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Abstract

The Theory of Joining Systems, abbreviated TJS, is a general theory of repre-
senting for example legal and other normative systems as formal structures. It uses
algebraic tools and a fundamental idea in this algebraic approach is the represen-
tation of a conditional norm as an ordered pair of concepts. Another fundamental
idea is that the components in such a pair are concepts of different sorts. Condi-
tional norms are thus links from for example descriptive to normative concepts and
the result is the joining of two conceptual systems. However, there are often at least
three kinds of concepts involved in many normative systems, viz. descriptive, nor-
mative and intermediate concepts. Intermediate concepts such as ‘being the owner’
and ‘being a citizen’ have descriptive grounds and normative consequences and can
be said to be located intermediately between the system of grounds and the sys-
tem of consequences. Intermediate concepts function as bridges (links, joinings)
between concepts of different sorts. The aim of this paper is to further develop
TJS and widen the range of application of the theory. It will be shown that the
idea of norms as ordered pairs is flexible enough to handle nested implications
and hypothetical consequences. Minimal joinings, which are important in TJS, are
shown to be closely related to formal concepts in Formal Concept Analysis. TJS
was developed for concepts of a special kind, namely conditions. In this paper a
new model of TJS is developed, where the concepts are attributes and aspects, and
the role of intermediate concepts in this model is discussed.
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1 Outline of the theory of joining systems

1.1 Introduction

Intermediate concepts such as ‘being the owner’, ‘being a guardian’, ‘being a citizen’
and ‘having a relationship similar to being married’ play a significant role in the formu-
lation of legal systems. The meaning and structure of such concepts was the subject of
a comprehensive discussion among Scandinavian philosophers and jurists in the 1940’s
and 1950’s. The subject has got a renewed interest during the last decades and has been
studied from different points of view, for example legal philosophy and logic. In a se-
ries of articles further developed and summarized as a chapter inHandbook of Deontic
Logic and Normative Systems(Lindahl & Odelstad 2013), Lars Lindahl and I present a
formal theory of intermediate concepts.1 This theory is a part of a more general theory
of representing for example legal and other normative systems as formal structures.
The more general theory is called the Theory of Joining Systems, abbreviated TJS. It
uses algebraic tools and a fundamental idea in this algebraic approach is the representa-
tion of a conditional norm as an ordered pair of conditions. Another fundamental idea
is that the components in such a pair are conditions of different sorts. A simple exam-
ple is the norm represented by the ordered pair〈c1, c2〉 wherec1 is a descriptive andc2

a normative condition. A conditional norm is thus a link from descriptive conditions to
normative conditions.

Intermediate concepts, also called intermediaries, enter the picture as bridges or
links between the descriptive and normative conditions. Consequently, there are three
kinds of concepts involved in many simple normative systems, descriptive, normative
and intermediate conditions. Intermediaries have grounds and consequences, the con-
cept being implied by the grounds and implying the consequences. In simple normative
systems an intermediate concept has descriptive grounds and normative consequences
and can be said to be located intermediately between the system of grounds and the sys-
tem of consequences. The intermediate concepts are of another kind than the grounds
and consequences, and will here be regarded as belonging to another sort. Therefore,
intermediate concepts function as bridges (links, joinings) between concepts of differ-
ent sorts.

The aim of this paper is to develop TJS in some respects and widen the range of
application of the theory. In normative systems it is frequent that the consequence of
an intermediary is a conditional norm. By jurists such intermediaries are often said
to have hypothetical legal consequences. This means that in norms represented as
ordered pairs, one of the components in the pair is itself an ordered pair, and such
norms ought to be represented as〈c1, 〈c2, c3〉〉 or 〈〈c1, c2〉 , c3〉. The differences between
these two models of representing “norms within norms” and the general treatment of
phenomena similar to hypothetical legal consequences within TJS is the subject of one
of the remarks in this paper.

