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Abstract

The Theory of Joining Systems, abbreviated TJS, is a general theory of repre-
senting for example legal and other normative systems as formal structures. It uses
algebraic tools and a fundamental idea in this algebraic approach is the represen-
tation of a conditional norm as an ordered pair of concepts. Another fundamental
idea is that the components in such a pair are concepts of different sorts. Condi-
tional norms are thus links from for example descriptive to normative concepts and
the result is the joining of two conceptual systems. However, there are often at least
three kinds of concepts involved in many normative systems, viz. descriptive, nor-
mative and intermediate concepts. Intermediate concepts such as ‘being the owner’
and ‘being a citizen’ have descriptive grounds and normative consequences and can
be said to be located intermediately between the system of grounds and the sys-
tem of consequences. Intermediate concepts function as bridges (links, joinings)
between concepts of different sorts. The aim of this paper is to further develop
TJS and widen the range of application of the theory. It will be shown that the
idea of norms as ordered pairs is flexible enough to handle nested implications
and hypothetical consequences. Minimal joinings, which are importantin TJS, are
shown to be closely related to formal concepts in Formal Concept Analysis. TJS
was developed for concepts of a special kind, namely conditions. In this paper a
new model of TJS is developed, where the concepts are attributes and aspects, and
the role of intermediate concepts in this model is discussed.
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Joiningconceptuabystems threeremarkson TJS
1 Outline of the theory of joining systems

1.1 Introduction

Intermediate concepts such as ‘being the owner’, ‘being a guardian’, ‘being a citizen’
and ‘having a relationship similar to being married’ play a significant role in the formu-
lation of legal systems. The meaning and structure of such concepts was the subject of
a comprehensive discussion among Scandinavian philosophers and jurists in the 1940’s
and 1950's. The subject has got a renewed interest during the last decades and has been
studied from different points of view, for example legal philosophy and logic. In a se-
ries of articles further developed and summarized as a chapteridbook of Deontic

Logic and Normative Systerfisndahl & Odelstad 2013), Lars Lindahl and | present a
formal theory of intermediate conceptJ his theory is a part of a more general theory

of representing for example legal and other normative systems as formal structures.
The more general theory is called the Theory of Joining Systems, abbreviated TJS. It
uses algebraic tools and a fundamental idea in this algebraic approach is the representa-
tion of a conditional norm as an ordered pair of conditions. Another fundamental idea

is that the components in such a pair are conditions of different sorts. A simple exam-
ple is the norm represented by the ordered f@irc,) wherec; is a descriptive and,

a normative condition. A conditional norm is thus a link from descriptive conditions to
normative conditions.

Intermediate concepts, also called intermediaries, enter the picture as bridges or
links between the descriptive and normative conditions. Consequently, there are three
kinds of concepts involved in many simple normative systems, descriptive, normative
and intermediate conditions. Intermediaries have grounds and consequences, the con-
cept being implied by the grounds and implying the consequences. In simple normative
systems an intermediate concept has descriptive grounds and normative consequences
and can be said to be located intermediately between the system of grounds and the sys-
tem of consequences. The intermediate concepts are of another kind than the grounds
and consequences, and will here be regarded as belonging to another sort. Therefore,
intermediate concepts function as bridges (links, joinings) between concepts of differ-
ent sorts.

The aim of this paper is to develop TJS in some respects and widen the range of
application of the theory. In normative systems it is frequent that the consequence of
an intermediary is a conditional norm. By jurists such intermediaries are often said
to have hypothetical legal consequences. This means that in norms represented as
ordered pairs, one of the components in the pair is itself an ordered pair, and such
norms ought to be representedes (c,, C3)) or ({C1, C2) , C3). The differences between
these two models of representing “norms within norms” and the general treatment of
phenomena similar to hypothetical legal consequences within TJS is the subject of one
of the remarks in this paper.

An important branch of lattice theory is formal concept analysis. The second re-
mark in this paper focus on a TJS-perspective on what is called formal concepts in
this branch of lattice theory. It turns out that the so-called formal concepts are closely

LIn our chapter of the handbook we discuss other approaches to the problem area.
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related to an important notion in TJS, namely the minimal joiningsveen concepts
of different sorts.

The third remark is an introduction to the application of TJS to concepts of quite
another kind than conditions, namely the concepts that are often generally called at-
tributes or aspects and in special contexts quantities or qualities. Familiar physical ex-
amples are length, mass, force an temperature and examples from other sciences will
be discussed in Section 4. Aspects are represented as relational structures and a frame-
work for such representations is presented in subsection 4.2 and 4.3. In subsection 4.4
this framework is used for the construction of an aspect model for TJS.

The logical study on normative systems has applications in many areas, especially
in legal science but also for example in computer science and artificial intelligence.
There is a discipline emerging on the border between the formal study of normative
systems and computer science. This discipline has, at least, a twofold aim: on the
one hand a computational approach to normative systems (primarily regarding the law)
and on the other hand the study of normative systems used within computer science.
This interdisciplinary discipline contains numerous applications of deontic logic and
the logic of normative systems. The development of TJS is founded on theoretical
considerations but also to some extent with practical applications in view. TJS has
for example been used in work on norm-regulation of agent systems, (see Odelstad
& Boman, 2004, and Hjelmblom, 2015) on a forest cleaning system (see Odelstad,
2007, and Hjelmblom, 2015, pp. 40-45) and on automation of the Swedish property
formation (see Hjelmblom et. al. in press). The development of the aspect model of
TJS, which is initialized in this paper, may hopefully result in further applications of
TJS

1.2 Some characteristic features of TJS

The description of TJS above is just a first preliminary view of TJS. This section con-
tains a more detailed overview over some aspects of TJS. For a comprehensive presen-
tation, see Lindahl & Odelstad (2013).

TJS is a framework for studying conceptual structures and their relations. The con-
ceptual structures can be of different (logical) types and of different (cognitive) sorts.
Essential for the TJS-perspective on conceptual structures is an implicative relation be-
tween the concepts. The characteristics of this implicative relation differ depending on
the type and sort of the conceptual structure. Examples of two different types of con-
cepts are conditions and attributes (here preferably called aspects). Of special interest
from the TJS-perspective is how different conceptual systems are connected to each
other. In application of the theory it is frequent that there are many different concep-
tual structures involved which form a network of different strata. TJS is a theory for
the study of many-sorted implicative conceptual systemsi¢c-systemgor msics) for
short.

Let A; and A, be two conceptual structures (formally strata) connected by an
implicative relation holding between concepts in the two structures. A pair of concepts
(€1, C2), with the first component taken froi; and the second fro, related by the
implicative relation is said to be a joining froff; to A,. A joining can be more or less
narrow. Of special interest from a TJS-perspective are the joinings that are maximally

8C
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narrow. (The exact definition of narrowness is given in SecHgnIn applications

of TJS the joining between conceptual structures can represent many different kinds
of connections dependent on the type and sort of the structures. The joinings can be
norms, rules, scientific laws etc.

A special class of msic-systems is condition implication structures (cis). When TJS
is applied to such structures the result is in Lindahl & Odelstad (2013) callecighe
model. Ordinary normative systems consist of condition implication structures and the
cismodel is developed with them in view. Some features ottkenodel will be listed
below (cf. Lindahl & Odelstad, 2013, p. 629f.).

(1) A pair{ay, ap) represents a norm due to the normative charactas.of
(2) The representation aims at a rational reconstruction of a normative system.

(3) Basic entities are concepts (conditions), not sentences or propositions, and the
Boolean connectives are in many cases applicable to the conditions, which then
constitute a Boolean quasi-ordering.

(4) Emphasis is put on the analysis of minimality of joinings and of closeness be-
tween strata.

(5) A central theme is “intermediaries” (intermediate concepts) in the system.

(6) A normative system is represented as a network of subsystems and relations be-
tween them; the study comprises stratification of a normative system with struc-
tures (“strata”) that are intermediate.

(7) Since economy of expression is in focus, representation by a base of minimal
joinings is a special interest.

(8) The strata are in many contexts Boolean structures extended with a quasi-ordering
(called Boolean quasi-ordering3¢g0’s). However, the strata of joining-systems
need not in theis model be Boolean structures but could instead for example be
lattice-like structures.

A note on item (3) above. If pis av-ary condition andy,...,i, are individuals, then

p(is, ...,i,) is a statement. Conditions can be used in state descriptions of for example
social and artificial agent systems. Antecedents and consequences of norms are repre-
sented as conditions and are caligdundsandconsequencagspectively. A norm is
correlating a ground to a consequence and is represented as an ordered pair.

Figure 1 is an attempt to illustrate a simple normative sysiééroonsisting of a
system@B; of potential grounds (descriptive conditions) and a systenof potential
consequences (normative conditiofsJhe set of norms inV is the setJ of links or
joiningsfrom B; to B,. A norm is represented by an arrow from the system of grounds
to the system of consequences.

A norm in a normative systenV, the norm here represented as an ordered pair
(&1, &), can be regarded as a mechanism of inference. We can distinguish two cases.

2Thefigures in this report are taken from Lindahl & Odelstad (2013) or our other joint publications.
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Potential consequences, B,

Joinings, J

Potential grounds, B,

Figure 1: A simple normative syste.

Supposehata; andb; are descriptive conditions aregd andb, normative.b; =; &
means thab; impliesa; in 8; anda, <, b, means thaé, impliesb, in 8,. Then the
following “derivation schemata” are valid givex.

0
a]_(i]_, ey IV)
(g, @)

az(i]_,...,iv)

(1

by Z1 &y
(a1, a)
a Z2 b

(bl’ b2>3

In (1), (a1, a2) functions as a deductive mechanism correlating sentences by means
of instantiation, while in (Il){a;, a2) plays an important role in correlating one condi-
tion, by, to another conditior,.

A note on item (4) above. Minimality of joinings and of closeness between strata rest

on the notion of narrowness between antecedent and consequence in a norm. These
notions will be discussed in more detail in later sections, see subsection 1.3.2 and
2.2.1. However, Figure 2 will give a hint of what is meant with narrowness. Consider
the norms (links) from the systeB, of grounds to the syster, of consequences.

SNotethath; =1 & relates conditions of the same sort and the same hold®faf, by; by anda; are
descriptive buy, andby are normative. A norm consists of conditions of different sorts. As stated earlier,
only implicative sentences that relate conditions of different sorts will be represented as ordered pairs.
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By
Consequences

Link 2{ b1,b) Link I ar,a2)
B
Grounds

Figure 2: Norn¥a; a,) is narrower than norngby by).

Suppose thata;, a;) and (by, b,) are norms from the system of grounBg to the
system of consequencBs.

The figure illustrates thdh,, a,) is narrower tharb,, b,). We can say alternatively
that(ay, ao) “lies between™, andb,.

A note on item (5). Concepts that have two faces, one turned towards facts and de-
scriptions, the other towards legal consequences are said to be intermediate between
facts and legal consequences and will often be called intermediaries. Figure 3 will
give an illustration of the idea of a normative system with intermediaries. The sys-
tem is represented as a two-sorted implicative conceptual system, consisting of a set of
descriptive grounds and a set of normative consequences. The intermediate concepts
are neither purely descriptive nor purely normative, they have descriptive grounds and
normative consequences and must be understood as a unity of the grounds and the
consequences.

As an example, consider what it means to be a citizen according to the system of
the U.S. Constitution. Article XIV, Section 1 reads as follows:

All persons born or naturalized in the United States, and subject to
the jurisdiction thereof, are citizens of the United States and of the State
wherein they reside. No State shall make or enforce any law which shall
abridge the privileges or immunities of citizens of the United States; nor
shall any State deprive any person of life, liberty, or property, without the
due process of law; nor deny to any person within its jurisdiction the equal
protection of the laws.

Two key concepts in the article apitizenand person. The article specifies the
ground for the condition being a citizen in the United States:

persons born or naturalized in the United States, and subject to the jurisdiction
thereof
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Potential consequences, B>

Joinings, J

Intermediaries

Potential grounds, B

Figure 3: A normative system with intermediaries.

andspecifies a number of legal consequences of this condition expressed in terms of
‘shall’:

no State shall make or enforce any law which shall abridge the privileges or immu-
nities of citizens of the United States.

The article does not state any ground for the condition to be a person but specifies
a number of legal consequences connected to this condition:

nor shall any State deprive any person of life, liberty, or property, without due
process of law; nor deny to any person within its jurisdiction the equal protection of
the laws.

Within the constitutional system of United States, this article is supplemented with
rules laid down by the Constitution and through court decisions. These rules determine
together, by specifying grounds and consequences, the role the concepts ‘citizen’ and
‘person’ have within the legal system. We will return to this example in Section 2.

A note on item (6). Figure 4 is a network of strata illustrating a TJS representation
of a fairly complex normative system. It is included in Lindahl & Odelstad (2013) p.
620 with comments and explanations and these will be quoted here. Noteithtite
operation of conjunction and is the operation of disjunction for conditions.

The present subsection. presents a&is example of joining-systems
with intervenients for a network d8qo strata.... The example is legal
and concernswnershipandtrust as intervenients. The legal rules in this
example are expressed in terms of joinings betwBga's B1, B,, By,
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B,

Deontic consequences of
ownership and trust,
respectively, i.e., powers,
claims, immunities
obligations, etc.

1 2 3 5 6
as as as as  as as

N
115“/\&5}
((15l AassA (153)\/ (as’n Aas’)

1 2 3
as Aas A as

N 2 3 4.5 6
as"Aas’ Aas Ads Ads

Legally characterized
grounds for ownership, i.e.,
purchase, inheritance,
barter, occupation, etc.

B,

Trusteeship Ownership

“Factual”
grounds for
trusteeship

“Factual” grounds for purchase,
inheritance, barter, occupation etc., i.e.,
making an agreement to exchange goods
for money, being descendant of a deceased
person, etc.

Figure 4: A network of strata.

Bs for ownership, and betweerBs, 8, and Bs for trusteeshid. Both

of B, and B, are intermediate structures, wheBg is supposed to con-

tain the intervenients ownership and trusteeship &dhe intervenients
purchasebarter, inheritancepccupationspecificationgxpropriation(for
public purposes or for other reasonshich are grounds for ownership; B
contains grounds for the conditions B3, such as making a contract for
purchase or barter respectively, having particular kinship relationship to
a deceased person, appropriating something not owned, creating a valu-
able thing out of worthless material, getting a verdict on disappropriation
of property, either for public purposes or for other reasoBg.contains
different grounds for trusteeshifBs contains the legal consequences of
ownership and trusteeship, respectively, in terms of powers, permissions
and obligations.

