
the smallest normal alethic-deontic logic. We will also call this system S1. 
Since it is a normal alethic-deontic system MADL includes PL, the axioms 
aK and dK, the usual definitions of the alethic and deontic operators, modus 
ponens, �-necessitation and O-necessitation. Since it is the smallest normal 
alethic-deontic logic it contains no other axioms or rules of inference. A 
normal aKdKad -system is any normal alethic-deontic extension of 
aKdKad , i.e. every normal alethic-deontic system is a normal aKdKad -
system, or, in other words, every normal ad system is an extension of 
MADL. This is true by definition and trivial.  
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 MADL is an ad combination of the purely deontic system dK (= OK) and 
the purely alethic system aK. Hence, we can also call this system aKdK or 
simply a d . Recall that an ad combination of two systems is not the same 
as the union of these systems (section 3.2.3). So, aKdK  aK  dK. aKdK 
has theorems that are not elements in aK  dK (e.g. �O(p  q)  �(Pp  
Pq)). On the other hand, every sentence that belongs to either aK or dK is an 
element in aKdK, i.e. if s  aK  dK, then s  aKdK, for any sentence s. It 
follows that if any formula is a theorem in either aK or dK it is also a 
theorem in every normal alethic-deontic logic. 
 I will now prove some theorems in and about MADL. Since MADL is 
included in every normal ad logic, these theorems hold in every ad system we 
consider in this essay. 
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Figure 1. The Alethic-Deontic Octagon, MADL (S1). 
 
4.1.1 The alethic-deontic octagon 
It is possible to display some important logical relationships between O-, P-, 
F- and U-sentences in various deontic systems in a deontic square of 
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opposition (see Rönnedal (2010)) and some important logical relationships 
between �-, �-, �- and �-sentences in various alethic systems in a similar 
alethic square of opposition. If we combine these figures we get something I 
will call the alethic-deontic octagon. This is a figure that can be used to 
represent some of the most important logical relationships between all 
primary deontic and alethic sentences, i.e. all of the following formulas: Op, 
Pp, Fp, Up, �p, �p, �p and �p. These relationships will vary from one ad 
system to another. 
 Figure 1 shows what the ad octagon looks like in MADL. All sentences 
that occur at a “node” in the figure are equivalent (e.g. Op  F p and � p 

 �p). Sentences that are connected via dashed lines are contradictories 
(e.g. (�p  � p), �p  � p, (Pp  Fp) and Pp  Fp are theorems). 
Since MADL is the smallest ad system, these relationships hold in every ad 
system. However, all of the relationships displayed in this figure also hold in 
the union of aK and dK. So, the figure is perhaps more important for what it 
does not, than for what it does contain. The ad octagon will become more 
interesting in extensions of MADL. 
 
4.1.2 The rule of replacement 
The rule of replacement and the rule of simultaneous replacement hold in 
every normal ad system. The following section proves this. In our proofs we 
use the following derived rules: (OEQ) If  A  B, then  OA  OB, 
and (�EQ) If  A  B, then  �A  �B (see Rönnedal (2010) for a 
proof of the first, the second can be established in a similar way). These rules 
are derivable in every normal ad system. 
 The rule of replacement (Rep). (i) If  A  B, then  C  

[B//A](C) (if A is equivalent to B is a theorem, then C is equivalent to 
[B//A](C) is a theorem), where [B//A](C) is like C except that zero or more 
occurrences of A are replaced by B (see Rönnedal (2010) for more 
information about the concept of replacement). 
 (ii) If  A  B and  C, then  [B//A](C) (if A is equivalent to B is 
a theorem and C is a theorem, then [B//A](C) is a theorem), where C and 
[B//A](C) are as in part (i).  
 (iii) If  A  B and  [B//A](C), then  C (if A is equivalent to B 
is a theorem and [B//A](C) is a theorem, then C is a theorem), where C and 
[B//A](C) are as in part (i). 
 Proof: Part (i). Suppose that the replacement of B for A is at zero places. 
Then [B//A](C) and C are identical and the result is trivial (  C  
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[B//A](C), where [B//A](C) = C). Suppose that A and C is the same sentence 
and that C i.e. A is replaced by B. Then [B//A](C) is B.  Hence (i) holds in 
this case too (  C  [B//A](C), where C = A and [B//A](C) = B). So, from 
now on we assume that A and C are distinct and that at least one occurrence 
of A is replaced by B in C. The rest of the proof is by induction on the length 
of A. Given  A  B. 
 Basis: C is atomic. Since C and A are distinct and C is atomic [B//A](C) = 
C. Hence,  C  [B//A](C), where [B//A](C) = C. Consequently the 
theorem holds when C is atomic.  
 Induction step. We want to show that if it is the case that if  A  B, 
then  C  [B//A](C) for C of any complexity, then it is the case that if  
A  B, then  f(C)  f([B//A](C)), where f(C) is C, D  C, C  D, D  C, C 

 D, D  C, C  D, D  C, C  D, OC, PC, FC, UC, KC, NC, �C, �C, 
�C, �C, VC or UC, and likewise for [B//A](C). Since conjunction, 
disjunction and equivalence are commutative, since equivalence, implication 
and conjunction can be expressed in terms of negation and disjunction, since 
P, F, U, K and N are definable in terms of O, and since �C, �C, �C, VC 
and UC are definable in terms of �, it is sufficient to consider four cases.  
 Case (i). C. Suppose that if  A  B, then  C  [B//A](C). From 
the hypothesis  A  B. Hence,  C  [B//A](C). (C  [B//A](C))  

( C  [B//A](C)) is a tautology. Accordingly,  C  [B//A](C) by 
PL. It follows that if it is the case that if  A  B, then  C  [B//A](C), 
then it is the case that if  A  B, then  C  [B//A](C).  
 Case (ii). C  D. Assume that if  A  B, then  C  [B//A](C). By 
the hypothesis  A  B. Thus,  C  [B//A](C). (C  [B//A](C))  ((C  

D)  ([B//A](C)  D)) is logically true in propositional logic. Hence,  (C  

D)  ([B//A](C)  D) by PL. Consequently, if it is the case that if A  B, 
then  C  [B//A](C), then it is the case that if  A  B, then  (C  D) 

 ([B//A](C)  D). 
 Case (iii). OC. Suppose that if  A  B, then  C  [B//A](C). By 
the hypothesis  A  B. Hence,  C  [B//A](C) and so,  OC  

O[B//A](C) by (OEQ). In consequence, if it is the case that if  A  B, 
then  C  [B//A](C), then it is the case that if  A  B, then  OC  

O[B//A](C). 
 Case (iv). �C. As in case (iii). 
 Conclusion. We have now shown that the rule of replacement holds where 
there are no connectives or operators outside A and B and that if it holds 
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where there are n such logical connectives or operators it holds for n + 1. We 
conclude that the theorem holds in general. 
 Part (ii). Assume that (1)  A  B and  C (A is equivalent to B is a 
theorem and C is a theorem) and that C and [B//A](C) are as in part (i). Then 
both (2)  A  B and (3)  C [from (1)]. From (2) we obtain (4)  C  

[B//A](C) [by PL and part (i)]. Hence, (5)  [B//A](C) [from 3 and 4 by 
PL]. Consequently, (6) if  A  B and  C, then  [B//A](C) (if A is 
equivalent to B is a theorem and C is a theorem, then [B//A](C) is a theorem), 
where C and [B//A](C) are as in part (i) [from 1–5 by conditional proof 
discharging the assumption]. 
 Part (iii). As in part (ii). Details are left to the reader.  
 The rule of simultaneous replacement. (i) If  A1  B1 and … and 

 An  Bn then  C  [B1//A1, …, Bn//An](C) (if A1 is equivalent to B1 
and … and An is equivalent to Bn are theorems, then C is equivalent to 
[B1//A1, …, Bn//An](C) is a theorem), where [B1//A1, …, Bn//An](C) is the 
result of replacing zero or more occurrences of A1 in C by B1 and … and 
replacing zero or more occurrences of An in C by Bn. 
 (ii) If  A1  B1 and … and  An  Bn and  C, then  [B1//A1, 
…, Bn//An](C) (if A1 is equivalent to B1 and … and An is equivalent to Bn are 
theorems and C is a theorem, then [B1//A1, …, Bn//An](C) is a theorem), 
where C and [B1//A1, …, Bn//An ](C) are as in part (i).  
 (iii) If  A1  B1 and … and  An  Bn and  C  [B1//A1, …, 
Bn//An ](C), then  C (if A1 is equivalent to B1 and … and An is equivalent 
to Bn are theorems and [B1//A1, …, Bn//An](C) is a theorem, then C is a 
theorem), where C and [B1//A1, …, Bn//An](C) are as in part (i). 
 Proof. The proof is more or less obvious, simply use the rule of replace-
ment repeatedly in crucial steps.  
 