An important branch of lattice theory is formal concept analysis. The second re-
mark in this paper focus on a TJS-perspective on what is called formal concepts in
this branch of lattice theory. It turns out that the so-called formal concepts are closely

1In our chapter of the handbook we discuss other approaches to the problem area.
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related to an important notion in TJS, namely the minimal joiningsbetween concepts
of different sorts.

The third remark is an introduction to the application of TJS to concepts of quite
another kind than conditions, namely the concepts that are often generally called at-
tributes or aspects and in special contexts quantities or qualities. Familiar physical ex-
amples are length, mass, force an temperature and examples from other sciences will
be discussed in Section 4. Aspects are represented as relational structures and a frame-
work for such representations is presented in subsection 4.2 and 4.3. In subsection 4.4
this framework is used for the construction of an aspect model for TJS.

The logical study on normative systems has applications in many areas, especially
in legal science but also for example in computer science and artificial intelligence.
There is a discipline emerging on the border between the formal study of normative
systems and computer science. This discipline has, at least, a twofold aim: on the
one hand a computational approach to normative systems (primarily regarding the law)
and on the other hand the study of normative systems used within computer science.
This interdisciplinary discipline contains numerous applications of deontic logic and
the logic of normative systems. The development of TJS is founded on theoretical
considerations but also to some extent with practical applications in view. TJS has
for example been used in work on norm-regulation of agent systems, (see Odelstad
& Boman, 2004, and Hjelmblom, 2015) on a forest cleaning system (see Odelstad,
2007, and Hjelmblom, 2015, pp. 40–45) and on automation of the Swedish property
formation (see Hjelmblom et. al. in press). The development of the aspect model of
TJS, which is initialized in this paper, may hopefully result in further applications of
TJS

1.2 Some characteristic features of TJS

The description of TJS above is just a first preliminary view of TJS. This section con-
tains a more detailed overview over some aspects of TJS. For a comprehensive presen-
tation, see Lindahl & Odelstad (2013).

TJS is a framework for studying conceptual structures and their relations. The con-
ceptual structures can be of different (logical) types and of different (cognitive) sorts.
Essential for the TJS-perspective on conceptual structures is an implicative relation be-
tween the concepts. The characteristics of this implicative relation differ depending on
the type and sort of the conceptual structure. Examples of two different types of con-
cepts are conditions and attributes (here preferably called aspects). Of special interest
from the TJS-perspective is how different conceptual systems are connected to each
other. In application of the theory it is frequent that there are many different concep-
tual structures involved which form a network of different strata. TJS is a theory for
the study of many-sorted implicative conceptual systems,msic-systems(or msics) for
short.

Let A1 andA2 be two conceptual structures (formally strata) connected by an
implicative relation holding between concepts in the two structures. A pair of concepts
〈c1, c2〉, with the first component taken fromA1 and the second fromA2 related by the
implicative relation is said to be a joining fromA1 toA2. A joining can be more or less
narrow. Of special interest from a TJS-perspective are the joinings that are maximally
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narrow. (The exact definition of narrowness is given in Section2.) In applications
of TJS the joining between conceptual structures can represent many different kinds
of connections dependent on the type and sort of the structures. The joinings can be
norms, rules, scientific laws etc.

A special class of msic-systems is condition implication structures (cis). When TJS
is applied to such structures the result is in Lindahl & Odelstad (2013) called thecis
model. Ordinary normative systems consist of condition implication structures and the
cismodel is developed with them in view. Some features of thecismodel will be listed
below (cf. Lindahl & Odelstad, 2013, p. 629f.).

(1) A pair 〈a1,a2〉 represents a norm due to the normative character ofa2.

(2) The representation aims at a rational reconstruction of a normative system.

(3) Basic entities are concepts (conditions), not sentences or propositions, and the
Boolean connectives are in many cases applicable to the conditions, which then
constitute a Boolean quasi-ordering.

(4) Emphasis is put on the analysis of minimality of joinings and of closeness be-
tween strata.

(5) A central theme is “intermediaries” (intermediate concepts) in the system.