Note that in many (but certainly not all) applications of TJS the conceptual struc-
tures involved are of the same type but of different sorts. Icitmodel the concepts
are of the type conditions but that is just one model of TJS. The general, abstract the-
ory of joining-systems can be applied to quasi-orderings of any kind. The “intended
models” of TJS differ substantially but have some features in common. They consist

4Trugt is where a person (trustee) is made the nominal owner of property to be held or used for the benefit
of another. Trusteeship is the legal position of a trustee.
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of systems of conceptual structures of differgmts with implicative relations joining

the structures. In Section 4 we will studysic-systems where the concepts are repre-
sented as relational structures. Such concepts are often called attributes and sometimes
aspects, here the term ‘aspect’ will be preferred. As examples of aspects the following
may be mentioned: area, temperature, age, loudness, accessibility, public interest and
archeological value. On concepts of this type several quasi-orderings can be defined,
but in this paper only one will be studied.

1.3 A small piece of the TJS formal framework
1.3.1 Introduction

This subsection is an attempt to introduce one basic idea of the TJS-formalism in a
very simple fashion.

Let (Ao, Z0) be a quasi-ordering. The intended interpretatiod\efs that its ele-
ments are concepts of some type afydan implicative relation between the concepts.
The character of<, differ depending on the type of concepts considered. If the con-
cepts are conditionsgo is usually implication. Define a relatiody on Ag x Ag as
follows:

(a,b)y <p(c,dy @ cSpa& bZpd

In measurement and utility theorgty expresses differencesga,b) <y (c,d) is then
interpreted as follows: The difference (with respectt) betweera andb is less than
or equal to the difference betweeandd.
Let A; andA; be two disjunct subsets &§ and let=; be the restriction of3o to A;
and =, the restriction of3g to Ay, i.e. 31==0 /A; and=Z,==0 /A2.°> We may think of
A; andA; as consisting of concepts of different sorts but (in simple cases) of the same
type. For example, the elementsAa and A, can be conditions but the conditions in
A; can be descriptive and thoseAa can be normative. Letl be restrictions oK to
Ap X Ay, i.e. <=<p /A1 X Ay. Note that<g is a quasi-ordering 0Ag x Ag and<l on
A1 x Ay. The elements i\ x A, are bridges (links, joinings) between the concepts in
A; and inA;. In different applications of the theory the ordered pairéirx A, can
represent a diversity of phenomena. For example, they can represent conditional norms
with the antecedent being a descriptive condition taken ##@rand the consequence a
normative condition taken from,. But as will be seen in the last section, the elements
in A; andA; as well as the ordered pairs can represent concepts of quite different types
and sorts.
The binary relationd is a quasi-ordering of the elementsAa x A,. If ordered
pairs inA; x A, represent norms, thed is an ordering of the norms which can be
interpreted as an implicative relation between thefa,b) < (c,d) means that the
norm<{a, by implies the normc,d) and we say thafa, b) is at least as narrow &s, d).
(Cf. differences with respect tdo.) The minimal norms with respect tg are of
special interest since they can generate the whole set of norms in a transparent way.
(Ao, 20y Is in many contexts not given in the outset. Instead, in most cases we start
off with two quasi-ordering$A;, 31) and(Az, =2). We connect them by paifg,, a),

SRedrictions and the use of '/’ is explained in the beginning of Section 1.3.2.
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wherea; € A; anda, € A, andwe call them joinings. We close the set of joinings such
that it becomes a quasi-ordering with respectitand call< the narrowness-relation
from <A1, jl) to <A2, j2>

Suppose now that we have three quasi-orderi#gs=1), (A2, =2) and{Ag, Z3).
Suppose further thaly, ap) is a joining from{Ag, =1) to (A, Z2) and(ap, a3) is a
joining from (A, Z2) to (Ag, Z3). If this implies that(a;, ag) is a joining fromA; to
Az then the elements i, act as intermediaries betweApandAs. Of special interest
are thos€a, ap) and(ay, ag) such thata;, as) is a minimal joining with respect to the
narrowness relation betweéA;, =;) and({Agz, =3).

In the next subsection some concepts and results used in TJS will be presented
more formally. For a more profound discussion of the subject see Lindahl & Odelstad
(2013).

1.3.2 Some basic definitions and results

This section contains definitions and results used in the rest of this paper and is intended
to be consulted when necessary. Note that in this paper ‘if and only if’ is abbreviated
to ‘iff".

First a note on terminology. Suppose tR&s av-ary relation on a seA and thatx
is a subset oA. ThenRN X" is denotedR/X and is called theestrictionof Rto X.

Correspondences The notion of a correspondence will be used in Section 3 on For-
mal Concept Analysis and in Section 4 on joining conceptual systems of a8pects.

The triple(X, Y, y) is acorrespondenciom X to Y if X andY are setsy is a binary
relation, andy C X x Y. The expression&, y) € y andxyy are used synonymously. If
(XY, y) is a correspondence, then

Y ={y.% | xyy)

and (Y, X, y‘1> is a correspondence. If the tripleX, Y, y) is a correspondence, it is

sometimes more convenient to say thas a correspondence fro¥ito Y and thaty™*
is a correspondence frolhto X. Suppose thatX, Y, y) is a correspondence. Zf C X
we define:

v[Z] ={yeY|IAXxe Z: xyy}.

Note that there can exi&h, Z, € X such thaZ; # Z, buty[Z1] = y[Z;].
If WCY then

y’l[\/\/]={xeX|3yeW:yy’1x}={xeX|3yeW:ny}.

The correspondencgX, Y,y) is on X if y™1[Y] = X, ontoY if y[X] = VY. Ifa
correspondence is ad we say thaiX is the domain of the correspondence. And if a

6The theory of correspondence is frequently used in economic theory, see for example Debreu (1959)
and Klein & Thompson (1984), where correspondences are often treated as set-valued functions (see further
sub-section 4.3.6 below). The presentation of correspondences is here inspired by Cohn (1965) pp. 9-11.
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correspondence is onddwe say thaty is the image, range or codomain of the corre-
spondence. If there is no risk of ambiguity, we denpféa}] with y [a] andy~*[{b}]
with y~1[b].

Suppose thatX, Y, y) is a correspondence. Then the set

{(x W) € Xx (Y)W =7y[X]}
is a function onX into p(Y), and we denote . Thus
7 X - o(Y)

T =vI[x.

Therelative producbof two correspondencéX, Y, y) and(Z, W, 6) is the correspon-
dence(X, W, y|6) wherey|s is defined by

yIo ={{(x,wy e XxW|IveYNZe: xyv& vyw}.
Note that the operation relative product on correspondences is associative.

Proposition 1 Suppose thatX, Y, y) and(Z, W, ) are correspondences and that@
X. Then

(16) [Al =6 [y [Al].

Quasi-orderings

Definition 2 The binary relation= is a quasi-ordering orA if = is transitive and
reflexive in A.

Another name for quasi-ordering is preordering. Writinfpr the equalitypart of
< we say thai ~ y holds iffx =3 y andy = x. Also, writing < for the strict part of X
we say thak < yiff x < yand noty 3 x.

A quasi-ordering is closely related to a partial orderingAlf 3) is a quasi-ordering
and~ is the equivalence part gf, then=< generates a partial ordering on the setof
equivalence classes generated frAm

Definition 3 Suppose thats is a quasi-ordering on A and that X A and xe X.
Then,

(1) x is aminimal elementn X with respect taz iff there is no ye X such that y x,
(2) x is amaximal elemenin X with respect tgz iff there is no ye X such that x< y.
(3) The set of minimal elements in X with respectites denotednin X and the set
of maximal elements of X with respect{ds denotednax X.

(4) x is aleast elemenin X with respect tag iff forally € X, x 3y,

(5) x is agreatest elemem X with respect tgs iff forally € X,y 3 x.

Note that in a quasi-orderin@\, <), a greatest and a least element in aX6&t A
need not be unique. But ¥ andy are greatest elements (or least elements) with
respect taz, thenx ~ y.
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Quasi-lattices and complete quasi-lattices The notions of least upper bound and
greatest lower bound are important in the definition of a joining-system. These no-
tions are usually defined for partial orderings and not for quasi-orderings. Since quasi-
ordering is a basic structure in TJS, we generalize the notions of least upper bound and
greatest lower bound to quasi-orderings. We use ub and Ib as abbreviations for upper
bound and lower bound respectively, and lub and glb for least upper bound and greatest
lower bound respectively. We note that (in contrast to what holds for partial orderings)
a least upper bound or a greatest lower bound relative to a quasi-ordarigy need

not be unique.

Definition 4 Let X be a quasi-ordering on a set A with&XA. Then
ub<s X=faeA|lVxeX:xZal

lb<sX={aeA|lVxeX:aZx

lub< X = {ac Alaeubs X & Vbeubs X : a3 b}

glos X ={acAlaclbsX&VbelosX:b3al

According to standard algebraic terminology, a partially orderedlLset) is a lat-
tice if for all a,b € L, sup. {a,b} and inf {a,b} exist inL. (In connection with partial
orderings, we prefer to use sup and inf instead of lub and glb respectivglys)
is completeif inf . X and sup X exist for all X ¢ L. We generalize these notions to
quasi-orderings.

Definition 5 If (A,R)is a quasi-ordering such that
lubr{a,b} # & and glbz {a,b} # @ foralla,b e A,

then(A,R) will be called aquasi-lattice If lubg X # @ andglbg X # @ for all X € A,
then(A, R)is acompletequasi-lattice.

Narrowness and lowerness

Definition 6 Suppose thatA;, <1) and(Ay, =,) are quasi-orderings. Thearrowness
relationwith respect tq/A;, 31) and{A,, =) is a binary relation on Ax A, denoted
by <<, <,, defined as follows: For allgh; € A, a2, € Az

(ag, @) <, <, (b1, o) iff by Z1 a0 & @ T2 by (1)

Thelowerness relationvith respect to{A;, 31) and (A, 3,) is a binary relation on
A1 X A, denoted byj:l < defined as follows: For allgab; € Aj, ax, b € Ay

(4, @) 35 < (bi,bp) iff & 1 b1 & @2 T2 by &)

When there is no risk of confusiem > will be used instead ofi<, <, and 37, and
evenz;, instead otj:l <,

Note that(A; x Ay, <1, as well as(Al x Ay, j*l’2> is a quasi-ordering given that
(A1, 31) and(A,, =) are quasi-orderings.
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Protojoining- and joining-systems

Definition 7 A protojoining-system (pJsp an ordered triple(A;, Ay, J) such that
Al = (A, Z1) and Ay = (Ay, 32) are quasi-orderings and X A3 x Ay and the
following condition is satisfied wherg ; is the narrowness relation determined by
Ay andA,: Forallby, ¢ € Afand by, ¢ € Ay,

if (by, bz) € J and(by, by) <15 (€1, C2), then(cy, ) € J.

If (A1, Az, J) is a protojoining-system we let; be the quasi-ordering iA; if not
stated otherwise.

Suppose thatA;, Ay, J) is apJs. Then

(1) (A1, Az, J)y is a correspondence witly as domain andy, as codomain, and we
can also say that is a correspondence frof to A,.

(2) J[A1] € Az, whereJ[A;] contains the second components (belonginggpof
the ordered pairs that are joinings from to Ay, and

(3) JY[A,] € A1, whereJ™1[Ay] contains the first components (belonging/g
of the joinings from#A; to A, . Hence,J 1 [Ay] is the set of grounds ant[A] the set
of consequences of the joinings(ifly, Ay, J).

(4)<12[J]cJ

(5) =1 1JI Z2= J and, thereforeJ can be said to “absorb®; and =<,. Note that
X1(Z1 Nl Z2)%e iff Ayr,yo i X1 Z1y1 & y1dye & ¥z D2 Xe.

In the next theorem (5) is proved.

Theorem 8 Suppose thatA;, Z1) and({A,, =,) are quasi-orderings and thatd A; x
Az. Then{(As, 31), (A2, Z2), Iy is apdsiff 31 9] Zo=J.

Proof. (I) Suppose that(A;, 31), (A2, Z2),J) is apls. We provez; [J| Zp= J.
Suppose thata;, ap) €31 |J] 32. Then there id, € A, such thakag, by) € (21 J)
andb, <o ap. (a,by) € (Z11J) implies that there i9; € A; such thata; =1 by
and(b;,by) € J. Froma; =3 by andb, =X» a; follows that(bs, by) <1, (a1, a) and
since(by, by) € J the definition of gpJsimplies that(a;, ay) € J. &y 31 &1, ayJa and
a, 32 a implies thakag, ap) €31 |J] Z2.

(I) Suppose thats; |J| Zo= J. Suppose further thdt, ay) € J and(ay, ap) <1
by, by). It follows thatb; =X; a3 anda, 3 by, (by,a) € (Z11J) and therefore
<b1, bz) € (,'51 [J] ,‘52) Hence,((Al, ,'51> s <A2, ,'52) s J> is asz. ]

Theorem 9 Supposéehat ((Aq, 31),{A2, 32),J) is apds. Then(1l) (J <, /J)is a
quasi-ordering and?2) (A; U A, (31 UJU =) is a quasi-ordering.

Proof. (1) J € A1 x Az and since(A; x Az, <12) is a quasi-ordering it follows that
(J, <12 /J) is a quasi-ordering.

(2) Let Ag = A; U Ay and ZSp= (Z1UJU 3p). If x € Ag thenx ~; x and if
X € A; thenx ~, x. In both casex ~g x which shows thatsg is reflexive. To prove
transitivity suppose that <o y andy =¢ z. There are four cases to consider:

() x,y,z€ As thenx Z; yandy =; zand hence =<; z, which implies thak = z.

(i) x,y € Ay & ze A, and thenx =X; y andyJzand, hencexJz(according to the
theorem above) which implies that=, z.

9C



Joiningconceptuabystems threeremarkson TJS

(i) xe Ay & y,ze Ay, andthenxJyandy =, zand, hencexJz(according to the
theorem above) which implies that=, z.

(iv) x,y,z € Ax thenx =, yandy =, zand hencex 3, z, which implies that
XS0z m

Definition 10 A prejoining-systenfpreJs), is an ordered tripléA;, Ay, J) such that
A = (A, Ry) and A, = (A, Rp) are quasi-orderings and X A; x A; and the
following conditions are satisfied whe@ , is the narrowness relation determined by
A and Ay:

(1) for all b;,c1 € A and by, ¢, € Ay, if (bl, bz) eJ and(bl, b2> ﬂl’z {C1, Cp), then
(C1,C) € J,

(2)for all by, c; € Ay and Iy € Ay, if (by, bp) € J and{cy, by) € J, then(ay, by) € J for
all a; € |Ub;51 {bl, ci},

(3)for all by, c, € Ay and by € Ay, if (by,bp) € J and(by, c;) € J, then(by, a,) € J for
allas € g|b52 {bz, Cy}.

Definition 11 A joining-system (Js), is an ordered tripleAi;, A, J) such thatA; =

(Aq, 21y and A, = (Ay, Zp) are quasi-orderings, and & A; x Ay, and the following
conditions are satisfied wherg; , is the narrowness relation determined B and
A

(1) for all a3, by € Ay and &, by € Ay, if (a1, a2) € J and(ay, ax) <12 (b1, by), then
(b1, bo) € J,

(2)forany X € Ay and @ € Ay, if (a1, ap) € J for all a; € Xy, then(b,, ay) € J for all

b]_ <€ |ub51 X1,

(3)forany % C Ay and a € Ay, if (a1, ap) € J for all ay € X, then(ay, b,) € J for all

bz S g|b52 Xo.