4.1.3 Interchange and duality theorems 
Let us prove some interchange and duality theorems that can be used to 
quickly prove and recognize new theorems in MADL and other ad systems. 
 Theorem 6 (The ad interchange theorem (adIT)). Let 1 ... n be a 
sequence of deontic and alethic operators in a sentence such that each i is O, 
P, F, U, �, �, � or �. If i = O, let i’ = P, and vice versa, if  = F, let ’ 
= U and vice versa, if  = �, let ’ = � and vice versa and if  = �, let ’ 
= � and vice versa, for every i. Then, (i) 1 ... nA  1’ ... n’ A, 
(ii) 1 ... nA  1’ ... n’ A, and (iii) 1 ... n A  1’ ... 

n’A, for any A.  
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 Proof. Part (i). Let 1 ... n be a sequence of deontic and alethic 
operators of the kind mentioned in the theorem. By PL 1 ... nA  1 
... nA, for any A. Now replace O by P , P by O , F by U , U by 

F , � by � , � by � , � by �  and � by �  throughout in the 
right hand side of this equivalence. Then we get the following theorem 1 
... nA  1’ 2’  ... n-1’ n’ A, for any A. Use PL and 
replacement to delete all double negations. It follows that 1 ... nA  

1’ ... n’ A, for any A. This proves part (i).  
 Part (ii). PL and part (i) gives us  1 ... nA  1’ ... n’ A, 
which again by PL immediately proves that  1 ... nA  1’ ... 

n’ A, for any A.  
 Part (iii). By replacing A by A in part (i) we obtain 1 ... n A  

1’ ... n’ A. By PL and replacement it follows that 1 ... n A  
1’ ... n’A, for any A.  

 Example 7. When n = 0 part (i) reduces to A  A, part (ii) to  

A  A and part (iii) to  A  A. Let n = 1. Then the following 
schemas are examples of instances of the theorem  OA  P A,  PA 

 O A,  �A  � A,  �A  � A [part (i)],  OA  P A, 
 PA  O A,   �A  � A,  �A  � A [part (ii)], and  

O A  PA,  P A  OA [part (iii)]. In fact, many equivalences in 
figure 1 can be seen as special cases of adIT. Here are some more complex 
examples:  �O(p  p)  �P (p  p),  �P(p  q)  �O (p  q), 

 ��F (p  (Pq  Pr))  ��U(p  (Pq  Pr)). 
 Theorem 8 (The ad interchange rule (adIR)). All of the following rules 
are derived in MADL. Let and ’ be as in adIT. Then, (i) 1 ... nA iff 

1’ ... n’ A, (ii) 1 ... nA iff 1’ ... n’ A, and (iii) 1 
... n A iff 1’ ... n’A, for any A.  
 Proof. The proofs are easy and are left to the reader (use the interchange 
theorem).  
 We can in fact prove something slightly stronger. The interchange 
theorem does not hold for modalities that include embedded negation signs. 
But our next theorem does.  
 Before turning to the duality theorem, we must first introduce the concept 
of duality. 
 Definition 9 (Duality). (i) Let L be a language that contains , and  as 
the only propositional connectives. In addition, let L contain Verum and 
Falsum, and all normal alethic and deontic operators, i.e. O, P, F, U, �, �, 
�, and �. Then the dual of a sentence A (in L), in symbols d(A), is defined 
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as the result of replacing every atomic sentence by its negation and 
interchanging all occurrences of Verum and Falsum,  and , � and �, O 
and P, � and �, and F and U in A. (ii) Let L by a language that contains , 

, , , , Verum, Falsum and every normal alethic and deontic operator. 
Then if A is a sentence (in L), then the dual of A, in symbols d(A), is defined 
in the following manner. 
 
1 d(p) = p, when p 
is atomic 
2 d(Verum) = Falsum 
3 d(Falsum) = Verum 
4 d( A) = d(A) 
5 d(A  B) = (d(A)  d(B)) 

6 d(A  B) = (d(A)  d(B)) 
7 d(A  B) = ( d(A)  d(B)) 
8 d(A  B) 
= (d(A)  d(B)) 
9 d(�A) = �d(A) 
10 d(�A) = �d(A) 

11 d(OA) = Pd(A) 
12 d(PA) = Od(A) 
13 d(�A) = �d(A) 
14 d(�A) = �d(A) 
15 d(FA) = Ud(A) 
16 d(UA) = Fd(A) 

 
 Example 10. (i) d(OT) = P , (ii) d(p  q) = ( p  q) (iii) d(Op  Pp) = 
( P p  O p), (iv) d(Op  �p) = ( P p  � p), (v) d(Pp  Fp) = (O p 

 U p), (vi) d(�(p  q)  (Op  Oq)) = ( �( p  q)  ( P p  

P q)), (vii) d(P(p  q)  �(p  q)) = ( O( p  q)  �( p  q)), (viii) 
d(((Fq  Fr)  �(p  (q  r)))  Fp) = ( ((U q  U r)  �( p  ( q  r)))  

U p), (ix) d(Up  �p) = ( F p  � p), (x) d((O(p  q)  �p)  Pq) = 
( (P( p  q)  � p)  O q). 
 Proof. We prove part (vi) and (vii) and leave the rest to the reader.  
 Part (vi). d(�(p  q)  (Op  Oq)) = ( d(�(p  q))  d(Op  Oq)) [part 
7] = ( �d(p  q)  d(Op  Oq)) [part 9] = ( �( d(p)  d(q))  d(Op  Oq)) 
[part 7] = ( �( d(p)  d(q))  ( d(Op)  d(Oq))) [part 7] = ( �( d(p)  d(q)) 

 ( Pd(p)  Pd(q))) [part 11] = ( �( p  q)  ( P p  P q)) [part 1]. 
 Part (vii). d(P(p  q)  �(p  q)) = ( d(P(p  q))  d(�(p  q))) [part 7] = 
( Od(p  q)  d(�(p  q))) [part 12] = ( O(d(p)  d(q))  d(�(p  q))) [part 5] 
= ( O(d(p)  d(q))  �d(p  q)) [part 10] = ( O(d(p)  d(q))  �(d(p)  d(q)) 
[part 6] = ( O( p  q)  �( p  q)) [part 1].  
 Theorem 11 (The duality theorem (DUAL)). Let S be a normal alethic-
deontic system. Then S has the following theorems and rules of inference.  
  (i)  S A  d(A). 
  (ii)  S A  d(A).  
  (iii) if S A, then S d(A).  
  (iv) if S A, then S d(A).  
  (v)  if S A  B, then S d(B)  d(A).  
  (vi) if S A  B, then S d(A)  d(B). 
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 Proof. Assume throughout that S is a normal alethic-deontic system.  
 Part (i) S A  d(A). Part (i) says that A and the negation of the 
duality of A are equivalent in S. We want to show that the theorem holds for 
any sentence regardless of complexity. We prove this by induction on the 
lenght of A.  
 Basis. A is atomic. (1)  p  p, for every atomic sentence p [by 
PL]. Hence, (2)  p  d(p), for every atomic sentence p [from 1 and the 
definition of duality part 1]. Consequently, the theorem holds when A is 
atomic. 
 Induction step. We want to show that if the theorem holds for a sentence 
A of given complexity, it holds for every sentence of next higher degree of 
complexity. Induction hypotheses: the theorem holds for every sentence B 
and C shorter than A, i.e.  B  d(B) and  C  d(C). A = B  C, A 
= B  C, A = B  C, A = �B, and A = UB. Left as exercise. 
 A = B.  B  d(B) [by the induction hypothesis and PL]. 
Consequently,  B  d( B) [by the definition of duality part 4].  
 A = B  C. (1)  (B  C)  ( d(B)  d(C)) [induction hypothesis and 
replacement]. (2)  ( d(B)  d(C))  (d(B)  d(C)) [by PL]. (3)  

(d(B)  d(C))  d(B  C) [by the definition of duality part 6 and 
replacement]. (4)  (B  C)  d(B  C) [from 1, 2 and 3 by PL].
 A = �B. This is exactly as in the case A = OB (see below), just replace 
every occurrence of O by � throughout and replace the justification for step 
(3) by “the definition of duality part 9”. 
 A = �B. (1)  �B  � d(B) [induction hypothesis, replacement]. (2) 

 � d(B)  �d(B) [definition of � and replacement]. (3)  �d(B) 
 d(�B) [by the definition of duality part 10]. It follows that  �B  

d(�B) [from 1, 2 and 3 by PL]. 
 A = �B. Similar to the case where A = FB (see below). 
 A = OB. (1) OB  O d(B) [induction hypothesis, replacement]. (2) 