(6) A normative system is represented as a network of subsystems and relations be-
tween them; the study comprises stratification of a normative system with struc-
tures (“strata”) that are intermediate.

(7) Since economy of expression is in focus, representation by a base of minimal
joinings is a special interest.

(8) The strata are in many contexts Boolean structures extended with a quasi-ordering
(called Boolean quasi-orderings,Bqo’s). However, the strata of joining-systems
need not in thecismodel be Boolean structures but could instead for example be
lattice-like structures.

A note on item (3) above. If p is aν-ary condition andi1,...,i
ν

are individuals, then
p(i1, ..., iν) is a statement. Conditions can be used in state descriptions of for example
social and artificial agent systems. Antecedents and consequences of norms are repre-
sented as conditions and are calledgroundsandconsequencesrespectively. A norm is
correlating a ground to a consequence and is represented as an ordered pair.

Figure 1 is an attempt to illustrate a simple normative systemN consisting of a
systemB1 of potential grounds (descriptive conditions) and a systemB2 of potential
consequences (normative conditions).2 The set of norms inN is the setJ of links or
joiningsfromB1 toB2. A norm is represented by an arrow from the system of grounds
to the system of consequences.

A norm in a normative systemN , the norm here represented as an ordered pair
〈a1,a2〉, can be regarded as a mechanism of inference. We can distinguish two cases.

2Thefigures in this report are taken from Lindahl & Odelstad (2013) or our other joint publications.
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Potential grounds, B1

Potential consequences, B2

Joinings, J

Figure 1: A simple normative systemN .

Supposethata1 andb1 are descriptive conditions anda2 andb2 normative.b1 -1 a1

means thatb1 impliesa1 in B1 anda2 -2 b2 means thata2 impliesb2 in B2. Then the
following “derivation schemata” are valid givenN .

(I)
a1(i1, ..., iν)
〈a1,a2〉

—————
a2(i1, ..., iν)

(II)
b1 -1 a1

〈a1,a2〉

a2 -2 b2

—————
〈b1,b2〉

3

In (I), 〈a1,a2〉 functions as a deductive mechanism correlating sentences by means
of instantiation, while in (II),〈a1,a2〉 plays an important role in correlating one condi-
tion, b1, to another condition,b2.

A note on item (4) above. Minimality of joinings and of closeness between strata rest
on the notion of narrowness between antecedent and consequence in a norm. These
notions will be discussed in more detail in later sections, see subsection 1.3.2 and
2.2.1. However, Figure 2 will give a hint of what is meant with narrowness. Consider
the norms (links) from the systemB1 of grounds to the systemB2 of consequences.

3Notethatb1 -1 a1 relates conditions of the same sort and the same holds fora2 -2 b2; b1 anda1 are
descriptive buta2 andb2 are normative. A norm consists of conditions of different sorts. As stated earlier,
only implicative sentences that relate conditions of different sorts will be represented as ordered pairs.
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a1 

a2 

b2 

b1 

B2 

Consequences 

B1 

Grounds 

Link 2 〈 b1,b2〉 Link 1 〈 a1,a2〉 

Figure 2: Norm
〈
a1,a2
〉

is narrower than norm
〈
b1,b2
〉
.

Suppose that〈a1,a2〉 and 〈b1,b2〉 are norms from the system of groundsB1 to the
system of consequencesB2.

The figure illustrates that〈a1,a2〉 is narrower than〈b1,b2〉. We can say alternatively
that〈a1,a2〉 “lies between”b1 andb2.

A note on item (5). Concepts that have two faces, one turned towards facts and de-
scriptions, the other towards legal consequences are said to be intermediate between
facts and legal consequences and will often be called intermediaries. Figure 3 will
give an illustration of the idea of a normative system with intermediaries. The sys-
tem is represented as a two-sorted implicative conceptual system, consisting of a set of
descriptive grounds and a set of normative consequences. The intermediate concepts
are neither purely descriptive nor purely normative, they have descriptive grounds and
normative consequences and must be understood as a unity of the grounds and the
consequences.