(In what follows, when we use the expressif,, A, J), we presuppose that
A1 = (A, Ty andAz = (Ag, 22).)

If (A1, Ay, J) is a joining-system, then the elementslimre calledoiningsfrom
Aj to Ay, and we calld the joining-spacein (A, Ay, J). We call A; the bottom-
structureand. A, thetop-structurein the Js(A;, Ay, J).

In this paper we assume thatifl;, A, J) is apJsor als, thenA; N A, = .

In TJS the notions of connectivity of a joining-system is central.

Minimal Joinings and Connectivity
Definition 12 A pJs{Aj, A, J) satisfiesconnectivityif whenever(c;,c;) € J there
is (b1, bp) € J such that(bs, by) is a minimal element in J with respect &> and
(b1, b2) <12 (C1, C2).

The following theorem, which is Theorem 3.26 (p. 579) in Lindahl & Odelstad
(2013), gives a sufficient condition for connectivity.

Theorem 13 If A; = (A1, 31) and Ay = (Ay, =) are complete quasi-lattices and
(A1, Ay, J) is a joining-system, the@@A1, A, J) satisfies connectivity.

If (A1, Ay, J) is apIsthe set of minimal elements (i.e. joinings) Jnis denoted
ming,, J. Under certain conditions it holds thaning, , J, 37 ,) is a complete quasi-

~

lattice, see Corollary 3.36 (p. 588) in Lindahl & Odelstad (2013).
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Isomorphisms SupposeahatA = (A, ps, .., o) andB = (B, o, .., o) are structures
such that the arity gf; ando arey; for alli, 1 < i < k. A functionp on AontoBis an
isomorphism oA onto B if forall i,1 <i <k,

Yay,...a, € Al pi(a,...a,) o di(e(@),...e@,)).

The following terminology will be used:
Bi (A, B) the set of bijections (one-to-one correspondences) on thé seto the
setB.
| (A, B) the set of isomorphisms qA onto 8.
| (A, A) is often shortened to(1A).

The following proposition, which is easily proven, will be used often and without
cross-references in this paper.

Proposition 14 Suppose thafl andB are structures of the same type and Bi (A, B).
Then
¢ el(AB) iff ¢[Al =B iff ¢ [B] = A.

2 Hypothetical consequences

2.1 Introduction

Let us construct a simplified “condition-implicative” representation of the legal rules
for citizenship in the system of the U.S. Constitution, see subsection (\Nate thata
is the operation of conjunctio, is the operation of disjunction aridhe operation of
negation for conditions.) According to the rules, the disjunction of the two conditions
b: to be a person born in the U.S.
n: to be a person naturalized in the U.S.
in conjunction with the condition
S: to be a person subject to the jurisdiction of the U.S.
implies the condition
c: to be a citizen of the U.S.

That this implicative relationship holds according to the system is represented in
the form ((bv n) A s)Rc. Since it is a settled matter that citizens who are minors do not
have the right to vote in general electiongloes not imply the condition

e: to be entitled to vote in general elections.
Therefore: nofcRe], and hence ndi(b v n) A s)Re].
Let

a: to be adult.

Simplifying matters, suppose that,

(8} (cA a)Re.

It is easy to see that this is equivalent to

(2) cR(@ v e).

"Theconcept citizen regarded as an intermediary is discussed in a number of papers by Lars Lindahl and
myself. The presentation here follows mainly Lindahl & Odelstad (2000) pp. 273-277.
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Going from (1) to (2) can be callezkportation and going from (2) to (limporta-
tion.

We thus have within the system the following rules: {(b) A s)Rc andcR(&' V e),
stating that the condition ((bn)A s) is a ground foc and (é v e) is a consequence of
These two rules determine partly the rolecdtitizenship) in the constitutional system
under study. But there can also be other ground< fand consequences ofwithin
the constitutional system. Suppose that,, ... are the grounds af andhg, hy, ... the
consequences af Hence, the role af in the system is characterized by

01Rc, g2Re, ...,cRhy, cRhy, ...

Note that there are several sorts of conditions in this simplified version of the ex-
ample above. The grounds of i.e. b, n, ands, are descriptiveg is normative and
cis an intermediary. Let us suppose that the groundshsflongs to stratunB;, the
intermediary to stratunB, and the normative conditions to stratug, and, further,
thatJ; 7 is the set of joinings fronB; to B, J, 3 the set of joinings fronB, to B3 and
J1 3 the set of joinings fronB; to B3. Hence

{((bvn)A s),c)e I

However, note that

(c,(@ve)e¢ls
since (v e) is a mixture of two sorts, descriptive and normative, and belongs neither to
B3 nor toB3. To go from(c,(a’ Vv e)) to {(c A a),e) by importation does not solve the
problem, since we get (€ a) which is a mixture of an intermediary and a descriptive
condition. A solution seems to be to construct a “mixed strat@n'and 8, so that
(c A a) belongs to that. But that procedure undermines the idea that an intermediary
is implied by its grounds and implies its consequences. However, there is another
possibility worth considering. Note that’( €) can be represented as a nafe
and we can expresR(a’ v e) as the “nested implicatior®R(aRe). We can represent
this implication as the ordered pdtr, (a,e)) that contains an ordered pair as one of its
components{a, ) is a norm within a norm. Note thatis a descriptive condition but
of another sort thab, n, ands, sincea is not a ground for, instead we may suppose
thata belongs to the stratu8;. We thus have

((bvn)As),c) e Ji2, (a,€) € Jgz (C,(a,€)) € J243).

The consequence afis hypothetical, since it is conditional on being adult. That the
consequence of a condition, for example an intermediary, is itself a norm is a phe-
nomenon of frequent occurrence in law, and jurists often call such consequences “hy-
pothetical legal consequences”.

2.2 Formal treatment

In this subsection we will investigate the relation between representing the same norm
either ag({cy, o), C3) Or {Cy,{Cp, C3)), and in that way hopefully contribute to the dis-
cussion of hypothetical legal consequences. The following abbreviations will be used:
‘Js’ for joining-system, ‘Js(i)’ for the i:th condition in the definition of a joining-system
and ‘pJs’ for protojoining-system.
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2.2.1 Narrowness and lowerness

Supposehat Ay = (A1, 1), A = (Ag, 32) and Az = (Ag, 33) are quasi-orderings.
We infer the following ordering relations.

< j , also denoted<<, <, is the narrowness condition @) x Aj determined by

andz;.

<t also denotedt< </, is the lowerness condition ok x A; determined bys; and

f\/J .

<123), alsodenotedd<, 4 ordx, o ,isthe narrowness relation @ax(Az x As)

determined by3; and<,s.

J@2s, alsodenotedd<. < or<<. <, isthe narrowness relation @Ay x Az) X
N S

Az determined by<; , and3s.

The following structures are quasi-orderinQA; x Aj, S]i’j>, (Ai x Aj, ji*)j>,

(A1 X (A2 X Ag), D123)) and((As x A2) X A, J(1.2) 3)-
The equality part oK will be denoted- (with appropriate index).
Note the following:

((ag, @), a3) J2y 3 (b1, 02),13) & (b, ) Z7, (A, @) & a3 T3z &
obhZia&b aé& a Tbs
And further:
(8, (@, a3)) <123 (b1, (b2, b3)) & by Z1 a1 & (@, a3) Jo3(by,b3) &
ob Sia &b 3a & a3 bs
Hence,
((ag, @) ,a3) J(12) 3 (b1, b2),b3) & (@, (A, @3)) 123 (b1, (b2, b3)).
More exhaustively it can be expressed
((ag, &), ag) ﬁjgléz,jg (b1, b2) ., b3) & (@, (@ 3)) I, o . (b1, (b2, bs)).
Theorem 15 Suppose that
0 (AL X A)) X Az = Ap X (Ao X Ag)

such that
¢ (a1, @2) , a3) = (@, (@, &3)) -
Theng is an isomorphism
on((A1 x Ag) X Ag, (1,2 3) ONtO(A1 X (A2 X Ag), J1(2.3))-

Proof. First note that is a bijection on(A; x Ay) x Az onto A; X (As x Ag). Further,
((ag, @), az) Q123 (b1, b) ,bz) & (ay, (az, ag)) J1 23 (b1, (b2, b3)) &

¢ ((ag, ap), az) Dy 2,3) ¢ (b1, bo), bs).
This shows the theoremm
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2.2.2 Protojoining-systems
Theorem 16 Suppose @23 C (A1 X Ap) x Az and J 23 € Aq X (A2 X Ag) such that

((ag, @), a3) € J1,23 © (a1, (@, a3)) € Jy(23)- (39)

Then

1)

2<A1 X Ao, ,'5*1!2> Az, Z3), 3(1,2),3> is aplse ((A, 31), (Ao x Az, d23), Jig) is a
pJs.

(2)
@ such thaty ((ay, az) , ag) = (&, (a, ag)) is an isomorphism 0fJ;1 23, J(1,2)*,3) ONto
(123 J123)-

Proof. (1) We prove(=). Suppose th (Al X Ay, j’iz),(Ag, =3), J(l,g),Q,) is apJs.
Suppose further that, b; € Aq, (a2, az) , (b2, 3) € Az x Ag, (a1, (a2, ag)) € Ji2.3 and
that the following holds:

(a1, (@2, a3)) J1(23) (b1, (b2, b3)).
Then(ay, ap), (b1, ) € Ay x Ay, a3 € Az, ((ag, &), a3) € J2.3 and
((ag, @) ,az) J(12) 3 (b1, b2y, b3).

Since((Al X Ay, j12>,<A3, =3), J(lyz),3> is apJsthen((by, by), bs) € Ju3. Hence,
(by, (b2, b3)) € Jy (23 Which shows({(Aq, Z1), (A2 X Az, I23), J1(23)) is apJs. The
other direction, i.e(<), of the equivalence in (1) is proved analogously.

(2) According to Theorem 155 is an isomorphism of(Ay X Az) X Az, J(1.2 3)
onto

(A1 x (A2 x A3), <123) -

Note that(J(lyz)’g, ﬂ(]_,z)*,3> is a substructure C(f(Al X A2) X Ag, ﬂ(]_,z)*’g,)
and{J12) 3, J1.27 3) is a substructure afA; x (A x Ag), J1(23)) and, furthermore,

(a1, @) ,a3) € J1.2.3 © (a1, (@, a3)) € Ji 23 © ¢ (a1, @) ,a3) € J12)3.

2.2.3 Equivalence results

For simplification of notation let

Az = (A1, Z1), (Ao X Ag, <o3), J123)
Anza = ((A1x A, 315) - (As. Za) . Ju)a)

In this subsection we suppose thdji» s and thus alsoAy»3 arepJs’'s. Hence,
(J12.3 Ja2r,3) and(Jy23), J12,3)) are quasi-orderings. We also suppose that (JJ) in
Theorem 16 holdsy is defined as in Theorem 15.

In the study ofpJs’sthe minimal joinings play a special role for characterizing the
system (see subsection 1.3.2). The following theorem and its corollary are therefore of
interest.
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Theorem 17 Foralla; € A, ap € A and & € Az
(a1, @) ,83) € MiNJ(12)3 © (a1,(az, 8z)) € MiNJy (2 3).

Proof. We prove(=). Suppose thaay, ay) , az) € min J 2 3 and, hence(ay, (ay, as))
€ J12.3. Suppose now thabq, (by, b3)) € i3 such that

(by, (2, b3)) <123 (a1, (a2, a3)) .

Then((by, by, bs) € J123 and

(b1, o), b3) (1,23 (a1, @), az)

and sincg(ay, ap) , ag) € min Jy o) 3 it follows that

(b1, b2y, bg) 21,23 (a1, @2), a3)

which implies that
(b1, (b2, b3)) =123 (a1, (@, as))

and, henceay, (ap, az)) € minJy 3. The proof of(<) is analogousm
Corollary 18 A ») 3 satisfiesconnectivity iffiA o 3) satisfies connectivity.

Theorem 16, Theorem 17 and Corollary 18 show in what sense there is an equiv-
alence between representing a norn{(@s, c,), Cz) or {Cy, {Cp, C3)). Note that it is of
course possible thag is itself an ordered pair (for example a norgal), d,) and we
get({cy, C2), {(dy, do)) and{cy, {Cy, (ds, do))) respectively. This process can be iterated.

2.2.4 Some theorems

Even if Ay 23 and A s arepls’'sande an isomorphism o123, <.2),3) ONto
(1,23, J1,(2,3)) it does not seem to follow thafly (o 3y andA(y 2) 3 share the same clas-
sification with regard to being ds. Note for example that iff; >3 is aJsand the
quasi-orderings in the system are complete quasi-lattices, #hgfg) Satisfies con-
nectivity, which implies that this holds ofi(; ) 3, too. But it does not seem to follow
that A1) 3 is aJs. The situation is complicated, which is illustrated by the follow-
ing theorems. (This subsection can be omitted without loss of continuity.) In the next
three theorems we make assumptions abib 3y and examine the result of these for
An2) 3. Inthe last two theorems in this subsection we make assumptions. &gt

and examine the result of these féy , 3).

Theorem 19 Suppose thatA; 23 is a pJssuch thatds(3)is satisfied and thatJJ)
holds. Suppose further thab X Az, a3 € Aq, a3 € Az and((ay, az), az) € Ju 23 for
all a € Xs. If g|b§]2>3 (X2 X {ag}) * J then((al, b2> ,a3) € J(]_,z),g for all bz € |Ubf—\<{2 X2.8

8Notethat the condition gllg23 (X2 x {ag)) # @ is satisfied i Aq x A, <1 o) is a complete quasi-lattice
(see Lindahl & Odelstad, 2013, p. 568).
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Proof. Given the assumptions in the theorem we can proceed as fokawsa,, az)) €
Jig forall a; € X;. SinceAy 23 satisfies conditiods(3)it follows that(ay, (a, az))
€ Jy 23 for all (ap, az) € Xz x {ag} implies that(ay, (Cy, C3)) € Jy 23 for all (C3, C3) €
glby,, (X2 x {ag}). Suppose that, € lub<, X; andx; € X,. Thenx; <, by and, hence,

(o, a3) 23 (X2, &3)

from which follows thakby, as) € Ib<,, (X2 x {az}).
Suppose thatc,, ¢c3) € glbﬂm (X2 x {ag}). Then it follows that

(1) (bo,as) d23(Ca,C3)

which impliesc, 3, b, andag <3 c3, and, furthermore, it follows that

(2) (Ccp,C3) Do3 (X2, a3)

for all y, € Xz, which impliesy, 32 c; andcs 33 as. Hence,c; € ubz, X; which
together withb, € lub<, X; impliesb, 3> co. We have thus shown the ~; b, and
C3 ~3 az, and thus(bz, a3> € glbg 3(Xz % {ag}). From conditionJs(3)it follows that
(aq, <b2, )y e d (23) which |mplles<<a1, b2> ag) € J(l 23 N

Theorem 20 Supposeéhat A 23 is a pJssuch thatJs(2)is satisfied and thatJJ)
holds. Suppose further that X Aj,a € Az, a3 € Az and((ay, &), ag) € J2)3 for
all a; € X;. Then((bl, a),a3) € 3(1,2),3 forallb; € |Ub§1 X1.