 O d(B)  Pd(B) [definition of P, PL]. (3)  Pd(B)  d(OB) [by 
the definition of duality part 11]. Thus, (4)  OB  d(OB) [from 1, 2 and 
3 by PL]. 
 A = PB. This is exactly as in the case A = �B (see above), just replace 
every occurrence of � by P throughout and replace the justification for step 
(3) by “the definition of duality part 9”. 
 A = FB. (1) FB  F d(B) [induction hypothesis, replacement]. (2) 

 F d(B)  Ud(B) [interchange]. (3)  Ud(B)  d(FB) [the 
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definition of duality part 15]. Thus, (4)  FB  d(FB) [from 1, 2 and 3 
by PL]. 
 Part (ii) S A  d(A). Part (ii) follows immediately from part (i) by 
PL. The interpretation is similar. 
 Part (iii) if S A, then S d(A). According to part (iii) the negation 
of the duality of A is a theorem in S, if A is a theorem in S. Suppose that  
A. Then by part (i) and (MP) it follows that  d(A). So, if  A, then  

d(A) [by conditional proof]. 
 Part (iv) if S A, then S d(A). This part is proved as part (iii), but 
use part (ii) instead of part (i) in the proof. It is interpreted similarly. 
 Part (v) if S A  B, then S d(B)  d(A). Part (v) says that if A 
implies B is a theorem, then the duality of B implies the duality of A is a 
theorem. Suppose (1)  A  B. Then by part (i) and replacement we get 
(2)  d(A)  d(B) [from 1]. Accordingly, (3)  d(B)  d(A) [from 2 
by PL]. It follows that if  A  B, then  d(B)  d(A) [by conditional 
proof from 1 – 3]. 
 Part (vi) if  A  B, then  d(A)  d(B). If it is a theorem that A is 
equivalent to B, then it is a theorem that the duality of A is equivalent to the 
duality of B, according to this part. Suppose  A  B. Then (2)  A  B 
and (3)  B  A [from 1 by PL]. (4)  d(B)  d(A) [from 2 and part 
(v)]. (5)  d(A)  d(B) [from 3 and part (v)]. Hence, (6)  d(A)  d(B) 
[from 4 and 5 by PL]. It follows that if  A  B, then  d(A)  d(B) [by 
conditional proof from 1 – 5].  
 Theorem 12 (The duality corollary (Dual)). The dual of an alethic-
deontic modality M, D(M), is the modality that is obtained from M by 
interchanging O and P, F and U, � and �, and � and �, respectively, 
throughout. Let M and N be alethic-deontic OPFU���� modalities and 
D(M) and D(N) be the dual of M and N respectively. Then: 
  Part (i)   MA  D(M) A. 
  Part (ii)  MA iff  D(M) A. 
  Part (iii)  MA  NA iff  D(N)A  D(M)A. 
  Part (iv)  MA  NA iff  D(M)A  D(N)A. 
 Proof. Part (i).  MA  D(M) A. (1)  MA  d(MA) [Dual]. (2) 

d(MA)  D(M)dA [PL, the definition of duality]. (3) D(M)dA 

 D(M) A [PL, Dual, replacement]. (4)  MA  D(M) A [from 1, 2 
and 3 by PL]. 
 Part (ii). (1)  MA  D(M) A [from (i) and PL]. Suppose (2)  
MA. Then (3)  D(M) A [from 1 and 2 by (MP)]. Hence, (4) if  MA, 
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then  D(M) A [from 2 – 3 by conditional proof]. (5)  D(M) A  

MA [from (i) and PL]. Suppose (6)  D(M) A. Then (7)  MA [from 5 
and 6 by (MP)]. So, (8) if  D(M) A, then  MA [from 6 – 7 by 
conditional proof]. It follows that  MA iff  D(M) A [from 4 and 8 by 
classical logic]. 
 Part (iii). (1)  MA  NA iff (2)  D(M) A  D(N) A [from 1 
by replacement] iff (3)  D(N) A  D(M) A [from 2 by PL] iff (4)  
D(N)A  D(M)A [from 3 by PL and replacement]; in conclusion, (5)  MA 

 NA iff  D(N)A  D(M)A [from 1 – 4 by classical logic].  
 Part (iv). Suppose (1)  MA  NA. Then (2)  MA  NA [from 1 by 
PL] and (3)  NA  MA [from 1 by PL]. (4)  D(N)A  D(M)A [from 2 
and part (iii)]. (5)  D(M)A  D(N)A [from 3 and part (iii)]. (6)  D(M)A 

 D(N)A [from 4 and 5 by PL]. Consequently, (7) if  MA  NA then  
D(M)A  D(N)A [by conditional proof from 1 – 6]. Suppose (8)  D(M)A 

 D(N)A. Then (9)  D(M)A  D(N)A [from 8 by PL] and (10)  
D(N)A  D(M)A [from 8 by PL]. (11)  NA  MA [from 9 and part (iii)]. 
(12)  MA  NA [from 10 and part (iii)]. (13)  MA  NA [11, 12, PL]. 
Consequently, (14) if  D(M)A  D(N)A, then  MA  NA [from 8 – 13 
by conditional proof]. It follows that (15)  MA  NA iff  D(M)A  

D(N)A [from 7 and 14 by classical logic].  
 Comment 13. Note that both the duality theorem and the duality 
corollary are abbreviated “Dual”. When any theorem or any rule that is part 
of one of these propositions is used, we will indicate this by writing “Dual” in 
the justificatory entry. 
 The following theorem illustrates how the duality corollary can be used. 
 
Theorem “Dual” theorem Theorem “Dual” theorem 

1 Op  OOp  
2 Pp  OPp  
3 �p  p  

4 �p  ��p  
5 p  ��p  
6 �p  ��p  

T(1) PPp  Pp 
T(2) POp  Op 
T(3) p  �p 

T(4) ��p  �p 

T(5) ��p  p 

T(6) ��p  �p 

7 �p  Op 
8 Op  �p 
9 Op  �Op 
10 Pp  �Pp 
11 O�p  �Op 
12 �Op  O�p 

T(7) Pp  �p   

T(8) �p  Pp 
T(9) �Pp  Pp  

T(10) �Op  Op  

T(11) �Pp  P�p  

T(12) P�p  �Pp   
Table 4 

Theorem 14. Let S be a normal alethic-deontic system. Then n is a theorem 
in S if and only if T(n) is a theorem in S (for 1  n  12 in table 4).  
 Proof. This follows immediately from the duality corollary part (iii). In 
every case n has the form MA  NA and T(n) the form D(N)A  D(M)A.  
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 Comment 15. In the table 4 I have called T(n) “dual” theorems since T(n) 
may be derived from n (for 1  n  12) by Dual. However, in a strict sense 
T(n) is of course not the dual of n. 
 
4.1.4 More rules of inference in MADL 
I will end this section by proving a set of new derived rules that are 
admissible in every ad system (theorem 16). First, we will introduce some 
new concepts. 
 All rules that can be derived in dK and in aK also hold in MADL. Some 
of these rules have a similar form as is easy to see. Let  be any of the 
following operators: O, P, � or �. Then every rule of the following kind 
holds in MADL: if  A  B, then  A  B. Let us call a rule of this 
kind a monotic rule of type I (a MI rule). Let  be any of the following 
operators: F, U, � or �. Then every rule of the following kind holds in 
MADL: if  A  B, then  B  A. We shall say that a rule of this kind 
is a monotonic rule of type II (or a converse monotonic rule) (a MII rule). 
Both type I and type II rules are called monotonic.  
 Theorem 16 (The inference rule theorem I). Let S be a normal ad 
system and let M and N be affirmative OP�� modalities. By an affirmative 
OP�� modality we mean a modality, i.e. a finite sequence, possibly empty, 
of the operators , O, P, � and �, in which  occurs an even number of 
times (including zero). Then the following sentence is a theorem in S: A = 
MA  NA if and only if S has any of the following theorems or rules of 
inference: A’ = D(N)  D(M)A, (R1) if S A  B then S MA  NB, or 
(R2) if S A  B, then S D(N)A  D(M)B. 
 Proof. We assume throughout that S is a normal ad system. To prove this 
theorem it is sufficient to establish how to obtain (i) A’ from A, (ii) A from 
A’, (iii) (R1) from A, (iv) A from (R1), (v) (R2) from (R1), and (vi) (R1) 
from (R2), in S. (ConP = Conditional Proof.) 
 Part (i) and part (ii) follow directly from the duality corollary. 
 Part (iii). From A to (R1). We assume that S includes MA  NA and 
then show (R1): if  S A  B, then  S MA  NB. 
1.   S A  B   [Assumption] 
2.   S NA  NB [1, Repeated applications of MI rules] 
3.   S MA  NA  [Given] 
4.   S MA  NB  [2, 3, PL] 
5.  If  S A  B, then  S MA  NB. [ConP 1–4] 
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 Part (iv). From (R1) to A. We assume that (R1), if  S A  B then  S 
MA  NB, is a rule of inference in S and then prove A: MA  NA. 
1.   S A  A   [PL] 
2.   S MA  NA  [1, R1] 
 Part (v). From (R1) to (R2). Suppose that (R1), if  S A  B then  S 
MA  NB, is a rule of inference in S. We must prove that (R2), if S A  B 
then S D(N)A  D(M)B, is a rule of inference in S too. 
1.   S A  B   [Assumption] 
2.   S A  A   [PL] 
3.   S MA  NA  [2, R1] 
4.   S D(N)A  D(M)A  [3, Dual corollary] 
5.   S D(M)A  D(M)B [1, Repeated applications of MI rules] 
6.   S D(N)A  D(M)B  [4, 5, PL] 
7.  If  S A  B, then  S D(N)A  D(M)B  [1–6, ConP] 
 Part (vi). From (R2) to (R1). We suppose that S includes (R2), if S A 

 B then S D(N)A  D(M)B, and then show that (R1), if  S A  B then 
 S MA  NB, is included in S too. 