As an example, consider what it means to be a citizen according to the system of
the U.S. Constitution. Article XIV, Section 1 reads as follows:

All persons born or naturalized in the United States, and subject to
the jurisdiction thereof, are citizens of the United States and of the State
wherein they reside. No State shall make or enforce any law which shall
abridge the privileges or immunities of citizens of the United States; nor
shall any State deprive any person of life, liberty, or property, without the
due process of law; nor deny to any person within its jurisdiction the equal
protection of the laws.

Two key concepts in the article arecitizenandperson. The article specifies the
ground for the condition being a citizen in the United States:

persons born or naturalized in the United States, and subject to the jurisdiction
thereof
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Joinings, J 

Potential consequences, B2 

Potential grounds, B1 

Intermediaries 

Figure 3: A normative system with intermediaries.

andspecifies a number of legal consequences of this condition expressed in terms of
‘shall’:

no State shall make or enforce any law which shall abridge the privileges or immu-
nities of citizens of the United States.

The article does not state any ground for the condition to be a person but specifies
a number of legal consequences connected to this condition:

nor shall any State deprive any person of life, liberty, or property, without due
process of law; nor deny to any person within its jurisdiction the equal protection of
the laws.

Within the constitutional system of United States, this article is supplemented with
rules laid down by the Constitution and through court decisions. These rules determine
together, by specifying grounds and consequences, the role the concepts ‘citizen’ and
‘person’ have within the legal system. We will return to this example in Section 2.

A note on item (6). Figure 4 is a network of strata illustrating a TJS representation
of a fairly complex normative system. It is included in Lindahl & Odelstad (2013) p.
620 with comments and explanations and these will be quoted here. Note that∧ is the
operation of conjunction and∨ is the operation of disjunction for conditions.

The present subsection. . . presents acis example of joining-systems
with intervenients for a network ofBqo strata. . .. The example is legal
and concernsownershipandtrust as intervenients. The legal rules in this
example are expressed in terms of joinings betweenBqo’s B1, B2, B4,
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Figure 4: A network of strata.

B5 for ownership, and betweenB3, B4 and B5 for trusteeship.4 Both
of B2 andB4 are intermediate structures, whereB4 is supposed to con-
tain the intervenients ownership and trusteeship andB2 the intervenients
purchase,barter, inheritance,occupation,specification,expropriation(for
public purposes or for other reasons),which are grounds for ownership. B1

contains grounds for the conditions inB2, such as making a contract for
purchase or barter respectively, having particular kinship relationship to
a deceased person, appropriating something not owned, creating a valu-
able thing out of worthless material, getting a verdict on disappropriation
of property, either for public purposes or for other reasons.B3 contains
different grounds for trusteeship.B5 contains the legal consequences of
ownership and trusteeship, respectively, in terms of powers, permissions
and obligations.

Note that in many (but certainly not all) applications of TJS the conceptual struc-
tures involved are of the same type but of different sorts. In thecis model the concepts
are of the type conditions but that is just one model of TJS. The general, abstract the-
ory of joining-systems can be applied to quasi-orderings of any kind. The “intended
models” of TJS differ substantially but have some features in common. They consist

4Trust is where a person (trustee) is made the nominal owner of property to be held or used for the benefit
of another. Trusteeship is the legal position of a trustee.
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of systems of conceptual structures of differentsorts with implicative relations joining
the structures. In Section 4 we will studymsic-systems where the concepts are repre-
sented as relational structures. Such concepts are often called attributes and sometimes
aspects, here the term ‘aspect’ will be preferred. As examples of aspects the following
may be mentioned: area, temperature, age, loudness, accessibility, public interest and
archeological value. On concepts of this type several quasi-orderings can be defined,
but in this paper only one will be studied.

1.3 A small piece of the TJS formal framework

1.3.1 Introduction

This subsection is an attempt to introduce one basic idea of the TJS-formalism in a
very simple fashion.