Proof. Given the assumptions in the theorem we can proceed as follows. From
((aq,a2),a83) € Juoz and (JJ) follows thatay, (a,a3)) € Ji23, and given the
assumptions in the theorem this holds for all € X;. Then, according to condi-
tion Js(2) applied toA; (23), (b1, (a2, a3)) € Ji23) for all by € lub<, X;. Hence,

<<b1, a),a3) € J(lyg),;; forall b; € |Ub51 Xi. m

Theorem 21 Supposedhat Aj 23 is a pJssuch thatds(3)is satisfied and tha¢JJ)
holds. Suppose further thagX Az, a; € Aj,a € Ay and({(ay, a),ag) € Ju,23 for
all az € X3. Then the following holds: Iglbﬂz'3 ({ag} x X3) # @ then{(ay,ay),hs) €

J(l’z)!g for all b3 € g|bj3 X3.9

Proof. Given the assumptions in the theorem we can proceed as folaysa,, az)) €
Jl,(z’g) forallag € X3, i.e. (ag,(az,a3)) € J]_,(g!g) for all (ap, ag) € {@ax}xXs. Since\ﬂl!(z’g)
satisfies conditiods(3)it follows that(as, (a2, as)) € Ji2,3) for all (az, ag) € {az} x X3
implies that(ay, {C2, C3)) € Ji(23) for all {(cz,c3) € glb,, ({az} X X3). Suppose that
bs € glbj3 X3. Thenbs =3 X3 for all x3 € X3 and hence

(a2, b3) <23 (az, X3).
This shows thata,, bs) € Ibg,, ({a2} x X3). Suppose that

(Y2, ¥3) € Ibg,, ({az} x Xa).

9Note that the condition glg ({ax} x X3) # @ is satisfied if(A1 x Az, J12) is a quasi-lattice (see
Lindahl & Odelstad, 2013, p. 568)
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Then for allxz € X3
(Y2,¥3) J23 (@2, X3)

which implies thata, =<, y, andys =, xs. It follows thaty; € Ib< X3 and since
bs € glb< X3 it follows thatys; =, bs. Suppose thaly,, ys) € glbqn( az} X Xz). Then

(82, b3) <23 (Yo, ¥3).

Theny, =, a, andbs =3 ys. It follows thaty, ~, a; andys; ~3 ys and, hence,
(ap,b3) € glb§23 (fax} x X3). From conditionds(3)it follows that(ay, (a2, bs)) € J1 2,3
which implies{(ay, @) ,b3) € J1.23. ®

Theorem 22 Supposéhat A ») 3 is apJsand that(JJ)holds. Suppose further théit
(1) X1 C A, (2) a € Ay,a3 € Az and (3) ({(ag,a),a3) € J(l’z),g for all a; € Xy, then
(b1, @) ,a3) € 13 forallby e Iubj1 X1. ThenAy 3 satisfies)s(2).

Proof. Given the assumptions in the theorem we can proceed as follows: Suppose
that X; € Ay, (2) a € Ay,a3 € Az and (3)(a1,<a2, bs)) € \]1,(2,3) for all a; € X;.
Then((ay, &), ag) € Ji1,2)3 and according to the assumptions in the theorem it follows
that ((by, &), az) € Ju 23 forall by € Iubj1 X1. Henceay, (a, b)) € Ji (23 for all

by € Iubj1 X1, which shows thatA, (» 3) satisfies)s(2). m

Theorem 23 Supposedhat A1) 3 is a pJssuch thatJs(3)is satisfied and thatJJ)
holds. Suppose further thagX Ag, a3 € A1, @z € Ay and(ay, (ap, az)) € Ji (23 for all
ag € X3. Then the following holds: b, , ({az} x X3) # @ then(ay, (a2, b3)) € Ji23)
for all (az, bs) € glb, , {a} X X. o

Proof. Note first that#(; ») 3 satisfies]s(3)ift the following holds:If (1) X3 C Ag, (2)
a € A, ap € Ay and (3)((ay, ap),ag) € Juo3 for all a3 € X3 then((ay, ax),bs) €
Juo3forallbs e glb< X3. Suppose thaXs C Az, a; € A, a € A and{ay, (ap, ag)) €
Ji3 for all ag € X3 From this follows that({a;, ap),bs) € Ju 3 for all bs €
glb< X3. We now show that ibs € glb< Xz then(ap, b3) € gIb<23 {az} X X3. Suppose
thatb3 € glb<3 X3 and thatxz € Xa. Thenb3 =3 xgand

(ap, bg) <23 (a2, X3)

from which follows thakay, b3) € b, , {a>} x X3. Suppose thalc,, c3) € b, , {ax} x
X3. Then

(C2, C3) I3 (@2, X3)

and, hencea, 3> ¢ andcs T3 X3 and hencess € Ib<, X3 which impliescs 23 bs.
Suppose further thdt,, c3) € glb, , {a2} X X3. Then

(&, bg) <3 (Co, C3)

from which follows thatc, <, a; andbs =3 c3. Hence,, ~, a andbz ~3 c3 which
shows thatay, bs) € glbﬂzv3 {ap} X X3. m

The above theorems suggest that the relation between the fpnopérties of
systems consisting of three sorts of concepts and used for representing norms as
(€1, C2), C3) OF {Cy,{Cp, C3)) is Somewhat complicated. A complete analysis of this
problem area deserves a more thorough treatment than what is given here.
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3 Formal Concept Analysis and TJS

3.1 Introduction

Formal Concept Analysis (FCA for short) is a field of applied mathematics, chiefly a
branch of applied lattice theory. The topic was introduced by Rudolf Wille in 1982
and an excellent presentation of the field is given in Ganter & Wille (1999). A brief
introduction to Formal Concept Analysis is given in Davey & Priestley (2002) Chapter
3. In the first chapter of their book Davey and Priestley give the following very brief
description of the subject.

... the rather new discipline afoncept analysigrovides a powerful
technique for classifying and for analysing complex sets of data. From a
set of objects (to take a simple example, the planets) and a set of attributes
(for the planets, perhaps large/small, moon/no moon, near sun/far from
sun), concept analysis builds an ordered set which reveals inherent hierar-
chical structure and thence natural groupings and dependencies among the
objects and the attributes. (Davey and Priestly, 2002, p. 6)

In aninteresting paper Audun Stolpe sets out to study the particular tangential point
which exists between input/output logic and FCA (see Stolpe, 2015). As Stolpe points
out (p. 240):

Since the set of axioms in any given input/output logic is just a binary re-
lation between formulae, it ought to be possible to apply results from FCA
to the study of forms of conditionality that are not naturally assimilated to
the model based on inference relations and/or conditionals—e.g. to sets of
norms...

Stolpe uses FCA for providing a semantics for input/output logic. Since there are
some striking similarities (but also differences) between input/output logic (see Lindahl
& Odelstad 2013 pp. 627—-631, Stolpe pp. 256—257 and Sun 2013) it is a reasonable
conjecture that formal concepts in the sense of Wille can be a useful tool in TJS. The
theorems below throw some light on this topic. It is important to note that the expres-
sion ‘[formal] concept’ as it is used in FCA does not have the same meaning as the
word ‘concept’ as that term is used in TJS.

Two central notions in FCA are ‘context’ and ‘concept’. With the notation used
in Davey & Priestley (2002) they can be introduced as followscofstextis a triple
(G, M, ) whereG andM are sets ant C G x M. The elements o6 andM are called
objectsandattributesrespectively.

LetAcGandBcC M. Then

A =qt {me M | (Vg € A) gIm}

B =¢¢ {g€ G| (Yme B) gim}.



JanOdelstas

Let (G, M, 1) beacontext, A ¢ G andB ¢ M. Then @, B) is aconceptof (G, M, I)
iff A = BandB’ = A. The set of all concepts of the conte@, (M, |) is denoted
B(G, M, ).

A basic ingredient in FCA is thus a context consisting of two sets and a binary
relation between them, a relation which “join” elements in the two sets. In this aspect
FCA and TJS resemble each other. But there are also differences. In TJS the joinings
link elements in structures and the elements are themselves concepts. However, be-
cause of the formal similarity between FCA and TJS, methods and results from FCA
can hopefully be applied in the development of TJS. The general character of FCA is
emphasized by Davey and Priestley as follows:

The framework within which we are working — a pair of se#s,M,
and a binary relation linking them — is extremely general, and encom-
passes contexts which might not at first sight be viewed in terms of an
object-attribute correspondence. Consider, for example, a computer pro-
gram modelled by an input-output relati®between a finite set of initial
statesX and a finite set of final staté&swith xRyif and only if the program
when started in statecan terminate in state Then ¥, Y, R) is the context
for what is known as a (non-deterministic) transition system. Héigor
A C X) is to be interpreted as the set of final states in which the program
can terminate when started from any one of the states. ifDavey &
Priestly, 2002, p. 67.)

Formal concepts (or just concepts) in FCA are concepts of a special kind. They
have intensions and extension as concepts usually have but of a special kind and are
called intent and extent. The extent of a concept consists of objects that satisfy certain
attributes, and these attributes constitute the intent of the concept. The extent and the
intent of a concept constitute two different sets and an object is joined to an attribute
if the object satisfies the attribute. The intended interpretation of a formal concept is
a subset of what in TJS is considered as concepts, but is not the kind of concepts that
TJS were primarily intended to capture.

We shall use FCA as a tool for the study of TJS. To avoid confusions with the
notations in TJS some adjustments of the terminology and formalism used in FCA are
necessary. The terms ‘objects’ and ‘attributes’ are not appropriate in TJS and will not
be used here. (For the use of ‘attribute’ in this paper, see Section 4.) Even the notion
‘formal concept’ is problematic. As a preliminary solution to this problem the notion
‘conception’ will be used for ‘formal concept’. The notions ‘context’ and ‘conception’
will here be used as follows.

Suppose thatA; = (A1, 31) and Az = (Ap, 32) are quasi-orderings and that
(A1, Ay, J) is a protojoining-system. Thethy, Ao, J) is a context(a context based
on quasi-orderings). L&k, € A; andC, C A,. Then define

Cl ={ce Ay | (Yc1 € C1)(C1,Cp) € I}

Cy ={cre Al (Y € C)(C1,Cp) € J).

10C
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Note that

(Cf)v = {Cl e | (VCZ (S Cf) (C1,Cp) € J}

((C§)V)A - Cb.

A
We often denotéCf)v with C;Y and((Cf)v) with C2V2. If (A1, A, J) is a protojoin-

ing-system (pJs) an€; € A; andC; C A, such thatC; = C; andC; = Cy,

then (C,, Cy) is a conceptionin the contex{A,, A, J). The set of conceptions in

(A, Ay, J) is denotedB (A7, A, J) or, when there is not risk of confusion, juB{(J).

If (Cq1,Cy) is a conception in thpds(Aj1, Ay, J) thenC; is an up-set with respect o,

andC; is a down-set with respect tg;.1° The set of conceptions in@s(A1, Az, J)

has an interesting structure. Let us define an ordering relation on conceptions as fol-
lows. If (C1,Cy),(D1,Do) e B (ﬂl,ﬂz, J) then

and,furthermore,

(C1,C2)C(Dy,Dy) & C; € D; & C, 2 Dy

The partial orderingB (A1, Az, J),C) is a complete lattice. (For a proof see for
example Davey & Priestley (2002) p. 69.)

3.2 Three theorems on conceptions and minimal joinings

In this section, the following abbreviations will be used: ‘Js’ for joining-system, ‘Js(i)’
for the i:th condition in the definition of a joining-system and ‘pJs’ for protojoining-
system.

The three theorems in this subsection say roughly thatJe @ conception cor-
responds to a minimal joining. It is an interesting fact especially because minimal
joinings are closely connected to intermediate concepts.

Suppose thatAq, Ay, J) is apJsand thata; € A; anda, € A,. Then

S [a] = (e Al xa Za &)

Sola] ={x e Axlay Zo X}

(See the subsection on correspondences in subsection 1.3.2.)
Note that

3it [aa]* = {ba € Ao | (Yby €57" [au]) (ba, by € J)

Zolap]” ={b1 € Ay | (Yby €32 [ag]) (b, bp) € J}.

In this subsection we denote for simplicity the narrowness-relatiod wfth <

instead ofd; ; and the lowerness-relation dfwith 3" instead of3] ,.

10For definitions of ‘up-set’ and ‘down-set’ see for example Davey & Priestley (2002) p. 20. Cf. Lindahl
& Odelstad (2013) p. 570 Definition 3.10.
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Theorem 24 Supposehat (Aq, Az, J) is apJsand (a;, a2) € ming J, i.e. (ay, ay) is a
minimal element in J with respect to. Then

(1) =it [a]” =32 [ag]

2) Zola)” =3 [ad]

i.e. (< 1a], = [az]) is a conception in the contetdy, Az, J).

Proof. Proof of (1). Sincgay, ap) € ming J and thus(a, &) € J it follows that for all
by €37* [a1] it holds that(by, a,) € J. Suppose that, € 37" [a1]*. Then(ay, by) € J.
But since(ay, ap) € ming J it follows thata, 3> bp. Since for allb; ej;l [ai] it
holds that(b;,a,) € J, it follows for all b, ej{l [a4] thatb; €=, [a]Y. Hence,
3t [an]® €32 [

Suppose now thdt, €3, [a2]. Then for allby ejf [a1] it follows thatb; =3
a;, ayJa, a 32 by, which implies thatby, by) € J. HenceZ; [a] gjﬁ [a1]”.
Together withj;1 [a1]* €=2 [a7] this implies (1).

Proof of (2). Suppose thdty €=, [a]”. Then for allb, €=, [ay], (by,by) € J
and hencegby, &) € J. Since(ay, a) € mingJ it follows thatb; =<; a; and thus
by €37 [ad]. Hence, S, [az]v 3t [l

Suppose that; €3 [al] Then(bl, ay) € Jand thugby, by) € Jforall by €3,
[a2]. Hence,by e<2 [az]v We have thus shown that;! [a1] €3> [a2]”. Together
with =5 [a2]” €71 [ay] follows (2). m

—Nl

Theorem 25 SupposéA;, Ay, J) is a Jssuch thatA; = (A, 1) and Az = (Ag, 32)
are complete quasi-lattices. (€1,Cy) € B(Ay, Ay, J) then there is b € A; and
b, € A> such thatby, by) € ming J and

C1 =31 [by]
Co=22[by].
In the proof of the theorem we use the following lemma.