1.   S A  B   [Assumption] 
2.   S A  A   [PL] 
3.   S D(N)A  D(M)A  [2, R2] 
4.   S MA  NA  [3, Dual corollary] 
5.   S NA  NB [1, Repeated applications of MI rules] 
6.   S MA  NB  [4, 5, PL] 
7.  If  S A  B, then  S MA  NB [1–6, ConP]  
 Example 17. The following examples are consequences or instances of 
theorem 16. (i) If S includes OA  �A, then: if  S A  B, then  S OA  

�B. (ii) If S includes �A  OA, then: if  S A  B, then  S �A  OB. 
(iii) If S includes OA  �A, then: if  S A  B, then  S �A  PB. (iv) If 
S includes �A  OA, then: if  S A  B, then  S PA  �B. (See 
sections 4.4.3 and 4.5.3.) (v) If S includes OA  �OA, then: if  S A  B, 
then  S OA  �OB. (vi) If S includes PA  �PA, then: if  S A  B, 
then  S PA  �PB. 
 We will now begin to consider some extensions of MADL. 
 
4.2 aKDdKad  
aKDdKad , the smallest normal alethic-deontic logic that includes the 
axiom aD (i.e. the sentence �p  �p), is the same system as MADL + 
{aD}. We will also call this system S2. Like every normal alethic-deontic 
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system aKDdKad includes PL, the axioms aK and dK, the usual 
definitions of the alethic and deontic operators, modus ponens, �-
necessitation and O-necessitation. Every normal alethic-deontic system that 
includes aD is a normal aKDdKad -system. In other words, any normal 
alethic-deontic system that is an extension of aKDdKad is a normal 
aKDdKad -system. Since aKDdKad does not contain any mixed axioms, 
any axioms that contain both alethic and deontic operators, it is an ad 
combination. More precisely, it is an ad combination of the purely alethic 
system aKD and the smallest normal deontic system OK. 
 We will now consider what the ad octagon looks like in this system. 
 
4.2.1 The alethic-deontic octagon 
Figure 2 is a picture of the alethic-deontic octagon in aKDdKad . It is 
interpreted in the same way as the ad octagon in section 4.1.  
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Figure 2. The Alethic-Deontic Octagon, MADL + {aD} (S2). 
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A dashed line connects sentences that are contradictories, e.g. Op and P p, 
and �p and �p. An arrow from a sentence, A, to another sentence, B, 
indicates that A implies B; e.g. �p  � p and �p  � p are theorems in 
MADL + {aD}. A dotted line between two sentences, A and B, represents 
the fact that A and B are subcontraries, e.g. we can prove that �p  � p and 
�p  �p are theorems in the current system. Finally, a dotted line with 

long dots between two sentences, A and B, indicates that A and B are 
contraries, for instance �p and �p, and � p and �p; i.e. (�p  �p) and 

(� p  �p) are theorems in MADL + {aD} (see Rönnedal (2010) for 
more on these concepts). We state this result formally. 
 Theorem 18. All of the relationships displayed in figure 2 hold in every 
normal alethic-deontic aKDdKad -system. 
 Proof. This follows immediately from the fact that aKDdKad includes 
OK and aKD.  
 Remark 19. Note that a aKDdKad -system that is a proper extension of 
aKDdKad may contain more relations than those displayed in figure 2. 
The system aKDdKDad is, for instance, a proper extension of 
aKDdKad . The ad octagon for this system is displayed in figure 7. As can 
be seen, this system includes e.g. the sentences Op  Pp and Fp  P p, 
which are not theorems in aKDdKad . However, no aKDdKad -system 
lacks any of the theorems indicated in figure 2. Similar remarks apply to 
several other theorems involving the ad octagon stated in this paper. 
 
4.3 aKdKDad  
aKdKDad is another example of an ad combination. It is identical to 
aKdSDLad , i.e. to the ad combination of the purely alethic system aK (see 
Chellas (1980)) and the purely deontic system Standard deontic logic (SDL) 
(see Rönnedal (2010)). In other words, aKdKDad is the smallest normal 
alethic-deontic logic that includes the axiom dD, i.e. the sentence Op  Pp. 
Accordingly, aKdKDad = MADL + {dD}. We will also call this system 
S3. Since it is a normal alethic-deontic system aKdKDad includes PL, the 
axioms aK and dK, the usual definitions of the alethic and deontic operators, 
modus ponens, �-necessitation and O-necessitation. A normal aKdKDad -
system is any normal alethic-deontic system that includes dD, or in other 
words, any normal alethic-deontic system that is an extension of 
aKdKDad .  

 46



Alethic-Deontic Logic and the Alethic-Deontic Octagon 

 Let us consider some properties of this system. 
 
4.3.1 The alethic-deontic octagon 
The alethic-deontic octagon in aKdKDad is similar to the ad octagon in 
aKDdKad . The differences are due to the fact that aKdKDad includes 
dD while aKDdKad  includes aD. The similarities depend upon the formal 
similarities between these axioms. 
 Theorem 20. All of the relationships displayed in figure 3 hold in every 
normal alethic-deontic aKdKDad -system. 
 Proof. This follows immediately from the fact that aKdKDad includes 
SDL and aK.  
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Figure 3. The Alethic-Deontic Octagon, MADL + {dD} (S3). 
 
Next we turn to two ad systems that include mixed axioms: aKdKadOC and 
aKdKadMO. OC and MO are two of the most interesting mixed axioms we 
will consider. 
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4.4 aKdKadOC 
aKdKadOC is the smallest normal alethic-deontic logic that contains the 
axiom OC, i.e. the sentence Op  �p. Therefore, aKdKadOC = MADL + 
{OC}. We will also call this system S7. Since it is a normal alethic-deontic 
system aKdKadOC includes PL, the axioms aK and dK, the usual 
definitions of the alethic and deontic operators, modus ponens, �-
necessitation and O-necessitation. A normal aKdKadOC-system is any 
normal alethic-deontic system that includes OC, or in other words, any 
normal alethic-deontic system that is an extension of aKdKadOC.  
 Let us consider some properties of this system. 
 First of all we note that O(Op  �p) is a theorem in aKdKadOC. OC′ 
follows immediately from OC by O-necessitation. Accordingly, OC′ is a 
theorem in every aKdKadOC-system.  
 Next we turn to the alethic-deontic octagon in aKdKadOC. 
 
4.4.1 The alethic-deontic octagon in aKdKadOC 
Every system considered so far has been an ad combination, i.e. a 
combination of a purely alethic and a purely deontic system (see above). 
However, aKdKadOC is not a system of this kind, since OC includes both 
alethic and deontic operators. This is an example of a mixed axiom. When 
OC is added to MADL several interesting theorems follow. Figure 4 displays 
the relationships between primary alethic and deontic sentences in 
aKdKadOC.   
 Theorem 21. All of the relationships displayed in figure 4 hold in every 
normal alethic-deontic aKdKadOC-system. 
 Proof. Most of the proofs are quite easy and are left to the reader. (Table 
5 includes a list of some of the theorems that are displayed in figure 4.)  
 

 Theorems  

�p  Pp 
Fp  � p 
Fp  �p 
�p  Op 
�p  P p 
Fp  �p 
�p  Up 

(�p  Fp) 
(Op  �p) 

(Op  � p) 
(O p  �p) 

(O p  � p) 
(F p  � p) 
(Fp  � p) 

Pp  � p 
P p  �p 
Pp  �p 

Op  �p
O p  � p 
Fp  � p 
F p  �p 

Table 5 
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Figure 4. The Alethic-Deontic Octagon, MADL + {OC} (S7). 
 