Let
〈
A0,-0

〉
be a quasi-ordering. The intended interpretation ofA0 is that its ele-

ments are concepts of some type and-0 an implicative relation between the concepts.
The character of-0 differ depending on the type of concepts considered. If the con-
cepts are conditions,-0 is usually implication. Define a relationE0 on A0 × A0 as
follows:

〈a,b〉 E0 〈c,d〉 ⇔ c -0 a & b -0 d.

In measurement and utility theoryE0 expresses differences.〈a,b〉 E0 〈c,d〉 is then
interpreted as follows: The difference (with respect to-0) betweena andb is less than
or equal to the difference betweenc andd.

Let A1 andA2 be two disjunct subsets ofA0 and let-1 be the restriction of-0 to A1

and-2 the restriction of-0 to A2, i.e. -1=-0 /A1 and-2=-0 /A2.5 We may think of
A1 andA2 as consisting of concepts of different sorts but (in simple cases) of the same
type. For example, the elements inA1 andA2 can be conditions but the conditions in
A1 can be descriptive and those inA2 can be normative. LetE be restrictions ofE0 to
A1 × A2, i.e. E=E0 /A1 × A2. Note thatE0 is a quasi-ordering onA0 × A0 andE on
A1 × A2. The elements inA1 × A2 are bridges (links, joinings) between the concepts in
A1 and inA2. In different applications of the theory the ordered pairs inA1 × A2 can
represent a diversity of phenomena. For example, they can represent conditional norms
with the antecedent being a descriptive condition taken fromA1 and the consequence a
normative condition taken fromA2. But as will be seen in the last section, the elements
in A1 andA2 as well as the ordered pairs can represent concepts of quite different types
and sorts.

The binary relationE is a quasi-ordering of the elements inA1 × A2. If ordered
pairs in A1 × A2 represent norms, thenE is an ordering of the norms which can be
interpreted as an implicative relation between them.〈a,b〉 E 〈c,d〉 means that the
norm〈a,b〉 implies the norm〈c,d〉 and we say that〈a,b〉 is at least as narrow as〈c,d〉.
(Cf. differences with respect toE0.) The minimal norms with respect toE are of
special interest since they can generate the whole set of norms in a transparent way.〈

A0,-0
〉

is in many contexts not given in the outset. Instead, in most cases we start
offwith two quasi-orderings

〈
A1,-1

〉
and
〈
A2,-2

〉
. We connect them by pairs〈a1,a2〉,

5Restrictions and the use of ‘/’ is explained in the beginning of Section 1.3.2.
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wherea1 ∈ A1 anda2 ∈ A2 andwe call them joinings. We close the set of joinings such
that it becomes a quasi-ordering with respect toE and callE the narrowness-relation
from

〈
A1,-1

〉
to
〈
A2,-2

〉
.

Suppose now that we have three quasi-orderings
〈
A1,-1

〉
,
〈
A2,-2

〉
and
〈
A3,-3

〉
.

Suppose further that〈a1,a2〉 is a joining from
〈
A1,-1

〉
to
〈
A2,-2

〉
and 〈a2,a3〉 is a

joining from
〈
A2,-2

〉
to
〈
A3,-3

〉
. If this implies that〈a1,a3〉 is a joining fromA1 to

A3 then the elements inA2 act as intermediaries betweenA1 andA3. Of special interest
are those〈a1,a2〉 and〈a2,a3〉 such that〈a1,a3〉 is a minimal joining with respect to the
narrowness relation between

〈
A1,-1

〉
and
〈
A3,-3

〉
.

In the next subsection some concepts and results used in TJS will be presented
more formally. For a more profound discussion of the subject see Lindahl & Odelstad
(2013).

1.3.2 Some basic definitions and results

This section contains definitions and results used in the rest of this paper and is intended
to be consulted when necessary. Note that in this paper ‘if and only if’ is abbreviated
to ‘iff ’.