Lemma 26 Suppose thatA;, Ay, J) is a Jssuch thatA; = (A, Z1) and Ay, =
(A2, Z2) are quasi-orderings. Let CC A; such that G # @. Then the following
holds:

(1) by € C1¥ forall by € lub<, Cy

(2) by € CL for all by e glb, C.

Proof. Proof of (1). Suppose thab € C;. Then for allc; € Cy, (¢, a2) € J. From
Js(2)it follows that(b,, a,) € J for all b; € Iub< C,. Sincea; is an arbitrary element
in C7 it follows that for allc; € C¢ that(bl,cz) e Jforallb; € Iub<1C1 Hence,
b; € CAv forall by € |Ub<1 C;.

Proof of (2). Suppose that € C;". Then for allc; € C7, (a1, c2) € J. FromJs(3)
it follows that(a, b,) € Jforall b, € glb< C:. Sincea is an arbitrary element i6;”
it follows that for allc; € C3¥ that(cy, b,y € J forall b, € glb< Cs. Hencebz € CAVA
and sinceC;7* = C7 it foIIows thatb, € C7 for all b, € glb< CA

10z
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The proof of the theorem follows below.

Proof. Since(C,,Cy) is a conception it follows tha(tf = C; andCJ = C;. Hence,
C1V = CJ = Cy. SinceA; = (A1, Z1) andAz = (A, 32) are complete quasi-lattices
then Iub< Ci # @, i.e. lubg, C7* # &, and glb< Cl # 2.

Suppose thab; € Iub< Cl andb, € glb< CA Then, according to (1) in the
lemma,b; € C;Y and, accordlng to (2, € CA SinceC{Y = C; it follows that
b, € Cq, which together withp, € C7 implies thatle b,. Suppose now thdt,, dy) € J
such thatd,, d>) < (bq, by). Hence,bl =<1 d; andd, =, by. Note that

ledz& d2 2b2& b2 22 C2
and, hencedg Jc; wherec; is an arbitrary element i@;. Henced; € C;7. Note that
Cr J1b1 & by Z1d & diJody

wherec, is an arbitrary element i6;. Henced, € C7.

SinceC;Y = Cy andd; € C;7 it follows thatdl € Cq1. Sinceb; € Iub<1 Ciit
follows thatdl Nl b;. Fromd; € C} andb; € glb< C; it follows thatb, <> d>.
Together withb; 31 d; andd, =, b2 it follows thatk b1 ~1 d; andb, ~, dp. Hence
(b1,bp) € ming J. From the previous theorem follows tle(ajgll [b1], =22 [bg]) is a
conception iAy, Ay, J).

We show now that

(i) C1=37"[bi]

(i) Co=221[by].
(i) Suppose thagy € C;. Sinceb; € lub< Cy it follows thata; 31 by and, hence,
a; €37 [by]. This shows thaC; c3;* [by]. Suppose thaty €37 [by]. Then
a3 < bl and sinceb; Jybs it follows thatalszz, and sinceb, € glb< C? it follows
for aII ¢c; € Cf thata; J,c, and, hencea; € C}¥ and sinceC;” = o) |t foIIows that
a; € Cq. This shows tha;j;l [b1] € Ciandit foIIows thatC; =37 1 by].

(i) Suppose thad, € C,. Sinceb, € glb< C? andC? = Cyitfollows thatb, 3> a;
and, henceg, €=, [b2]. This shows that, C<2 [b2]. Suppose that, €35 [be]. Then
b, =<, a; and sincdy, Jyb, it follows thatb; J,a,, and fromb; € Iubj1 C, follows that
c1J.a; for all ¢; € C; and, hencea; € C7. SinceC? = C; it follows thata, € C,
which shows thafs; [by] € C, and it follows thatC, ==, [b,]. =

The two theorems above in this subsection show that;if= (A1, ;) and A, =
(Ag, Z2) arecomplete quasi-lattices andA;, A, J) is a joining-system then there
is a correspondence between the elements ingrdiand the set of conceptions in
(A1, Az, J). The following theorem shows that this correspondence is in fact a ho-
momorphism or{ming J, <) onto(%B (J). ). As pointed out abové® (J).C) is a
complete lattice. This fact together with the theorem below is thus related to Corollary
3.36 (p. 588) in Lindahl & Odelstad (2013). (Note that the relafidrin the Corollary
3.36 is not exactly the same as the relatiginin the theorem below.)

Theorem 27 Suppose thatA; = (Ag, Z1) and Ay = (A, Zo) are complete quasi-
lattices and( Ay, Ay, J) is als. Let

@ :ming J — B(J)

10¢
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such that
o (ag, ap)) = (ﬁil [ai], 22 [32])~
Theng is a homomorphism ofming J, <) onto(% (J), ).
Proof. According to Theorem 2457 [a1] . <2 [a2]) is a conception ifAy, Ay, J),
i.e. ¢ assigns to every element in mjrd a corresponding conception {tfl;, Ay, J).

(I) We first prove thap is onto5(J). Suppose thalCi, C,) € B(J). Then, accord-
ing to Theorem 25, there {€1, ¢;) € ming J such that

Ci=37"[al
Co=322[ca].
Hence,
¢ ((c1,e2) = (37 [ea] 32 [e2]) = (C1. Ca) -
(1) We now prove that
(a1, 82) 3" (b1, by) & ¢((an,a) S e (b, b)).

Suppose thata;, a;) 3 (b, by). Thena; =; by anday; 2, b, and, henceg; ej;l
[bi] andb, €35 [a]. If x €31t [a1] thenx, =1 & which implies that, =i by and,
further,x; €37* [by]. This shows that

St [ad] €30t (bl
If %o Ejz [bz] thenb, jz Xo which |mplles thata, jg Xo and, furtherx, Ejz [ag].
This shows that
Z2[b2] €32 [a] .

We have thus proved that

Sitlan] €3t (b & Sz [a2] 232 (b2l
which is equivalent to

(Zi' 2], 32 [2]) € (37" [ba], 32 [ba])
ie. .

¢ (a1, @) S @by, b2)).
This shows that
(ag, ) 37 (b1, b)) = ¢ ((ar, @) C ¢ ((by, bp)).

Suppose now that ((a;, a2)) T ¢ ((by, by)) from which follows that

Sit[a] €37t (b & Zo[ag] 232 [ba].

This implies thaty; € jf [b1] andb, € =5 [ag] and, hencegy =331 by anda; =, by,
which shows that

¢ (@1, a2)) C (b1, b)) = (@, a) 3" (b1, by).
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4 Joining systems of aspects

4.1 Aspects

The cis model of TJS was developed primarily as a framework for representing legal
systems and other normative systems based on implications between conditions. How-
ever, as has been pointed out in Section 1, TJS can be used as a framework for other
kinds of msic-systems, too. In this section we will focus @aspects, in many disci-

plines called attributes but here ‘aspect’ will be preferred. Well-known examples of
aspects are area, temperature, age, loudness and archeological value. Some kinds of
aspects have special names, primarily in certain contexts, for example quantity, quality,
criterion, feature, characteristic, property, indicator, dimension or magnitude. Quanti-
tative aspects, i.e. quantities, are usually measurable and such aspects are not seldom
confused with a measure of it (utility is one example). It is a common view of aspects
that they can, in some way or another, from a formal point of view be represented as
relational structures. We will return to the formal representation of aspects below.

Conditions can be of different sorts and the same holds for aspects. Like condi-
tions, aspects can, among other things, be descriptive or normative (i.e. evaluating) or
something in between, which means that they are intermediaries between descriptive
and normative conceptual systems. There are aspects which are intermediate between
conceptual systems of other sorts, too, but we will in the informal part of this section
focus on intermediaries between descriptive and normative aspects.

In the cis model a conceptual system consists of conditions and the relation of
implication between them. In a conceptual system of aspects there is an implicative
relation from its grounds to its consequences, but this relation is not sentential impli-
cation. (See further Section 4.4.2.)

The meaning of an intermediate aspect consists jointly of stating its descriptive
grounds and its normative (evaluative) consequences. Which conceptual systems that
intermediate aspects are in between, are often not immediately evident. In many con-
texts it can be more informative to regard them as concepts determined by grounds
and consequences and initially leaving open the exact character of the top and the bot-
tom conceptual systems. In such cases the aspects can be called ground-consequence
concepts!

Ground-consequence concepts are of course related to what is often called thick
concepts. The philosophical discussion of such concepts, especially in ethics, is rele-
vant for the understanding of ground-consequence con&epist this line of thought
will not be pursued here. The concepts that are in focus in this section are not those

11cf. Odelstad (2002), especially Chapter 12.
12| acey (1996) p. 347 headword ‘Thick and thin concepts'’:

Terms used especially in recent ethics. Thick concepts are those which seem to combine a
purely descriptive element with an element of evaluation or prescription, such as ‘cowardly’,
‘heroic’, ‘treacherous’, ‘loyal’, ‘brutal’, ‘lewd’, while thin terms embody only an evaluative
or prescriptive element, such as ‘good’, ‘evil’, ‘ought’, ‘right’. It seems hard for someone
who does not accept the relevant values or prescriptions to decide whether to call attributions
of the thick concepts true or false. However, the correct analysis of the thick concepts is
disputed.
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usually discussed in moral philosophy but are instead of importéorgglanning as

well as decision and policy making, i.e. so-called policy relevant concepts. Among
such concepts normative indicators play an important role. In Sen (1977) the following
examples are mentioned.

Normative indication:Measurement of “national income”, “inequal-
ity”, “poverty”, and other “indicators” defined with normative motivation
incorporating interpersonal weighting in some easily tractable way. (Sen,

1977, p. 53.)

Other examples are gross domestic product, inflation, unemployment, gender equality,
public interest, archeological value and accessibility to social servicesadn &.al.
(2012) the authors discuss measuring of accessibility in the transportation sector focus-
ing on positive and normative implementations of various accessibility indicators. In
the abstract the authors emphasize the following:

Accessibility is a concept of continuing relevance in transportation re-
search. A number of different measures of accessibility, defined as the
potential to reach spatially dispersed opportunities, have been proposed in
the literature, and used to address various substantive planning and pol-
icy questions. Our objective in this paper is to conduct a review of various
commonly used measures of accessibility, with a particular view to clarify-
ing their normative (i.e. prescriptive), as well as positive (i.e. descriptive)
aspects. This is a distinction that has seldom been made in the literature
and that helps to better understand the meaning of alternative ways to im-
plement the concept of accessibility.a@x et.al., 2012, p. 141.)

Accessibility in the transportation sector seems to be a nice example of a policy-
relevant intermediate aspect and since accessibility is a quantity the question of its
measurement is relevant.

The problem how an aspect ought to be measured can be interpreted in different
ways. Suppose that the meaning of the aspeist a joining of descriptive grounds
and normative consequences. When you determine how such an aspect ought to be
measured you take a normative stand. Grounds and consequences must match each
other, which is a normative problem. The decision how to measure is a part of clarifying
the meaning of the concept.

In many contexts, for example in multi-criteria decision analysis, there are con-
cepts joining descriptive grounds and normative consequences which are ground open
(and perhaps even consequence opéjhey function as decision nodes in the step
by step decision process where the decision is partially determined by the grounds and

13Thenotions ‘ground open’ and ‘consequence open’ are explained, exemplified and discussed in Lindahl
& Odelstad (2013) pp. 557-559 and 617—620. A short remark on the notions based on Odelstad (2009) pp.
15-16 follows below.

The concept ‘work of equal value’, which is an essential concept in the Swedish Equal Opportunities Act,
is an intermediary with one face looking at the nature of and requirements for the work and the other face
looking at efforts to promote equality in working life, especially equal pay for equal work. The law does not
supply us with a complete set of introduction rules for the concept. Instead it mentions some criteria that
equality of value depends on, viz. knowledge and skills, responsibility and effort. The applicability of the

10¢€



Joiningconceptuabystems threeremarkson TJS

T
it

o) O, O3 O4 Os Og oy

T T

Y Y2

Figure 5: Aggregation tree with four strata.

consequencesf the concept. One important part of the decision process in a multi-
criteria decision problem is the aggregation of the different factors or components that
influence the value of the outcomes. The result of the aggregation is the value of the
outcomes all things considered. In Figure 5 a simple aggregation is pictured as an ag-
gregation tree. The factosg; at the bottom are descriptive aspects and the aggregate
ag at the top states the value all things considered and has purely normative conse-
guences (for example in terms of what ought to be chosen). The aspectds; are
intermediaries, where th:s represent “higher, more normative” strata thandhs.

In Lindahl & Odelstad (2008) p. 205 it is emphasized that the pattern of a com-
prehensive system of legal concepts is usually that of a network of structures of inter-
mediate concepts and this is illustrated as the middle part of Figure 6. (Note that the
conseguences of one intermediate concept can be the grounds of another.)

The similarity between the network of structures of intermediate legal concepts and
the strata of decision analytic intermediate aspects is from a structural perspective ob-
vious, which is illustrated in Figure 7. Note that the input of facts refer to “factual”, i.e
descriptive, aspects and not to extensions of descriptive facts. (Extensions of aspects
will be discussed in subsection 4.4.)

We end this section with a fictitious but not unrealistic example. Assume that a

concept work of equal value in a certain case must often be basedigments of what holds in the actual

case. And even if the law does not state detailed rules for these judgments it gives guidelines, for example
in terms of what are possible inputs in such judgments or what factors or circumstances must be taken into
account. The grounds of the concept ‘work of equal’ value is thus only partially determined by the law in the
form of introduction rules. The application of the concept in special cases deserves interpretative decisions
based on the role and function of the concept in the law. We call such intermediemigsl-open. Concepts

such that the consequences are only partially determined by elimination rules areoaliequence-open.
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Figure 6: A legal system as a network of strata.

countycouncil has adopted a public transport policy. Part of the policy concerns bus
traffic, including stipulations that the punctuality of buses should be gradually increased
by at least 5% per year, which is an objective expressed in quantitative terms. In order
to evaluate the effects of the policy, one must examine whether the objectives are met.
In that case, the punctuality of the buses must be measured. Measuring how much a
bus is delayed at a certain occasion is quite simple. But measuring how much all buses
used by a bus company are delayed during one month seems to be more complicated.
Assume that bus comparyhas many buses that are a bit late while bus comgany

has few buses that are late, but instead they are very late. How do you compare these
two outcomes to each other, which is the worst? Does it further matter if late buses
have many or few passengers and if the delays occur in rush or in low traffic?