Note that all of the sentences in table 5 are equivalent in the system 
aKdKadOC. So, MADL + any sentence in table 5 is deductively equivalent 
with aKdKadOC. All sentences in table 5 stand or fall together. If we accept 
one of them we should accept all the others and if we reject one, we should 
reject all the others. 
 Since OC is one interpretation of the so-called ought-can principle, 
aKdKadOC tells us something about what follows by accepting this 
principle. 
 
4.4.2 Some theorems including necessary implications 
I will soon establish some derived rules in aKdKadOC. But first I will 
consider some theorems that include necessary implications. 
 
 Theorem Intuitive reading 

(i) 
 

�(p  q)  (Op  �q) 
 

If it is necessary that p implies q, then it is possible that q 
if it is obligatory that p. 

 49



Daniel Rönnedal 

(ii) 
 
(iii) 
 
(iv) 
 
(v) 
 
(vi) 
 
(vii) 
 
(viii) 
 
(ix) 
 
(x) 
 
(xi) 
 
(xii) 

(Op  �(p  q))  �q 
 
Op  (�(p  q)  �q) 
 
�(p  q)  (�p  Pq) 
 
(�p  �(p  q))  Pq 
 
�p  (�(p  q)  Pq) 
 
�(p  q)  (Fq  �p) 
 
(Fq  �(p  q))  �p 
 
Fq  (�(p  q)  �p) 
 
�(p  q)  (�q  Up) 
 
(�q  �(p  q))  Up 
 
�q  (�(p  q)  Up) 
 

If it is obligatory that p and it is necessary that p implies 
q, then it is possible that q. 
If it is obligatory that p, then it is possible that q if it is 
necessary that p implies q. 
If it is necessary that p implies q, then it is permitted that 
q if it is necessary that p. 
If it is necessary that p and it is necessary that p implies 
q, then it is permitted that q. 
If it is necessary that p, then it is permitted that q if it is 
necessary that p implies q. 
If it is necessary that p implies q, then it is unnecessary 
that p if it is forbidden that q. 
If it is forbidden that q and it is necessary that p implies 
q, then it is unnecessary that p. 
If it is forbidden that q, then it is unecessary that p if it is 
necessary that p implies q. 
If it is necessary that p implies q, then it is unobligatory 
that p if it is impossible that q. 
If it is impossible that q and it is necessary that p implies 
q, then it is unobligatory that p. 
If it is impossible that q, then it is unobligatory that p if it 
is necessary that p implies q. 

Table 6 
Theorem 22. All sentences in table 6 are theorems in aKdKadOC. 
 Proof. Part (ii) and part (iii) follow immediately from part (i) by PL. 
Likewise part (v) and part (vi) follow from part (iv), part (viii) and part (ix) 
from part (vii), and part (xi) and part (xii) from part (x), all by PL. So, we 
only have to show part (i), part (iv), part (vii) and part (x). I will leave part 
(vii) and part (x) to the reader and prove the rest. 
 Part (i). �(p q)  (Op �q) 
1.  �(p q)  (�p �q)  [aK] 
2.  Op �p    [OC] 
3.  �(p q)  (Op �q)  [1, 2, PL] 
Step (1) is a theorem in the minimal alethic modal system aK. So, it is a 
theorem in every normal alethic and alethic-deontic system. We have 
indicated this by writing aK in the justificatory entry. Part (i) says that if it is 
necessary that p implies q, then if it is obligatory that p then it is possible that 
q.  
 Part (iv). �(p  q)  (�p Pq) 
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1.  �(p  q)  (�p �q)  [aK] 
2.  �q Pq    [T21 q/p] 
3.  �(p  q)  (�p Pq)  [1, 2, PL] 
Part (iv) claims that if it is necessary that p implies q, then if it is necessary 
that p then it is permitted that q. Step (1) is the axiom aK, step (2) is obtained 
from theorem 21 by substituting q for p and step (3) is deduced from (1) and 
(2) by PL.  
 We are now in a position to prove some derived rules. 
 
4.4.3 Some derived rules in aKdKadOC 
 
 Derived Rules Intuitive reading 

(i) 
 
(ii) 
 
(iii) 
 
(iv) 

If  A  B, then  OA  �B 
 
If  A  B, then  �A  PB 
 
If  A  B, then  FB  �A 
 
If  A  B, then  �B  UA 

If A implies B is a theorem, then OA implies 
�B is a theorem. 
If A implies B is a theorem, then �A implies 
PB is a theorem. 
If A implies B is a theorem, then FB implies 
�B is a theorem. 
If A implies B is a theorem, then �B implies 
UA is a theorem. 

Table 7 
Theorem 23. All rules in table 7 are derived rules in aKdKadOC. 
 Proof. I will prove part (i) and part (ii), part (iii) and part (iv) are left to 
the reader.  
 Derived rule (i). If  A  B, then  OA  �B. If A implies B is a 
theorem, then OA implies �B is a theorem. 
 Proof. Suppose (1)  A  B. Then, (2)  �(A  B) [from 1 by �-
necessitation]. Hence, (3)  OA  �B [from 2 and theorem 22]. It follows 
that (4) if  A  B, then  OA  �B [by conditional proof from 1–3 
discharging the assumption]. 
 Derived rule (ii).  If  A  B, then  �A  PB. If A implies B is a 
theorem, then �A implies PB. 
 Proof. Suppose (1)  A  B. Then (2)  �(A  B) [from 1 by �-
necessitation]. (3)  �(A  B)  (�A  PB) [by theorem 22]. So, (4) 

 �A  PB [from 2 and 3 by MP]. Consequently, (5) if  A  B, then 
 �A  PB [by conditional proof from 1–4 discharging the assumption].  
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4.4.4 Conjunctive and disjunctive  
obligations, permissions, necessities and possibilities 
Let us consider some theorems that include conjunctive and disjunctive 
obligations, permissions, necessities and possibilities. 
 
 Theorem Informal reading 

(i) 
 
(ii) 
 
(iii) 
 
(iv) 
(v) 
 
(vi) 

(Op  Oq)  �(p  q) 
 
(�p  �q)  P(p  q) 
 
(Op  Oq)  �(p  q) 
 
(�p  �q)  P(p  q) 
O(p  q)  (�p  �q) 
 
�(p  q)  (Pp  Pq) 

If it is obligatory that p and it is obligatory that q, then it is 
possible that p and q. 
If both p and q are necessary, then it is permitted that p and 
q. 
If it is obligatory that p or it is obligatory that q, then it is 
possible that p or q. 
If either p or q is necessary, then it is permitted that p or q. 
If it is obligatory that p and q, then both p and q are 
possible. 
If it is necessary that p and q, then it is permitted that p and 
it is permitted that q. 

Table 8 
Theorem 24. Every sentences in table 8 is a theorem in aKdKadOC. 
 Proof. Straightforward. Rönnedal (2010) may be helpful.  
 In section 4.4.6 we will see how to generalise this theorem. 
 
4.4.5 More rules 
Let us consider some more derived rules. 
 
 Derived Rule  

(i) 
(ii) 
(iii) 
(iv) 
 
(v) 
(vi) 
(vii) 
(viii) 
 
(ix) 
(x) 
(xi) 

If   (A1 ...  An)  A, then  (OA1 ...  OAn)  �A  
If   (A1 ...  An)  A, then �A  (UA1 ...  UAn)  
If   (A1 ...  An)  A, then  (�A1 ...  �An)  PA  
If   (A1 ...  An)  A, then  FA  (�A1 ...  �An)  
 
If  (A1 ...  An)  A, then  (OA1 ...  OAn)  �A  
If  (A1 ...  An)  A, then �A  (UA1 ...  UAn)  
If  (A1 ...  An)  A, then  (�A1 ...  �An)  PA  
If  (A1 ...  An)  A, then FA  (�A1 ...  �An)  
 
If  A  (A1 ...  An), then  OA  (�A1 ...  �An)  
If  A  (A1 ...  An), then  (�A1 ...  �An)  UA  
If  A  (A1 ...  An), then  �A  (PA1 ...  PAn)  

(for n  0) 
(for n  0) 
(for n  0) 
(for n  0) 
 
(for n  0) 
(for n  0) 
(for n  0) 
(for n  0) 
 
(for n  0) 
(for n  0) 
(for n  0) 
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(xii) 
 
(xiii) 
(xiv) 
(xv) 
(xvi) 

If  A  (A1 ...  An), then  (FA1 ...  FAn)  �A  
 
If  A  (A1 ...  An), then  OA  (�A1 ...  �An)  
If  A  (A1 ...  An), then  (�A1 ...  �An)  UA  
If  A  (A1 ...  An), then  �A  (PA1 ...  PAn)  
If  A  (A1 ...  An), then  (FA1 ...  FAn)  �A  

(for n  0) 
 
(for n  0) 
(for n  0) 
(for n  0) 
(for n  0) 

Table 9 
Theorem 25. All rules in table 9 are derived rules in aKdKadOC. 
 Proof. Left to the reader. Rönnedal (2010) may be helpful.  
 