First a note on terminology. Suppose thatR is aν-ary relation on a setA and thatX
is a subset ofA. ThenR∩ Xν is denotedR/X and is called therestrictionof R to X.

Correspondences The notion of a correspondence will be used in Section 3 on For-
mal Concept Analysis and in Section 4 on joining conceptual systems of aspects.6

The triple〈X,Y, γ〉 is acorrespondencefrom X to Y if X andY are sets,γ is a binary
relation, andγ ⊆ X × Y. The expressions〈x, y〉 ∈ γ andxγy are used synonymously. If
〈X,Y, γ〉 is a correspondence, then

γ

−1
= {〈y, x〉 | xγy}

and
〈
Y,X, γ−1

〉
is a correspondence. If the triple〈X,Y, γ〉 is a correspondence, it is

sometimes more convenient to say thatγ is a correspondence fromX to Y and thatγ−1

is a correspondence fromY to X. Suppose that〈X,Y, γ〉 is a correspondence. IfZ ⊆ X
we define:

γ [Z] = {y ∈ Y | ∃x ∈ Z : xγy} .

Note that there can existZ1,Z2 ⊆ X such thatZ1 , Z2 butγ [Z1] = γ [Z2].
If W ⊆ Y then

γ

−1 [W] =
{
x ∈ X | ∃y ∈W : yγ−1x

}
= {x ∈ X | ∃y ∈W : xγy} .

The correspondence〈X,Y, γ〉 is on X if γ−1 [Y] = X, onto Y if γ [X] = Y. If a
correspondence is onX we say thatX is the domain of the correspondence. And if a

6The theory of correspondence is frequently used in economic theory, see for example Debreu (1959)
and Klein & Thompson (1984), where correspondences are often treated as set-valued functions (see further
sub-section 4.3.6 below). The presentation of correspondences is here inspired by Cohn (1965) pp. 9–11.
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correspondence is ontoY we say thatY is the image, range or codomain of the corre-
spondence. If there is no risk of ambiguity, we denoteγ [{a}] with γ [a] andγ−1 [{b}]
with γ−1 [b].

Suppose that〈X,Y, γ〉 is a correspondence. Then the set

{〈x,W〉 ∈ X × ℘(Y) |W = γ [x]}

is a function onX into ℘(Y), and we denote it−→γ . Thus

−→
γ : X→ ℘(Y)

−→
γ (x) = γ [x] .

Therelative productof two correspondences〈X,Y, γ〉 and〈Z,W, δ〉 is the correspon-
dence〈X,W, γ|δ〉 whereγ|δ is defined by

γ|δ = {〈x,w〉 ∈ X ×W | ∃v ∈ Y∩ Z ∈: xγv & vγw} .

Note that the operation relative product on correspondences is associative.

Proposition 1 Suppose that〈X,Y, γ〉 and 〈Z,W, δ〉 are correspondences and that A⊆
X. Then

(γ|δ) [A] = δ
[
γ [A]

]
.

Quasi-orderings

Definition 2 The binary relation- is a quasi-ordering onA if - is transitive and
reflexive in A.

Another name for quasi-ordering is preordering. Writing∼ for theequalitypart of
- we say thatx ∼ y holds iffx - y andy - x. Also, writing≺ for thestrict part of-
we say thatx ≺ y iff x - y and noty - x.

A quasi-ordering is closely related to a partial ordering. If〈A,-〉 is a quasi-ordering
and∼ is the equivalence part of-, then- generates a partial ordering on the set of∼-
equivalence classes generated fromA.

Definition 3 Suppose that- is a quasi-ordering on A and that X⊆ A and x ∈ X.
Then,
(1) x is aminimal elementin X with respect to- iff there is no y∈ X such that y≺ x,
(2) x is amaximal elementin X with respect to- iff there is no y∈ X such that x≺ y.
(3) The set of minimal elements in X with respect to- is denotedmin- X and the set
of maximal elements of X with respect to- is denotedmax- X.
(4) x is a least elementin X with respect to- iff for all y ∈ X, x- y,
(5) x is agreatest elementin X with respect to- iff for all y ∈ X, y- x.