The punctuality of a class of buses is, as emphasized above, a multi-dimensional
concept. Measurement with regard to this concept is not straightforward. Should you
try to find an aspect of punctuality that is easy to measure and see it as an operational-
ization of punctuality? Or should you measure with regard to as many dimensions of
punctuality as possible and aggregate them? Or should you choose some particularly
important dimensions and aggregate them? Anyway, the choice will involve valuations.
Punctuality of buses is not a directly measurable concept, not even a purely descriptive
concept. On the other hand, the concept punctuality has a descriptive ground consist-
ing of a number of different aspects, but to determine punctuality, one has to evaluate
the ground with regard to the specific character of the normative consequences. Bus
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Figure 7: A multi-criteria decision system as a network of strata.

punctualitycannot be measured in strict terms but must be judged or evaluated based
on measurements of the descriptive dimensions of the concept. The punctuality of the
bus company depends on facts, batvinvolves valuations. Hence, the punctuality of
buses is an intermediary that has descriptive grounds and normative consequences.

4.2 Relations and aspects as functions

Aspects are constituted by relations and operations in the sense that an aspect is a
structure consisting of relations and operations. An operation can be regarded as a
relation of a special kind, for example a binary operation can formally be understood
as a ternary relation. In many situations this is not a wise procedure but, anyhow, in
this paper | will temporarily accept this simplification and regard aspects as constituted
by relations only.

Suppose thatr is an aspect constituted by the relatid®s...,R,. Thena is a
structure withRy, ..., R, as components. But which is the domain of the structure?
To specify one special domain for the aspect and the relations is in many contexts
awkward. For example, it is reasonable to think that a person’s preference relation
always is restricted to a special set of alternatives. Hence Rhale individuali's
preference relation on sétof alternatives, ig; is best represented &4, p;), in other
words

R(A) =(A.m).
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From a formal standpoint this means tRafs a function that takes sets of alternatives
as arguments and a relation (or a relational structure) as values. Suppose now that this
holds for alli, 1 < i < n (i can be individuals in a group that will make a decision), then

a(A) = (ARL(A),...R (A) = (A, p1, ... pn) .

pi as well agA, pi) can be regarded as the extensiofRobn A, and analogously; (A)
the extension of on A. The domain oR, anda as functions is a family of set®. If
is constituted byRry, ..., R, thena can be represented &gy, ..., R,) which is a function
that takes elements i as values. Hence,

a=(Ry,...Ry).

Relations regarded as functions in the way just described will be aallationals.

Note that conditions are relations but conditions in legal systems are often of an-
other type than the ordinary relations in aspects. However, legal conditions can of
course be represented as relationals, see subsection 4.4.3. Furthermore, note that an
aspect can be constituted by different but equivalent compositions of relationals.

In Odelstad (1992), a theory of relations and aspects as functions, primarily as base
for a study of dependence and independence in systems of aspects, is presented. Some
central notions and results will be presented in the next subsection. For an elaborate
presentation of the theory, see Odelstad (1992).

This subsection ends with a short historical and philosophical remark on relation-
als. (For further details, see Odelstad, 1992, especially subsection 3.5 pp. 93-95.) One
of the ideas behind the notion of a relational is that it is meaningful to talk about the
extension of a relation over a set. This idea seems to be an old one which in different
contexts has taken different forms. Meaning and necessi§arnap suggested that
certain intensional entities be identified with functions that take possible stataio$ aff
as arguments. The value of such a function is the extension of the intensional entity at
that state of aéfir. Carnap’s idea has been developed further by Kanger, Kripke, Kaplan
and Montague among others. Relationals resemble especially Montague’s predicates
in that they are functions with extensions as values. (See Montague, 1974, p. 152.)
There are thus some formal similarities between relationals and some notions in theo-
ries of modal logic. Most striking is perhaps the similarity with Kanger’s version of the
semantics for modal logic since functions representing intensional objects there have
domains as arguments. But the domains in the range of definition of a relational are not
intended to represent possible worlds; even in the actual world, a relational can have
different extensions depending on what domain one considers. The idea of intensional
entities as functions which have extensions as values was first used in formal seman-
tics, while the notion of a relational was intended to be used within measurement and
decision theory. In this paper relationals is a part of the framework for the aspect model
of TJS.
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4.3 Relationals: some definitions and results
4.3.1 Basic terminology for relationals

Definition 28 P is av-ary one-component relationalith range of definitior® if for
alAe®

P(A) = (A, p)
wherep is av-ary relation on A.

Definition 29 P is arelational of typ&vy, ..., v) with range of definitior® if for all
Ace®

P(A) = (A, p1, ... 0k)
wherep; is anvj-ary relation on A. P is a-ary one-component relation#l P is a

relational of typg(v). The range of definition of a relational P is a family of sets and is
generally denoted bRp, i.e. Dp = D.

If Pis a relational of typgv) thenP (A) = (A, p) wherep is av-ary relation on
A. For simplicity, instead of ‘{xq, ..., X,)’ we often use one of the following notations
when there is no risk of ambiguity:

(X1, ..., X,y € P(A)
P(A; X, ..., X,)
P(Xg,..., %) A.

If =~ is a binary ordering relation then the following notations are used synony-
mously:

XYy ez (A)
XZ YA
If P(A) = (A,p) then we say thatA, p) is the graph of P on A and thatp is
the proper extensiof P on A. The termextensiorwill be used for graph or proper

extension in situations where it is clear from the context what is meant. The extension
of P onAis thus(A, p) or p depending on the context.

Definition 30 Theextension clasef the relational P, denoteHp, is the set

{P(A)|A € Dp}.
Thecharacteristic clasef the relational P, denote@p, is Ep closed under isomor-
phisms, i.e.

Cp={X|3AeDp: I (P(A),X) # o).

Definition 31 If for all i, 1 < i < k, P is one-component relational of tyge) with
the range of definitiorD, then theconcatenatiowf Py, Ps, ..., Py is the relational P of
type{vy, ..., vk) such that for all Ac ©

P (A) = <A,Pl’ ~-~7pk>
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where
Pi(A) =<(A,p).
Theconcatenation of B P, ..., Py is denoted Py, P, ..., Py).

Note that
(P1P2...P) (A) = (A,PL(A), P2 (A), ..., P (A))

whereP; (A) = pi, i.e. P; (A) is here the proper extensionBfon A. The concatenation
of P andQ are sometimes writteRQ instead of(PQ).

If the aspecty is constituted by(Ps, ..., P,) then we can regard as constituted by
one relational, viz(P;...P,), the concatenation d®, ..., Py.

4.3.2 Subordination, superiority and rank

Definition 32 Suppose that P and Q are relationals with the same range of definition
D. Qissubordinatdo P, denoted by @ P, if forall A,Be D

1(Q(A).Q(B) 21 (P(A).P(B)).

If Q is subordinatdo P then P issuperiorto Q denoted by B Q. If Q issubordinate
to P and P issubordinatdo Q then P and Q are said foe on a par, which is denoted

PgQ.

The notion of subordination is closely related to definability. In first order logic
a distinction between explicit and implicit definability is often made (see for example
Chang & Keisler, 2012, p. 90) and the equivalence of the two notions in first-order
logic is the celebrated Beth’'s theorem on definability. In the theory of relationals a
formal language is not used and, hence, ‘explicit definability’ is not applicable here.
But ‘implicit definability’ is, as a model-theoretic notion of definability, meaningful
in the theory of relationals and is equivalent to ‘subordination’. This is made clear by
Theorem 37 in subsection 4.3.4. (This is a simplified presentation of definability in the
context of relationals, for a more detailed presentation see Odelstad, 1992, especially
subsection 4.2 pp. 103-105. Beth’s theorem and Padoa’s method are useful tools for
a more profound study of subordination and transitions than what is aimed at in this
paper.)

If an aspectr is constituted by the relation®landP § Q thena can from a formal
point of view be constituted b§) as well.

The following proposition is easily verified.

Proposition 33 LetfR be a set of relationals witl) as range of definition. ThefR, 1)
is a quasi-ordering.

Note thatP  Qiff for all A,B e D
L(P(A),P(B) c1(Q(A),Q(B)
andP ¢ Qiff for all A,B € D
1(P(A),P(B) =1(Q(A),Q(B)).
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We introduce the following abbreviations:
Ip(A.B) =1 (P(A),P(B),
le (ALA) =1p (A),

Bi (D x D) = {Bi (A,B) | A,Be D}.

Note that
Ip (A,B) C Bi(A,B).

Let us call b therank of P.

We infer componentwise versions @fandn and denote themm andn: Suppose
that F andG are functions fron x D into Bi (D x D) such thaf (A,B),G (A,B) C
Bi (A,B). Then for allA,B e D

(F hG)(A,B) - F(AB)NG(A B)

FCGiff YABeD:F(AB)CG(AB).

We define= as follows: ) )
F=Gif FCG&GCF.

Hence,
(ImeQ)(A,B) = 1p(A.B) N o (A.B)
IpClo iff VA,BeD:1p(AB) Clgo (A B).

Note thatR} S iff Ir Cls. AndR{ S iff Ir = Is. Hence, the quasi-orderirfjgon a

set of relationals corresponds to the partial ordegiran the ranks of the relationals.
There are other interesting quasi-orderings on relationals than subordination and

two such quasi-orderings will be mentioned here but not further studied in this paper.

Definition 34 Suppose that P and Q are relationals with the same range of definition
D. Q is automorphicallysubordinateo P, denoted by @, P, if forall Ae D

HQA) 21 (P(A).

If Q la P and P, Q then Q and P are said to be automorphically on a par, which is
denoted PJ, Q.

Let € (X) be the set of congruence relationsXn

Definition 35 Suppose that P and Q are relationals with the same range of definition
D. Qconforms toP, denoted by B Q if forall A e D

C(S(A) 2 C(R(A).

If Q conforms to P and P conforms to Q then P and Q are said tedagform.
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4.3.3 Transitions

In the rest of this paper we suppose that all relationals that are the subject of study have
the range of definitiotD.

Definition 36 The transition from P to Q, denoted?Pis the correspondence fro@p
to Cq defined by

PR={(X,) € CpxCq | X=Y&IZeD: I (X,P@))NI(Y.Q(2) % }.
The definition can also be written

PQ_{ (X, Y)eCpxCq | X=Y&IAZeD:ApeBi(X2): }
B X =¢"[P(2)] and¥ =¢[Q(2)]

In the sequel( X, Y) € PR is often writtenXPQY. Note thatP (A) PRQ (A).

The transitionP? is a correspondence frome@o Cq, which we also express by
saying thaI(Cp, Co. PQ> is a correspondenc®X is thus a correspondence with @s
domain and @ as image. When there is no risk of ambiguity we omit the references
to domain and image and say thR& is a correspondence.

Note that sincé? is a correspondence fromp@0 Cg, if X € Cp then

PO[X] = {¥eCq | XPY}.

Note further that if° (A) = A then APRQ (A), i.e. Q(A) € PR[A]. Hence, ifP (A) =
A then the possible extensions@foverA are elements iP? [A]. And furthermore,
the elements iP? [A] are the possible values f@¥ (A) given thatP (A) = A and no
other information is accessible.

A transition PQ is closed under isomorphisnis the following sense: IXPRY,
pel (X, X)), pel(Y,Y)thenX’PRY’. Note that this condition can also be stated as
If XPRY, andy < | (X, X’) thenX’P%p [Y]. The notion ‘closed under isomorphism’
can be extended to a correspondefdmm a setK; of structures of the same type
(closed under isomorphisms) to a $étof structures of the same type (closed under
isomorphisms) in the following way: KTY, ¢ € | (X, X’), ¢ € | (M, Y’) thenX'TY’.
This condition can also be stated as followsXIfY andy € | (X, X’) thenXT¢ [V].

Note that ifPQ = T then the following holds: (1) € Cpx Cq, (2) P(A)TQ(A),
(3) XTY impliesX = Y and (4)I is closed under isomorphisms and (5XFY then
there isA € D andy € | (X, P(A)) such thatp € | (¥, Q(A)). These five conditions on
I are also sufficient foP? = I'. If PQ = I thenT together withP confines the set of
possible values fo@ given the value oP in the following sens&) (A) € (P[I) [A], and
we say thaQ is partially determinecby P andr".

4.3.4 Transitions as functions

Note thatP® is a function iffP? [X] contains exactly one element for alle Cp. Then
P determineQ completely.

Theorem 37 P { Q iff PR is a function orCp ontoCq.
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For a proof see Odelstad (1992) Theorem 4.1.1.

If a transitionP< is a function therP is isomorphism-preservinig the following
sense: IXPRY, X'PRY’ andy € | (X, X’) thenp € | (Y, Y").

Note thatP andQ are functions and the same holds Rt if P Q:

P:D—Ep, Q:D—Eqg P°:Cp—Cq

The two lemmas below show the interrelationship between these functions. First we
observe the following. The notion of isomorphism-preservation can be extended to
a function on a sei; of structures of the same type closed under isomorphisms
into a setk> of structures of the same type closed under isomorphisms in the fol-
lowing way: F is isomorphism-preserving iXFY, X'FY’ andy € | (X,X’) im-
pliesy € | (¥, Y’). The second part of the equivalence can be written as follows: If
¢ € (X, [X]) thenF (¢ [X]) = ¢ [F (X)].

Lemma 38 If F : Cp — Cq such that ® = F then Q= F o P.
Proof. Suppose tha®? = F andF : Cp — Cq. Then for allA € D,
Pe(P(A) = F (P(A).

SinceP (A) POPQ(A) andPQ is a function it follows tha@ (A) = F (P (A)) and, hence,
Q=FoP. m

Suppose&Q = F o P. Sinceall functions are correspondences sé& jsand we can
of course state the equation@s= P|F. But when a correspondence is a function we
preferF o P instead ofP|F.

Lemma 39 If F : Cp — Cgq such that F is isomorphism-preserving and=QF o P
then P2 = F.

Proof. SupposeX € Cp. Then there iA € D and such thap € | (P(A), X). Since
F(P(A) =Q(A), ¢ €l (P(A),X) andF is isomorphism-preserving

F(X)=¢[Q(A)].
SinceP? (P (A)) = Q(A) andy € | (P (A), X) it follows that
PP (¢ [P(A)]) = ¢[Q(A)]

which means tha®? (X) = F (X), and, henceP? (X) = F (X). m

Suppose tha® is a relational with range of definitia» andF is a function on G to
a classk of structures of the same typeclosed under isomorphism and, furthermore,
F is isomorphism-preserving. Théh= F o P determines relationalQ with range of
definition® and G = K andP® = F.
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4.3.5 Uncorrelation and the strength of dependence
Definition 40 P isuncorrelatedvith Q, denoted PuncorrQ and JPQ if
PR ={(X,Y) e CopxCq | X =]}

and we say that the transition®s sweeping. If P is not uncorrelated with Q then P
is correlated with Q, denoted B}

Note that ifP }f Q thenQ }t P, and ifP||Q thenQ]|P. Note further that if° § Q and
P (A) = A then there is only one possible extensiorodver A and we can denote it
PR (A) sincePC is a function. IfP }y Q andP (A) = A then APRX holds for allX
such thatX € Cq andA = X. Hence the following holds: IP ©§ Q thenP completely
determinesQ. If P }t Q thenP does not determin® at all. If P||Q thenP determines
Q to some degree. The strength of determination or dependence can be of different
degrees. Note that determination is direct®dcan completely determin® while Q
only partially determine®. The determination o by P is therefore not necessarily
of the same strength as the determinatio@dfy P. Subordination and uncorrelation
are in a sense endpoints on a dependence scale.