4.4.6 Generalisations of distribution theorems 
 
 Theorem  Theorem 

(i) 
(ii) 
(iii) 

(Op1 ...  Opn)  �(p1 ...  pn) 
(�p1 ...  �pn)  P(p1 ...  pn) 
(Op1 ...  Opn)  �(p1 ...  pn) 

(iv) 
(v) 
(vi) 

(�p1 ...  �pn)  P(p1 ...  pn) 
O(p1 ...  pn)  (�p1 ...  �pn) 
�(p1 ...  pn)  (Pp1 ...  Ppn) 

Table 10 
Theorem 26. All sentences of the forms in table 10 are theorems in 
aKdKadOC. 
 Proof. Part (i). (Op1 ...  Opn)  �(p1 ...  pn). 
1. (p1 ...  pn)  (p1 ...  pn)  [PL] 
2. (Op1 ...  Opn)  �(p1 ...  pn)  [1, T25(v)] 
Part (i) says that if it is obligatory that p1 and … and it is obligatory that pn, 
then it is possible that p1 and … and pn. So, a conjunction is possible if each 
conjunct is obligatory. The proof uses T25(v): if  (A1 ...  An)  A, then 

 (OA1 ...  OAn)  �A. Note that the sentence on line (1) is of the form 
(A1 ...  An)  A. An alternative proof uses O-distribution and OC like this. 
1. O(p1 ...  pn)  �(p1 ...  pn)  [OC, p1 ...  pn/p] 
2. (Op1 ...  Opn)  �(p1 ...  pn)  [1, Dist] 
See Rönnedal (2010) for more on how various deontic operators distribute. 
 Part (ii). (�p1 ...  �pn)  P(p1 ...  pn). 
Part (ii) claims that a conjunction is permitted if each conjunct is necessary. 
In other words, if it is necessary that p1 and … and it is necessary that pn, then 
it is permitted that p1 and … and pn. The proof is similar to the proof of part 
(i), but this time use T25(vii): if  (A1 ...  An)  A, then  (�A1 ...  

�An)  PA. 
 Part (iii). (Op1 ...  Opn)  �(p1 ...  pn). 
According to part (iii) a disjunction is possible if any disjunct is obligatory. 
That is, if it is obligatory that p1 or … or it is obligatory that pn, then it is 
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possible that p1 or … or pn. The proof is similar to the proof of part (i) but 
uses T25(i): if   (A1 ...  An)  A, then  (OA1 ...  OAn)  �A. 
 Part (iv). (�p1 ...  �pn)  P(p1 ...  pn). 
Part (iv) asserts that if it is necessary that p1 or … or it is necessary that pn, 
then it is permitted that p1 or … or pn. So, a disjunction is permitted if any 
disjunct is necessary. The sentence follows directly from PL and T25(iii): 
if   (A1 ...  An)  A, then  (�A1 ...  �An)  PA. 
 Part (v). O(p1 ...  pn)  (�p1 ...  �pn). 
Part (v) follows immediately from PL and T25(xiii): if  A  (A1 ...  An), 
then  OA  (�A1 ...  �An). According to the sentence each conjunct is 
possible if a conjunction is obligatory. I.e. if it is obligatory that p1 and … 
and pn, then it is possible that p1 and … and it is possible that pn. 
 Part (vi). �(p1 ...  pn)  (Pp1 ...  Ppn). 
Part (vi) says that it is permitted that p1 and … and it is permitted that pn if it 
is necessary that p1 and … and pn. So, if a conjunction is necessary, then each 
conjunct is permitted. The proof is similar to the proof of part (i) but uses 
T25(xv): if  A  (A1 ...  An), then  �A  (PA1 ...  PAn).  
 
 Theorem 27. (i) MADL + OC includes OC′, �p  �p and Op  Pp. (ii) 
All of the following systems are deductively equivalent: aKdKadOC, 
aKDdKadOC, aKdKDadOC and aKDdKDadOC. 
 Proof. Left to the reader.  
 
4.5 aKdKadMO 
The smallest normal alethic-deontic logic that includes the axiom MO, i.e. 
the sentence �p  Op, is aKdKadMO. Accordingly, aKdKadMO = 
MADL + {MO}. We will also call this system S4. Since it is a normal 
alethic-deontic system aKdKadMO includes PL, the axioms aK and dK, the 
usual definitions of the alethic and deontic operators, modus ponens, �-
necessitation and O-necessitation. A normal aKdKadMO-system is any 
normal alethic-deontic system that includes MO, or in other words, any 
normal alethic-deontic system that is an extension of aKdKadMO.  
 Let us consider some properties of this system. 
 
4.5.1 The alethic-deontic octagon 
Figure 5 displays the alethic-deontic octagon in the system aKdKadMO. The 
octagon is interpreted as usual. 

 54



Alethic-Deontic Logic and the Alethic-Deontic Octagon 

O P
U

, 
, 

p p
F p p

Pp O p
Fp U p
, 

, 

Fp U
O p Pp

, 
, 

p

Up F p
Op P p

, 
, 

� �

� �

p, 
, 

p
p p

� �

� �

p p
p p
, 

, 

� �

� �

p p
p p
, 

, 
� �

� �

p p
p p
, 

,  
 
 

Figure 5. The Alethic-Deontic Octagon, MADL + {MO} (S4). 
 
Theorem 28. All of the relationships displayed in figure 5 hold in every 
normal alethic-deontic aKdKadMO-system. 
 Proof. Most of the proofs are quite easy and are left to the reader. Table 
11 includes a list of some theorems displayed in figure 5. Note that all 
sentences in this table are equivalent in aKdKadMO. MADL + any sentence 
in table 11 is deductively equivalent with MADL + {MO}.  
 

 Theorems  

Pp  �p 
�p  Fp 
Op  �p 
�p  Pp 
�p  F p 
Pp �p 
Up  �p 

(�p  Op) 
(Pp  � p) 
(�p  P p) 
(Pp  �p) 

(� p  Op) 
( Fp  �p) 

(�p  F p) 

Fp  �p 
Op  � p 
O p  �p 
Op  �p 

F p  � p 
Fp  � p 

Pp  �p 
Table 11 
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4.5.2 The means-end principle 
Perhaps the most interesting feature of the system aKdKadMO is that the so- 
called means-end principle is a theorem in it. According to the means-end 
principle every necessary consequence of what ought to be ought to be. Table 
12 includes this principle and several similar theorems. 
 
 Theorem Informal reading 

(i) 
 
(ii) 
 
(iii) 
 
(iv) 
 
(v) 
 
(vi) 
 
(vii) 
 
(viii) 
 
(ix) 
 
(x) 
 
(xi) 
 
(xii) 
 
(xiii) 
 
(xiv) 
 
(xv) 
 
(xvi) 
 

�(p  q)  (Op  Oq) 
 

(Op  �(p  q))  Oq 
 

Op  (�(p  q)  Oq) 
 

�(p  q)  (Pp  Pq) 
 

(Pp  �(p  q))  Pq 
 

Pp  (�(p  q)  Pq) 
 

�(p  q)  (Fq  Fp) 
 

(Fq  �(p  q))  Fp 
 

Fq  (�(p  q)  Fp) 
 

�(p  q)  (�p  Oq) 
 
(�p  �(p  q))  Oq 
 
�p  (�(p  q)  Oq) 
 

�(p  q)  (Pp  �q) 
 
(Pp  �(p  q))  �q 
 
Pp  (�(p  q)  �q) 
 
�(p  q)  (�q  Fp) 
 

If it is necessary that p implies q, then if it ought to be that 
p then it ought to be that q. 
If it ought to be that p and it is necessary that if p then q, 
then it ought to be that q. 
If it ought to be that p, then if it is necessary that p implies 
q then it ought to be that q. 
If it is necessary that p implies q, then if it is permitted 
that p it is permitted that q. 
If it is permitted that p and it is necessary that p implies q, 
then q is permitted. 
If it is permitted that p, then if it is necessary that p 
implies q then q is permitted. 
If it is necessary that p implies q, then if it is forbidden 
that q then it is forbidden that p. 
If it is forbidden that q and it is necessary that p implies q, 
then it is forbidden that p. 
If it is forbidden that q, then if it is necessary that p 
implies q then it is forbidden that p. 
If it is necessary that p implies q, then it is obligatory that 
q if it is necessary that p. 
If it is necessary that p and it is necessary that p implies q, 
then it is obligatory that q. 
If it is necessary that p, then if it is necessary that p 
implies q it is obligatory that q. 
If it is necessary that p implies q, then it is possible that q 
if it is permitted that p. 
If it is permitted that p and it is necessary that p implies q, 
then it is possible that q. 
If it is permitted that p, then if it is necessary that p 
implies q it is possible that q. 
If it is necessary that p implies q, then it is forbidden that 
p if it is impossible that q. 
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(xvii) 
 
(xviii) 
 
(xix) 
 
(xx) 
 
(xxi) 

(�q  �(p  q))  Fp 
 
�q  (�(p  q)  Fp) 
 
�(p  q)  (Uq  �p) 
 
(Uq  �(p  q))  �p 
 
Uq  (�(p  q)  �p) 

If it is impossible that q and it is necessary that p implies 
q, then it is forbidden that p. 
If it is impossible that q, then if it is necessary that p 
implies q it is forbiden that p. 
If it is necessary that p implies q, then it is unnecessary 
that p if it is unobligatory that q. 
If it is unobligatory that q and it is necessary that p 
implies q, then it is unnecessary that p. 
If it is unobligatory that q, then if it is necessary that p 
implies q it is unnecessary that p. 