Note that in a quasi-ordering〈A,-〉, a greatest and a least element in a setX ⊆ A
need not be unique. But ifx andy are greatest elements (or least elements) inX with
respect to-, thenx ∼ y.
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Quasi-lattices and complete quasi-lattices The notions of least upper bound and
greatest lower bound are important in the definition of a joining-system. These no-
tions are usually defined for partial orderings and not for quasi-orderings. Since quasi-
ordering is a basic structure in TJS, we generalize the notions of least upper bound and
greatest lower bound to quasi-orderings. We use ub and lb as abbreviations for upper
bound and lower bound respectively, and lub and glb for least upper bound and greatest
lower bound respectively. We note that (in contrast to what holds for partial orderings)
a least upper bound or a greatest lower bound relative to a quasi-ordering〈A,-〉 need
not be unique.

Definition 4 Let- be a quasi-ordering on a set A with X⊆ A. Then
ub- X =

{
a ∈ A | ∀x ∈ X : x - a

}

lb- X =
{
a ∈ A | ∀x ∈ X : a - x

}

lub- X =
{
a ∈ A | a ∈ ub- X & ∀b ∈ ub- X : a - b

}

glb- X =
{
a ∈ A | a ∈ lb- X & ∀b ∈ lb- X : b - a

}
.

According to standard algebraic terminology, a partially ordered set〈L,≤〉 is a lat-
tice if for all a,b ∈ L, sup≤ {a,b} and inf≤ {a,b} exist inL. (In connection with partial
orderings, we prefer to use sup and inf instead of lub and glb respectively.)〈L,≤〉
is completeif inf ≤ X and sup≤ X exist for all X ⊆ L. We generalize these notions to
quasi-orderings.

Definition 5 If 〈A,R〉 is a quasi-ordering such that

lubR {a,b} , ∅ and glbR {a,b} , ∅ for all a,b ∈ A,

then〈A,R〉will be called aquasi-lattice.If lubR X , ∅ andglbR X , ∅ for all X ⊆ A,
then〈A,R〉 is acompletequasi-lattice.

Narrowness and lowerness

Definition 6 Suppose that
〈
A1,-1

〉
and
〈
A2,-2

〉
are quasi-orderings. Thenarrowness

relationwith respect to
〈
A1,-1

〉
and
〈
A2,-2

〉
is a binary relation on A1 × A2 denoted

byE-1,-2
, defined as follows: For all a1,b1 ∈ A1,a2,b2 ∈ A2

〈a1,a2〉 E-1,-2
〈b1,b2〉 iff b1 -1 a1 & a2 -2 b2. (1)

The lowerness relationwith respect to
〈
A1,-1

〉
and
〈
A2,-2

〉
is a binary relation on

A1 × A2 denoted by-∗
-1,-2

, defined as follows: For all a1,b1 ∈ A1,a2,b2 ∈ A2

〈a1,a2〉 -
∗

-1,-2
〈b1,b2〉 iff a1 -1 b1 & a2 -2 b2. (2)

When there is no risk of confusionE1,2 will be used instead ofE-1,-2
and -∗1,2 and

even-1,2 instead of-∗
-1,-2

.

Note that
〈
A1 × A2,E1,2

〉
as well as

〈
A1 × A2,-

∗
1,2

〉
is a quasi-ordering given that〈

A1,-1
〉

and
〈
A2,-2

〉
are quasi-orderings.
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Protojoining- and joining-systems

Definition 7 A protojoining-system (pJs)is an ordered triple〈A1,A2, J〉 such that
A1 = 〈A1,-1〉 andA2 = 〈A2,-2〉 are quasi-orderings and J⊆ A1 × A2 and the
following condition is satisfied whereE1,2 is the narrowness relation determined by
A1 andA2: For all b1, c1 ∈ A1 and b2, c2 ∈ A2,

if 〈b1,b2〉 ∈ J and〈b1,b2〉 E1,2 〈c1, c2〉, then〈c1, c2〉 ∈ J.