As was pointed out in subsection 4.32) Q means tha@ is implicitly definable
by P andPQ is a representation of the implicit definition @ffrom P. From this follows
that complete determination is equivalent to implicitly definability. And, hence, partial
determination is equivalent to partial implicitly definability. Note further: the “wider”
PQ is, the less dependent @ on P. These remarks is intended to give an “informal
characterization” of subordination, correlation and transition and must not be taken too
literally.

4.3.6 From correspondences to set-valued functions

There are in some contexts simplifying to transform a correspondence to a function.
The general method is presented in subsection 1.3.2 by introdgting/e use this
method in two of the following three definitions. () is the power set oX.)

H
Definition 41 P : Cp — 9 (Cg) such that

N
PR (X) = PR[X].
Definition 42 PR is the correspondence froBe to Cq defined by
APYY iff P(A)PLY.

-,
Definition 43 P2 : Dp — ¢ (Co) such that

— —
P (A) = PO (P(A).
Suppose that B Q andX € Cp and Ae Dp. Then

PO (X) = (¥ | XPRW} = (¥ eCq I X = V)

P_§(A)={3/ecQ |A=Y}.
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4.3.7 Relative product of transitions

Therelative product of two correspondenc{é‘sp, Co. PQ> and<CQ, Cr, QR> is the cor-
respondencéCe, Cr, PIQR) whereP?|QR is defined by

PQR = {(X.¥) € Cpx Cr | 3Z € Cq : XPOZ & ZPOV).
Theorem 44 PRIQR 2 PRand if Q1 P or Q1 R then F|QR = PR,

Proof. (I) We first provePQQR > PR. Suppose thaXPRY. Then there isA € Dp and
¢ € Bi (X, A) such that
¢ ' [P(A)] =X

¢ [R(A] =Y.
LetZ = ¢ 1[Q(A)]. Since

¢ [P(A)] PR [Q(A)]

¢ [QAI QR [R(A)]

it follows that XPRZ and ZQRY, which implies thatY PR Z.
(1) Now suppose thak PR|QRY. Then there i<Z such that

XP°Z & ZQRY.
Hence, there i&\, B € D andyp € Bi (X, A), v € Bi (Y, B) such that
X=¢'[P(A] Z=¢"[Q(A)]

Z=yQ(B)] Y=y '[R(B)]
From this follows that
¢ [Q(A] =y [Q(B)]
and hence
¢oy[Q(B)] = Q(A)
which implies thatp o y~1 € 1o (B, A).

(i) Now suppose tha@ = P from which follows that & C lp. Hencep oyt e
I, (B, A), which implies that

poyt[P(B)] = P(A).

Thus

¢ P(B)] = ¢ [P(A).
Note that

y~ [P (B)] PRy [R(B)]
and hence

¢ [P(M] Py [R(B)]
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and therefore
XPRY.
This proves thaQ 1 P implies thatP?|QR = PR. See the illustration below.

(i) Finally suppose tha® 1 R and henced C Ir. Sinceg oy € Iq(B,A) it
follows thaty o Yy~ € Iz (B, A) which implies that

oyt [R(B)] =R(A).

Thus

¢ R(B)] = ¢ [R(A)].
Note that

¢ P (AT PR [R(A)]
and hence

¢ [P(A] PRy [R(B)]
and therefore
XPRY.
This proves tha® 1 Rimplies thatP?QR = PR1* m
The following diagrams illustrate part of the theorem, weikustratessuperiority.

(PR is a correspondence fromp@ Co andQRis a correspondence fromy@o Cr. PR
as well asPQ|QR are correspondences from @ Cg.)

R

/
P 1y =  PAQR=PR
N

Q

lh, R =  PYQRR=PR

Relative product of transitions are correspondences and some results of applying
transitions to structures (extensions) and sets of structures are shown below.
It holds generally that
(PAIQ7) [x] = QR [P X]].

SincePQR 2 PRit follows that PR[X] ¢ QX [PR[A]] i.e.

PR(X) C OR

po (X)} .

14cf. Odelstad (1992) Theorem 7.3.8-7.3.10.
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LetX =P (A). Then
PRIA] € QR [PO[A]
andthus .
PR (A) c QF

@w}
If PQIQR = PR then
PR[X] = Q%[PO[]
PRL¥]==QR[536¥4
and hence
PRIA] = QR [P2[A]|
%Wﬂﬂ@Wl

4.3.8 Tightness

The notion ‘tightness’ defined below expresses a kind of dependence relation between
relationals (cf. subsection 4.3.5).

Definition 45 We say that Pis at least as tighas G, which is denoted P<QR, if for
allAeD

PR C Q).

If PR<QR and F*<PRwe denote it P = QR andsay that B and G are equally tight.
If PR<QR but not P = QR wedenote it B < QR and say that P is tighterthan Q.

Note thatPR<QR means informally thaR is more dependent oR than onQ (more
determined byP than byQ).

Theorem 46 Suppose that i Q. Then RA) PRX implies that A) QRX, i.e. for all
AeD

— —
PX(A) c (M)
in other words BF<QR.

Thetheorem is illustrated below.
+ R = PRg QR

Proof. Suppose thaP 1 Q. Then

QPlPR — QR~
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Suppose thaP (A) PRX. Thistogether withQ (A) Q°P (A) implies
QA (QIPR) X

and hence

Q(A) QRx.
— —
This shows thak €PR (A) implies thatX eQR (A), i.e. forallAe D

— —
PR(A) < QR (A
and hence
PR<QR.
[

Theorem 47 If PQIQR = PR then for all Ac D,

QA < PR(A)

Q<P

Proof. Let A € D arbitrary. Suppose thafl € aff)(A). Hence,Q(A) QRA. Since
P (A) PRQ(A) it follows that
P(A) (PUQR) .

—
Since PQIQR = PR it follows that P (A) PRA and henceA € PX(A). We have thus
— —
proved thatA € QR (A) impliesA € PR(A), i.e.

QM) < PR(A).

SinceA € D arbitrary it follows thatQR<PR. m

4.4 Transitions and joinings between relationals of diffeent sorts
4.4.1 Introduction

This section is a first presentation of a work in progress on the aspect model of TJS.
The TJS-framework is here used as a toolbox for an inquiry into the joining of sys-
tems of aspects of different sorts and, as the work proceeds, with focus on the function
and structure of intermediate concepts. One important aspect of the inquiry is “con-
ceptual openness”, i.e. the feature of intermediaries being ground and/or consequence
open. Such intermediaries can function as decision nodes in a step by step decision
process where the “Spielraum” of the decision is partially determined by the grounds
and consequences of the concepts and will be more and more restricted as the process
proceeds. In multi-criteria analysis such step by step processes seem to be frequent
and reasonable, and open intermediaries may play a role in decision support systems
for multi-critera problems.
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4.4.2 The implicative character of transitions

As was emphasized already in the subsection 1.2 it is essential for the TJS-perspective
on conceptual structures that there is an implicative relation between the concepts. The
characteristics of this implicative relation differ depending on the type and sort of the
conceptual structure. In thes modela = b represents in a sense the conditional
statement ‘% : a(x) — b(Xx)’ and 3 represent implication. We can of course see the
conditionsa andb as functions which assign truth valuesax) andb (x) in case the
conditional statement is represented as followsa{k) = T thenb(x) = T." In the

aspect modeP } Q (QsubP) represents the statement that if the extensiéhaf a
setAis given then the extension @ on Ais determined. However, from the extension

of P on A does not follow the extension @ on A, just that it is determined. Here

the transitions enter the picture. LRtandQ be relationals with the same rangeof

definition. If A e D, A € Cp andP (A) = AthenQ(A) € E}?(ﬂ), Whereaﬁ (A =
PR[A]. A somewhat more detailed formulation is the following Al D, A € Cp,
P(A) = AandP? =T thenQ(A) ¢ T (A), where(Cp, Cq.T) is a correspondence
closed under isomorphisms. B f§ Q thenT is an isomorphism-preserving function
andQ(A) =T (A) if P(A) = A.

In the cis model the joinings between structures of different sorts are conditional
statements (implications). In the aspect model the joinings can be represented as tran-
sitions and the same holds for the grounds and consequences of intermediaries. This
line of thought will be developed below (see subsections 4.4.6—4.4.8).

4.4.3 Conditions as relationals

A condition can in many situations be regarded as a relationalalbet av-ary condi-
tion on X. a(X) is then the set of all elements X such that they satisfy, i.e.

a(X) = {{X1, X2, ..., %,y € X"|a(Xq, X2, ..., X,)} .

Let a andb be conditions regarded as relationals with the same range of defigiition
and leta = b represents tha impliesb. Suppose tha < b. Thena(X) < b(X) for
all X € D which we denote C b (using pointwise definition, see subsection 4.3.2).
The transition froma to b is denotedd®. Then

achiff YXeD:VAuc X (X Dal X uy & ACpu.
But suppose now thatandb are of different sorts and that there is a conditional norm
a ¢ bwhich holds according to a normative system. Then the transitiondrtarb, i.e.
aP, is a norm determined by the normative system. Transitions can therefore in some
contexts represent conditional norms. And even if they do not represent conditional
norms since the relationals involved are not conditions, the transitions can in some
situations be of a normative character. This shows more generally that transitions can
function as joinings between relational systems of different sorts.

4.4.4 Relational arrangements

As has been pointed out several times in this paper there are different sorts of condi-
tions. The same holds for aspectsfAfis a set of relationals with the same range of
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definition and of the same sort, let us saythenwe presuppose that for &l Q € R
the value of the transitioR? “is determined”, i.e. with regard to the transitions be-
tween relations of the same sort there is no indetermittaBelow we shall contrast
this with contexts where indeterminacy exists. First a remindd?)|@, i.e. P andQ
are correlated, then

PRc {(X,Y) e CopxCq | X =]}

andP can be said to partially determirgg

Suppose thdh; andfR; are sets of relationals of different sorts. Dt = R; UNR,.

If P1, Q1 € R andP,, Qo € Ry thenP?l andsz are meaningful (determined) whereas
this is not certainly the case fé\‘f2 andQle. If sz is determined such th&||P, then

PlPz can represent a joining betwe®h andR, and be a part of the joined systeRy.

The joiningP{? is especially strong iP{? is a function. A special case of joining ¥

andfR; is obtained if all the joinings betweéR; andi;, are functions. We will study

this in some detail further below. The narrowness-relation in a protojoining-system
represents a kind of implication relation between joinings. What this means in the case
of aspects will also be set out below in subsection 4.4.6.

In order to simplify the presentation in the coming subsections the following notion
is introduced. A set of relationals with the same range of definition rislagional
arrangementf the transitions between all elements h are determined. A set of
relations of the same sort and the same range of definition is therefore a relational
arrangement.

4.45 Two derivation schemata

In the presentation of theis model in subsection 1.2 two “derivation schemata” are
mentioned. There are corresponding schemata for aspects. At first we take schema
(In:

(11-A)

Qi1 Py

(Py, Py) [joining]

PaM2Q2

(Q1, Q2) [joining]

In schema (I-A) the input is the extension of a relational. Supposdth@t) = A
and(P;, P,) is a joining. What is the output? It may seem reasonable to propose that
the output isF'f2 [A]. But sinceP; andP, belong to different sorts it is not clear what
PlPz means.Pf2 is a kind of bridging or crossing transitiooross-transitionfor short,
and the meaningfulness (and meaning) of such transitions is determined by the actual
system of joinings. If joiningP1, P,) is assigned a correspondericéclosed under
isomorphisms) the®, (A) € I'(A) and ifI" is a function therP, (A) = T'(A). The
schema (I-A) can be stated:

(I-A)

PiL(A)=A

15“Determined”will here not imply “known”. Our knowledge can be uncertain.

122



Joiningconceptuabystems threeremarkson TJS
(P4, Py) [joining to whichT is assignefl

P, (A) e T (A)

We will return to cross-transition below.

4.4.6 Protojoining-systems of aspects

Suppose thah; andfR; are sets of relationals with range of definitignbut of differ-
ent sorts. ThekfR1, 1) and(R,, ») are quasi-orderings. From a formal point of view
i1, and, are different relations since they are defined for different $dttet '31\1,2 be
the narrowness-relation relative ¢#1, f11) and(fR, f1). Hence, forP1, Q; € R and
P2, Q2 € Ry _

(P1,P2) <15,(Q1, Q2) &= Q1M1 P1&P21,Q2.

Note that<9{1 x Ry, ’51\1,2> is a quasi-ordering.
Suppose thali2 € Ry x R, and let®; 2 = ((R1, 1), (Ra, M), J12) be apJs. Let
Ro = R1 U Ry, R1NRy, = @ and

To=MUJ12U M 3)

According to Theorem @R, N1o) is a quasi-ordering.

There are different kinds of aspect-typ#slike ®1, and we will here throw some
light upon this. We start ofivith a reminder. Suppose thgt is a set of relationals
with range of definitionD. Then, according to Theorem 44,¢f ) P or Q 1 Rthen
PQIQR = PR. Note further that ifP? and QR are functions theQ QR = PR and we
can write itPR = QR o PQ.

If P1,Q1 € Ry thenP;17,Q1 implies thatP;1,Q1 and, hence, there is an isomorph-
ism-preserving function (ipfor short)F;1 : Cp, — Cq, such thatQ; = Fy o P1. If
P2,Q2 € R, thenP,17,Q2 implies thatP,11,Q2 and, hence, there is &of F» : Cp, —
Cq, such thaQ, = F; o P,. Consider now the following condition:

(*) If Py € R, P2 € Ry andP;17¢P2 then there is aipf Fo : Cp, — Cp, such that
P, = Fgo Py

This condition does not follow from the assumption tBap is apJs. But it is of
course possible that it holds for sorpds’s, but in these casé) ;, results in a much
stronger joining o1, 1) to (Ko, N1o) then that @1 is just apJs. Note that the
strength of this kind of joining system is of another kind than beipgedsor aJs. But
for (*) to express an interesting kind of joining @GR4, 1) to (MR2, N12) something more
is needed. Suppose tha{,Q;, Ry € Ry, Pi11Q1 and Q1M1 Ry. ThenP‘f1 andQlRl are
ipf's andP® = P2QR = Q% o P, And the same also holds f6t,. Suppose now
that P, € Ry, P, € R, and there is alrpf Fo : Cp1 - sz such thatP, = Fg o Py.
Suppose tha®Q; € R1, Q. € R, and that there is aipf Gy : Cq, — Cg, such that
Q2 = Ggo Q. Letus now represerritf2 =Fg andQ(f2 = Gp. Then

Fo= PTZ — PlQl|Q1Q2|Q§2 — 2Pz o Q1Q2 o PlQl — Qg’z 0Gp o PlQl.