Table 12 
Theorem 29. All sentences in table 12 are theorems in aKdKadMO. 
 Proof. I will prove part (i), part (vii), part (xiii) and part (xvi) to illustrate 
the method, and leave the rest to the reader. The philosophically most 
interesting parts are perhaps part (i) – (ix). These theorems can be used to 
derive obligations from obligations, permissions from permissions and 
prohibitions from prohibitions, with the help of necessary implications. 
 Part (i). �(p  q)  (Op  Oq) 
1.  O(p  q)  (Op  Oq)  [dK]  
2.  �(p  q)  O(p  q)  [MO, p  q/p] 
3.  �(p  q)  (Op  Oq)  [1, 2, PL] 
Part (i) is one version of the means-end principle. Part (ii) and (iii) are similar 
versions of this principle. It is easy to derive part (ii) and part (iii) from part 
(i). The means-end principle is intuitively plausible and can be very useful 
when deriving “new” obligations from “old” obligations. Suppose for 
instance that it ought to be that everyone is honest. Then it follows that you 
ought to be honest. For it is necessary that if everyone is honest then you are 
honest. 
 Part (vii). �(p  q)  (Fq  Fp) 
1.  O(p  q)  (Fq  Fp)  [OK]  
2.  �(p  q)  O(p  q)  [MO, p  q/p] 
3.  �(p  q)  (Fq  Fp)  [1, 2, PL] 
Note that the sentence at step (1) is provable in the deontic system OK; and 
since every normal ad system includes OK, this sentence is a theorem in 
MADL + MO too. Part (vii) is also a quite useful principle. Suppose it is 
forbidden that you smoke in this restaurant. Then it follows that it is 
forbidden that you smoke a cigar in this restaurant. For it is necessary that if 
you smoke a cigar in this restaurant you smoke in this restaurant. 
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 Part (xiii). �(p  q)  (Pp  �q) 
1.  �(p  q)  O(p  q)  [MO, p  q/p] 
2.  O(p  q)  (Pp  Pq)  [OK] 
3.  Pq  �q    [T28, q/p] 
4.  �(p  q)  (Pp  �q)  [1, 2, 3, PL] 
Note that the sentence at step (2) is provable in the deontic system OK; and 
since every normal ad system includes OK, this sentence is a theorem in 
MADL + MO too.  
 Part (xvi). �(p  q)  (�q  Fp) 
1.  �(p  q)  (Pp  �q)  [(xiii)] 
2.  (Pp  �q)  (�q  Fp)  [PL, adIT etc.] 
3.  �(p  q)  (�q  Fp)  [1, 2, PL]  
 
4.5.3 Some derived rules in aKdKadMO 
 
 Derived Rules Informal reading 

(i) 
 
(ii) 
 
(iii) 
 
(iv) 

If  A  B, then  �A  OB 
 
If  A  B, then  PA  �B 
 
If  A  B, then  �B  FA 
 
If  A  B, then  UB  �A 

If A implies B is a theorem, then �A 
implies OB is a theorem. 
If A implies B is a theorem, then PA 
implies �B is a theorem. 
If A implies B is a theorem, then �B 
implies FA is a theorem. 
If A implies B is a theorem, then UB 
implies �A is a theorem. 

Table 13 
Theorem 30. All rules in table 13 are derived rules in aKdKadMO. 
 Proof. 
 Derived rule (i). If  A  B, then  �A  OB. If A implies B is a 
theorem, then �A implies OB is a theorem. 
 Proof. Suppose that (1)  A  B. Then (2) �(A  B) [by �-
necessitation from 1]. (3)  �(A  B)  (�A  OB) [by theorem 29(x)]. 
Hence, (4)  �A  OB [from 2 and 3 by modus ponens]. It follows that 
(5) if  A  B, then  �A  OB [by conditional proof from 1–4 
discharging the assumption]. 
 Derived rule (ii). If  A  B, then  PA  �B. If A implies B is a 
theorem, then PA implies �B is a theorem. 
 Proof. Suppose (1) A  B. Then (2)  �(A  B) [from 1 by �-
necessitation]. Hence, (3)  PA  �B [from 2 and theorem 29(xiii)]. It 
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follows that (4) if  A  B, then  PA  �B [by conditional proof from 
1–3 discharging the assumption]. 
 Derived rule (iii). If  A  B, then  �B  FA. If A implies B is a 
theorem, then �B implies FA is a theorem. 
 Proof. Suppose that (1) A  B. Then (2)  �(A  B) [from 1 by 
�-necessitation]. Hence, (3)  �B  FA [from 2 and theorem 29(xvi)]. It 
follows that (4) if  A  B, then  �B  FA [by conditional proof from 
1–3 discharging the assumption]. 
 Derived rule (iv). If  A  B, then  UB  �A. If A implies B is a 
theorem, then UB implies �A is a theorem. Proof is left to the reader.  
 
4.5.4 Conjunctive and disjunctive  
obligations, permissions, necessities and possibilities 
Let us consider some theorems that include conjunctive and disjunctive 
obligations, permissions, necessities and possibilities. 
 
 Theorem Intuitive reading 

(i) 
 
(ii) 
 
(iii) 
 
(iv) 
 
(v) 
 
(vi) 
 
(vii) 
 
(viii) 
(ix) 

(�p  �q)  O(p  q) 
 
�(p  q)  (Op  Oq) 
 
P(p  q)  (�p  �q) 
 
(�p  �q)  F(p  q) 
 
�(p  q)  (Fp  Fq) 
 
(�p  �q)  O(p  q) 
 
(Pp  Pq)  �(p  q) 
 
P(p  q)  (�p  �q) 
(�p  �q)  F(p  q) 
 

If both p and q are necessary, then it is obligatory that p 
and q.  
If it is necessary that p and q, then it is obligatory that p 
and it is obligatory that q. 
If it is permitted that p and q, then it is possible that p and it 
is possible that q. 
If it is impossible that p or it is impossible that q, then it is 
fobidden that p and q. 
If it is impossible that p or q, then both p and q are 
forbidden. 
If it is necessary that p or it is necessary that q, then it is 
obligatory that p or q. 
If it is permitted that p or it is permitted that q, then it is 
possible that p or q. 
If it is permitted that p or q, then either p or q is possible. 
If it is impossible that p and it is impossible that q, then it is 
forbidden that p or q. 

Table 14 
Theorem 31. Every sentence in table 14 is a theorem in aKdKadMO. 
 Proof. Straightforward.  
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4.5.5 The contingency octagon in aKdKadMO 
It is possible to construct an alethic-deontic contingency octagon that 
displays the relationships between the alethic and deontic “contingency” 
operators. Figure 6 shows us how these concepts are related in aKdKadMO. 
 
 

NA

KA

N A

K A

UA U A

VA V A  
 
 

Figure 6. The Contingency Octagon in aKdKadMO. 
 