186Notethatq is in fact a relational with, andf, as its extensions on different domains.

12¢



JanOdelstas

This shows the dependence betweenipisés associated to different elemeties, Py)
and(Q1, Qz) in 1T,.

Conditions as the above lie behind the following definition, whegges defined as
above (see equation (3)):

Definition 48 ©12 = ((R1, M), (M2, M2) . Jr2, @) is a sub relational pJs (sr-pJH)
((R1, M), (R, M), J12) is apsand @ is a function that assigns dpsto each(P, Q)
in 1To such that

(i) Fori=1,2:P,Q eRi = ®(P,Q) = P2.
(i) (PQ.(QREeT=@(QR-2(PQ=2(PR).

Note that the joinings in ar-pJs, i.e. the elements 1 2, are functions and we call
themfunctional joinings. It is intuitively appealing to denotg(P;, P,) ast2 and in
that way view® (P,, P,) as a transition but of a special kind, viz. a cross-transition.
In many contexts cross-transitions represent norms. But it must be remembered that a
cross-transitiorPf2 of this kind is only meaningful ifP1, P») € J12 and the meaning of
PEZ is relative tod. Note tha@l,z is a quasi-ordering on the set of cross-transitions in

©1,. Suppose thatPs, P , (Q1, Q2) € J12 and(Py, P2) <15 (Q1, Q2). ThenQuf, Py,
P21,Q2 and
Q'@ (P1, P2) = @ (Q1, P2) i.e. P2 o QFt = Q2.

Further,

szl‘l’ (Q1, P2) = @(Q1, Q) i€ P(zgz 0o QP = Q?2~

and, hence,
P30 P10 Q' = Q. Q)

Note that (4) expresses a relationship between the functional joiningsripJs.

There are at least two different approaches to the stuslyis’s.In one approach
the starting point is a givesr-pJsand the questions are how it is constructed, what is
its content and its implications and so on. For the other approach the main question is
to construct ar-pJsfrom quasi-orderings of aspects, for example by the way of speci-
fying a set of joinings and th@-values for those. For both these approaches the set of
minimal joinings will play an important role, and we will make some observations on
this problem.

The notion of connectivity can of course be appliegitpJs’s.Let ®4 ; be asr-pJs
specified as in Definition 48 and satisfying connectivity with respe@fg@ Suppose
thatQ; € MR, Q2 € My and(Q1, Q2) € 1To. Then there igP1, P2) € minJ1 2 such that

(P1,P2) <12 (Q1, Q2)

and by using (4) we get
P2Qz o sz ° Q]P-l — Q?Z

Suppose now thaR;, R;) € minJy, such that

(R1,R2) J12(Q1, Qa).
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Then
RSZ Ri?z
and,hence,
P(Zgz ° P:Tz o QP1 _ RZQZ R1 R1
This shows that it is not possible to choose @hwwalue for every element in migy »
separately, independently of tidevalues for the other elements in nip,. This de-
pends on the structure gminJi ., 1To) (see Lindahl & Odelstad, 2013, p. 588 Corol-

lary 3.36, cf. subsection 1.3.2 above) but this problem area will be left for future
research.

4.4.7 Non-functional cross-transitions

A transition that is a function will below be calledfanctional transitionand a tran-
sition which is not a function will be calledon-functional. In the subsections 4.4.6
above it was assumed that a joining is a functional cross-transition. However, a non-
functional cross-transition that does not imply uncorrelation can be considered as a par-
tial or open joining (an open norm if normativity is involved) determiningpaelraum
of consequenced. To what extent the non-functional cross-transitions are determined
by the functional ones in sr-pJswill be discussed in this subsection.

Let ®,, be asr-pJsspecified as in Definition 48 above. Th&n, determines an
extension o1, 1) and(R,, 1,) to the quasi-orderingRo, 17o) in an unique way.
Note that if(P, Q) € 17, then the transitioP? is, as explained above, meaningfully
characterized and can be regarded as a primary transition. We will here discuss the
possibility to extend the set of meaningful transitions. Suppose@a¢ R; and
Q2 € R, such that there is NB, € MR, such thakQy, Rx) € J12 and noR; € R, such
that(Ry, Q2) € J12. NeitherQ; nor Q is thus a component in a joining. We have
not, so far, given any meaning t@?z. Suppose now thgP;, P,) € J12 which implies
that there is afipf F such thaleZ =F. Qfl is a transition irti; andPS2 a transition
in MR, and, hence, there is a correspondelicelosed under isomorphisms such that

' = I'; and a correspondend® closed under isomorphisms such tlﬁ%% =To.
We can construct the correspondemgi-|I", which is a correspondence closed under
isomorphism with @, as domain and &, as codomain. Sinck|F|l> = QF*|PF2PS”
there is a relation betwee@?2 andT’1|F|I'>. But it is not certain that we can define
QY = I'y|FIT,. To see this, suppose thd, Ry) € J1, and thatQ = I}, R® = F*
andR?2 =T3. Thenl;|F*|I; = Q?Z. It is not certain thal'y|F[I'; = I';|F*[T;, not even
if @, satisfies connectivity and

(P1,P2) (R, R) € mingu J12.
Instead it seems reasonable that

Q¥ cIyIFI; & Q¥ C TFIT

"Notethat a non-functional transitioR? can be “transformed” tt§75 which is a function assigning sets
of values to the possible extension@fverA given the extension d? overA.
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and we see these statements as approximatio@%ofV\ﬁth a slight extension of the
notion of tightness (see Definition 45) we say thdF|I™; is at least as tight d$;|F*|[ 5,
which is denoted

[|FID<I | FA,

if the following holds: IfX; € Cq,, X2 € Cq, andX; = X, then
X1 (T'|FIT2) Xo = X1 (T1F*T5) Xa.

Different approximations otD(lgz may differ in tightness and the optimization of one
transition can affect what is a possible optimization of other transitions. The conditions
under which there is a tightest approximationQ% and under which this is compatible

with the tightest approximation of all other cross-transitions will here be left open for
future research. Instead we will shift focus somewhat and consider the case where all
cross-transitions are meaningful. We take the following definition as a starting point.

Definition 49 ©1, = {(R1, M), (R2, M2), J12, @, (Ro, No)) is anextensively relational
pds (er-pJsif ((MR1, N1), Rz, M), J12, @) is asr-pJsand Ry is a relational arrange-
ment such that

1. Rp=R1U%R,
2. Mo=MYUJ2UM>

3. If P, Q € R fori = 1,2 then the transition P in R agree with the transition
PiQi in Ri.

4. 1f(P1, Pp) € 31 then B? = @ (P, Py).

Let @, be aer-pJsspecified as in Definition 49 above. With a cross-transition in
NRo = M1 U R, is meant a transitioR? such that eitheP € R andQ € R, or P € R,
andQ € R;. Ji2, the set of joinings i1 ,, consists of functional cross-transitions.
Suppose thaP; € R; andP, € R, such thale2 is a non-functional cross-transition.
Then it is possible that the correspondeficgeuch thale2 = I may not be inferred
from 312 and PlPZ =T may be im‘ormative.Pf2 is then a kind of partial (vague, open)
joining from (MR, 1) to (R2, N2)-

In Ry all transitions, even cross-transitions, are meaningful. Henég,4fR; and
P, € R, then PTZ is meaningful. However, that does not imply tI'Fit2 is a proper
joining, not even a proper partial joining. IFf*f2 is sweeping, i.e.PiuncorrP;,, then
information on the extension d¢f; on A contains no information on the extension of
P, on A. To be a proper joinin@f2 must be non-sweeping, i.d2; and P, must be
correlated.

There is some vagueness in Definition 49 since the notion of a relational arrange-
ment has not been given a formal characterization (for example by an axiomatization)
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that is satisfactory for the application of the notion in the actwadtext. This short-
coming will hopefully be possible to remedy with a deeper study of the structure of
transitions'®

At this point some rules regulating the behavior of transitions ought to be remem-
bered, see Theorem 44:

(1) Generally:P?|QR 2 PR

(2) If Q0 PthenPQIQR = PR

(3) If Q 1 RthenPQIQR = PR,
Of another kind but still related is the following (see Definition 45 and Theorem 46):

(@) 1f P Q thenPR<QR.

4.4.8 Non-functional joinings

Let @12 = ((R1, M), {R2, M), J1.2) be apJs. We have so far studied the case where
J12 consists of functions. This is the cas®if, is aner- or sr-pJs, butitis also possible
thatJy » consists of non-functional correspondences or a mixture of functional and non-
functional correspondences. The narrowness-relation for spdhisithe relation'g\l,z
defined above in terms d@f, andf,. If one accepts to determine approximative values
for cross-transitions that are not joinings from the joiningsjin as was discussed
in subsection 4.4.7, these can be regarded as a kind of secondary joinings while the
elements irfj, > are primary joinings.

Suppose tha®; , satisfies connectivity and th&Qi, Q,) € Jio. Then there is
(P1,Py) € mingl'2 J1.2 such that

(P1,P2) <12(Q1, Q) i.e. QifliP1&P21,Qu.

It is often convenient to denote the elementgin not as ordered paird;, P,) but
as transition?fz. Suppose thdt is a correspondence closed under isomorphism (and
satisfying some other minor conditions, see subsection 4.3.3) sudhtkaP;|I". Let
us for the sake of simplicity accept the “transition-formalism” and, heﬁ?@,: I'and

Q% c QMrIPy.

Hence, the set of minimal elements does not necessarily determine all the elements in
J12.

If 312 consists of correspondences that are not certainly functions then the connec-
tion between(Ry, 11) and{®R,, N1,) seems to be in a sense unspecified or vague. But
this vagueness can be the result of lack of knowledge about the joined system and may
be settled at a later stage of the investigatiorpJawith correspondences as joinings
can be a useful tool in the initial stage of a research abqJsaf relationals but also
a tool for constructing a more developed joined system.

18| apJs(Ai, Ay, J) there is often more “structure” on the tofly and the bottorn\, than just the quasi-
orderings. In theis model the top and bottom are Boolean quasi-orderings. In a system of relations there is
also “more structure” than just the quasi-orderings, for example the concatenation operation of relationals,
that fromP and Q form PQ (see Definition 31). In some applications we can have a set of “generators”
G such that each relational @& is uncorrelated to the concatenation of all the other elemerts iRor all
finite subset$ of G we construct the concatenation of the elemert iriThe resulting set of relational&(
included) can in a sense be regarded as a set of relationals gener&edoyvever, structures on sets of
relationals can be specified in other ways, too.
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4.4.9 Relationals as intermediaries

In the subsections above some aspects of the connection between functional and non-
functional cross transitions from relationals of one sort to relationals of another sort has
been discussed. Some light has been shed upon the following questions. To what ex-
tent are the non-functional cross-transitions determined by the functional ones? And to
what degree are the functional cross-transitions determined by the non-functional ones?
These questions are relevant in connection with intermediaries. Can an intermediary
have a non-functional cross-transition as the defining ground and/or consequence? Is
that what “openness” means for aspects as intermediaries? Does this introduce inde-
terminacy in the conceptual system?
Suppose that

O12 = <(9%1, M, Rz, M), J1,2, P12, <SR1,2, ﬂ1,2>>

©23 = ((R2. 1) . (Ra. N3) . To3. P23, (R2z. Mag))

O13 = (M. M3} . (Ra. M) . I3 P13 (R, N1s))

are extensively relationgdJs’s (er-pJs's). We represent elementsJin as cross-
transitions. Let us suppose thai,, ®,3 and®; 3 are interconnected in such a way
that if P € 91, P, € |, andP; € R thenP?|P5? 2 P2,

Let us now introduce intermediaries in the aspect model as foll®yss R, is
anintermediaryin (©12,®,3, @1 3) if there are correspondencEs, andI';3 closed
under isomorphisms such that the meanin@pfs given byPlPZ =TIy, and Pi; =Ty3
taken together as a whole, and

P =1,/ 5.

In other wordsP!? = 'y, (i.e. P2 = Py|l'1) is the defining ground o, andP5® =
[y3 (i.e. P3 = P,|I'23) is the defining consequence®f. If P, (A) = A then

P2 (A) € P (A1) & P3<A)eP_§5[P_§’5<ﬂ)].

Suppose thal, € R, is an intermediary IO, 2, © 3, ® 3) with sz as the defin-
ing ground andi’;’3 as the defining consequence, which we express by saying that the

meaning ofP, is given byP, =q¢ P{2|P5%. Then there are four different combinations
of functional/non-functional grounds and consequences:

1. sz and P§3 are both functionsP; is neither ground nor consequence open
2. P22 is a function bu® is not a functionP; is consequence open
3. P2%is not a function buP%* is a function,P; is ground open

4, neitherPfz nor PZ’S are functionsP; is ground and consequence open.
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The four items above constitutes the initial fragment of a typoloigyptermediaries.
If
P, =gt PP?IPS? & PP2 =T, & Ph* = T3

then Pf3 = I'1o|l23 is a condition on®;3. The use of intermediaries is thus one
possible method for characterizing, completely or partially, the joining of two sets of
relationals of different sorts

There are two different perspectives on the role of intermediaries in the joining of
systems: The aim of the investigation is (1) the conceptual analysis of the intermediary
or (2) the construction of a system that joins two sets of relationals of different sorts and
the intermediary is a vehicle for establishing joinings. If the aim is (1) then the joined
system is the starting point, whereas if the aim is (2) the intermediary is the starting
point.

If P2 =q¢ P?IP5® and, furthermoreP?? = Fi, andPy® = F,3 whereFy, and
F.3 areips’s, then there is no openness with regard®Pioi.e. if P1(A) = A then
P3(A) = Fa3(F12(A)). But some kind of uncertainty may still play a role. It may
be the case that we cannot determigA) directly but know thaiQ; (A) = A, and

—

thereforeP; (A) € Qfl (A) and
Pa(A) € Fua | Q7 ()] & Pa(A) € Faa Fac| QT o0

4.5 Conclusion

The aim of this paper is to further develop TJS in some respects and widen the range of
application of the theory. We have seen how the idea of norms as ordered pairs is flex-
ible enough to handle nested implications and hypothetical consequences. Tools from
Formal Concept Analysis may be useful in TJS since formal concepts and minimal
joinings are shown to be closely related. An aspect model of TJS has been outlined.
All three investigations can be pursued further, but especially the application of TJS
on aspects may hopefully develop TJS and result in useful practical methods and tools.
Cross-transitions can in normative contexts be regarded as norms, partial (vague, open)
if the cross transitions are not functional. A problem area not touched upon in this
paper but presumably of great relevance is the numerical representation of aspects, for
example by means of measurement, since measures can represent (and in a sense be-
come) intermediaries. We end this paper with the conjecture that the aspect model of
TJS may be a useful tool for the analysis of the notion of supervenience.
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