4.5.6 More rules in aKdKadMO 
 
 Derived Rules  

(i) 
(ii) 
(iii) 
(iv) 
 
(v) 
(vi) 
 
(vii) 
(viii) 

If   (A1 ...  An)  A, then  (�A1 ...  �An)  OA  
If   (A1 ...  An)  A, then  (PA1 ...  PAn)  �A  
If   (A1 ...  An)  A, then �A  (FA1 ...  FAn)  
If   (A1 ...  An)  A, then UA  (�A1 ...  �An)  
 
If  (A1 ...  An)  A, then  (�A1 ...  �An)  OA  
If  (A1 ...  An)  A, then  UA  (�A1 ...  �An)  
 
If  A  (A1 ...  An), then  PA  (�A1 ...  �An)  
If  A  (A1 ...  An), then  (�A1 ...  �An)  FA  

(for n  0) 
(for n  0) 
(for n  0) 
(for n  0) 
 
(for n  0) 
(for n  0) 
 
(for n  0) 
(for n  0) 
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(ix) 
(x) 
(xi) 
(xii) 

 
If  A  (A1 ...  An), then  �A  (OA1 ...  OAn)  
If  A  (A1 ...  An), then  PA  (�A1 ...  �An)  
If  A  (A1 ...  An), then  (�A1 ...  �An)  FA  
If  A  (A1 ...  An), then  (UA1 ...  UAn)  �A  

 
(for n  0) 
(for n  0) 
(for n  0) 
(for n  0) 

Table 15 
Theorem 32. All rules in table 15 are derived rules in aKdKadMO. 
 Proof. Left to the reader.  
 
 Theorem  Theorem 

(i) 
(ii) 
(iii) 
(iv) 

(�p1 ...  �pn)  O(p1 ...  pn) 
�(p1 ...  pn)  (Op1 ...  Opn) 
P(p1 ...  pn)  (�p1 ...  �pn) 
(�p1 ...  �pn)  F(p1 ...  pn) 

(v) 
(vi) 
(vii) 
(viii) 
(ix) 

�(p1 ...  pn)  (Fp1 ...  Fpn) 
(�p1 ...  �pn)  O(p1 ...  pn) 
(Pp1 ...  Ppn)  �(p1 ...  pn) 
P(p1 ...  pn)  (�p1 ...  �pn) 
(�p1 ...  �pn)  F(p1 ...  pn) 

Table 16 
Theorem 33. Every sentence in table 16 is a theorem in aKdKadMO. 
 Proof. Straightforward.  
 
4.6 aKDdKDad  
The smallest normal alethic-deontic logic that includes the axioms aD and 
dD, i.e. the sentences Op  Pp and �p  �p, is aKDdKDad . 
Consequently, aKDdKDad  = MADL + {aD, dD}. It is our first example of 
an ad system that contains more than one additional axiom. Nevertheless, the 
system is an ad combination of the pure alethic logic aKD and the pure 
deontic logic dKD (SDL), since it doesn’t contain any mixed axioms, in 
contrast to our two previous systems aKdKadOC and aKdKadMO. We will 
also call this system S5. aKDdKDad  includes PL, the axioms aK and dK, 
the ordinary definitions of the alethic and deontic operators, modus ponens, 
�-necessitation and O-necessitation, like every normal alethic-deontic 
system. We shall say that any normal alethic-deontic system that is an 
extension of aKDdKDad , i.e. any normal alethic-deontic system that 
includes aD and dD, is a normal aKDdKDad -system. 
 Let us consider some properties of this system. 
 
4.6.1 The alethic-deontic octagon 
Figure 7 displays the alethic-deontic octagon in the system aKDdKDad . 
The octagon is interpreted as usual. 
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Figure 7. The Alethic-Deontic Octagon, MADL + {aD, dD} (S5). 
 
Note that the figure essentially is a combination of the ad octagon for the 
system aKDdKad and the ad octagon for the system aKdKDad . Now, 
this should come as no surprise, since aKDdKDad  includes every sentence 
in aKDdKad and in aKdKDad . Furthermore, since MADL + {aD, dD} 
contains these systems, it is a aKDdKad -system, as well as a aKdKDad - 
and a aKDdKDad -system. No mixed axioms are included in the system. 
Hence, no interesting relationships between deontic and alethic propositions 
are forthcoming. 
 The next system we consider includes both a pure additional alethic 
axiom and a mixed axiom. 
 
4.7 aKDdKadMO 
The smallest normal alethic-deontic logic that includes the axiom aD and 
MO, i.e. the sentences �p  �p and �p  Op, is aKDdKadMO. 
Accordingly, aKDdKadMO = MADL + {aD, MO}. We will also call this 
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system S6. Since it is a normal alethic-deontic system aKDdKadMO 
includes PL, the axioms aK and dK, the usual definitions of the alethic and 
deontic operators, modus ponens, �-necessitation and O-necessitation. A 
normal aKDdKadMO-system is any normal alethic-deontic system that 
includes aD and MO, or in other words, any normal alethic-deontic system 
that is an extension of aKDdKadMO.  
 Let us consider the alethic-deontic octagon in aKDdKadMO. 
 
4.7.1 The alethic-deontic octagon 
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Figure 8. The Alethic-Deontic Octagon, MADL + {aD, MO} (S6). 
 
 
4.8 SADL, aKdKadOCMO 
aKdKadOCMO is the smallest normal alethic-deontic logic that includes the 
axioms OC and MO, i.e. the sentences Op  �p and �p  Op. Accordingly, 
aKdKadOCMO = MADL + {OC, MO}. We will also call this system S8 or 
Standard alethic-deontic logic (SADL). Since it is a normal alethic-deontic 
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system aKdKadOCMO includes PL, the axioms aK and dK, the usual 
definitions of the alethic and deontic operators, modus ponens, �-
necessitation and O-necessitation. A normal aKdKadOCMO-system is any 
normal alethic-deontic system that includes OC and MO, or in other words, 
any normal alethic-deontic system that is an extension of aKdKadOCMO.  
 Let us consider some properties of this system. 
 
4.8.1 The alethic-deontic octagon 
 

O P
U

, 
, 

p p
F p p

Pp O p
Fp U p
, 

, 

Fp U
O p Pp

, 
, 

p

Up F p
Op P p

, 
, 

� �

� �

p, 
, 

p
p p

� �

� �

p p
p p
, 

, 

� �

� �

p p
p p
, 

, 
� �

� �

p p
p p
, 

,  
 
 

Figure 9. The Alethic-Deontic Octagon, aKdKadOCMO, SADL (S8). 
 
4.8.2 Deductively equivalent systems 
It is easy to see that all systems above are included in aKdKadOCMO. 
MADL is included since it is included in every normal ad system. Every 
extension of minimal alethic-deontic logic discussed so far in this paper is 
constructed by adding one or several of the axioms aD, dD, OC and MO to 
this system. The sentences aD and dD are theorems already in aKdKadOC. 
So, it is obvious that these sentences are provable also in aKdKadOCMO. 
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Hence, aKdKadOCMO includes aKDdKad , aKdKDad  and 
aKDdKDad . Furthermore, it is also obvious that aKdKadOC, 
aKdKadMO, and aKDdKadMO are included in aKdKadOCMO since dD, 
OC and MO are theorems in aKdKadOCMO. Section 5 includes 
information about the relationships between all logics mentioned in this 
essay. 
 This completes our discussion of various alethic-deontic systems in this 
paper. We will end this article with some information about how the systems 
in this essay are related to each other. 
 
5. Relationships between systems 
Figure 10 displays the relationships between the systems we have discussed 
in this paper. Systems higher up in the diagram are stronger than systems 
lower down. So, S8 is the strongest system and S1 the weakest system. All 
other systems are included in S8 and S1 is included in all other systems. 
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Figure 10. Relationships between some ad systems. 
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Nr Systematic name Extensions of MADL Equivalent Systems 
S1 
S2 
S3 
S4 
S5 
S6 
S7 
 
S8 

aKdKad  
aKDdKad  
aKdKDad
aKdKadMO 
aKDdKDad  
aKDdKadMO
aKdKadOC 
 
aKdKadOCMO 

MADL 
MADL + {aD} 
MADL + {dD} 
MADL + {MO} 
MADL + {aD, dD} 
MADL + {aD, MO} 
MADL + {OC} 
 
MADL + {OC, MO} 

 
 
 
 
 
 
MADL + {aD, OC}, MADL + {dD, 
OC}, MADL + {aD, dD, OC} 
MADL + {aD, MO}, MADL + {aD, 
dD, MO}, MADL + {aD, OC, MO}, 
MADL + {aD, OC, MO}, MADL + 
{aD, dD, OC, MO} 

 
Comment 34. In this paper I have described a set of alethic-deontic systems 
that include alethic and deontic operators that are used to symbolize various 
deontic and alethic modal concepts. But all systems have many possible 
informal readings. In Rönnedal (2012) I mention some interpretations of 
various bimodal systems. If we interpret � as an epistemic operator and O as 
a doxastic operator, we obtain a set of epistemic-doxastic systems. If � is 
read as “It is always the case that” or “It is and it is always going to be the 
case that” and O as “It is always going to be the case that”, we obtain a set of 
bimodal temporal systems, etc. So, the results in this paper should be 
interesting not only to alethic-deontic logicians, but to any logician who 
wants to develop some kind of bimodal system. 
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