If 〈A1,A2, J〉 is a protojoining-system we let-i be the quasi-ordering inAi if not
stated otherwise.

Suppose that〈A1,A2, J〉 is apJs. Then
(1) 〈A1,A2, J〉 is a correspondence withA1 as domain andA2 as codomain, and we

can also say thatJ is a correspondence fromA1 to A2.
(2) J[A1] ⊆ A2, whereJ[A1] contains the second components (belonging toA2) of

the ordered pairs that are joinings fromA1 toA2, and
(3) J−1[A2] ⊆ A1, whereJ−1[A2] contains the first components (belonging toA1)

of the joinings fromA1 toA2.. Hence,J−1 [A2] is the set of grounds andJ [A1] the set
of consequences of the joinings in〈A1,A2, J〉.

(4) E1,2 [J] ⊆ J
(5) -1 |J| -2= J and, therefore,J can be said to “absorb”-1 and-2. Note that

x1(-1 |J| -2)x2 iff ∃y1, y2 : x1 -1 y1 & y1Jy2 & y2 -2 x2.

In the next theorem (5) is proved.

Theorem 8 Suppose that
〈
A1,-1

〉
and
〈
A2,-2

〉
are quasi-orderings and that J⊆ A1×

A2. Then
〈〈

A1,-1
〉
,

〈
A2,-2

〉
, J
〉

is apJsiff -1 |J| -2= J.

Proof. (I) Suppose that
〈〈

A1,-1
〉
,

〈
A2,-2

〉
, J
〉

is a pJs. We prove-1 |J| -2= J.
Suppose that〈a1,a2〉 ∈-1 |J| -2. Then there isb2 ∈ A2 such that〈a1,b2〉 ∈

(
-1 |J

)

andb2 -2 a2. 〈a1,b2〉 ∈
(
-1 |J

)
implies that there isb1 ∈ A1 such thata1 -1 b1

and〈b1,b2〉 ∈ J. Froma1 -1 b1 andb2 -2 a2 follows that〈b1,b2〉 E1,2 〈a1,a2〉 and
since〈b1,b2〉 ∈ J the definition of apJsimplies that〈a1,a2〉 ∈ J. a1 -1 a1, a1Ja2 and
a2 -2 a2 implies that〈a1,a2〉 ∈-1 |J| -2.

(II) Suppose that-1 |J| -2= J. Suppose further that〈a1,a2〉 ∈ J and〈a1,a2〉 E1,2

〈b1,b2〉. It follows that b1 -1 a1 and a2 -2 b2. 〈b1,a2〉 ∈
(
-1 |J

)
and therefore

〈b1,b2〉 ∈
(
-1 |J| -2

)
. Hence,

〈〈
A1,-1

〉
,

〈
A2,-2

〉
, J
〉

is apJs.

Theorem 9 Supposethat
〈〈

A1,-1
〉
,

〈
A2,-2

〉
, J
〉

is a pJs. Then(1)
〈
J,E1,2 /J

〉
is a

quasi-ordering and(2)
〈
A1 ∪ A2,

(
-1 ∪J∪ -2

)〉
is a quasi-ordering.

Proof. (1) J ⊆ A1 × A2 and since
〈
A1 × A2,E1,2

〉
is a quasi-ordering it follows that〈

J,E1,2 /J
〉

is a quasi-ordering.
(2) Let A0 = A1 ∪ A2 and -0=

(
-1 ∪J∪ -2

)
. If x ∈ A1 then x ∼1 x and if

x ∈ A2 thenx ∼2 x. In both casesx ∼0 x which shows that-0 is reflexive. To prove
transitivity suppose thatx -0 y andy -0 z. There are four cases to consider:

(i) x, y,z ∈ A1 thenx -1 y andy -1 zand hencex -1 z, which implies thatx -0 z.
(ii) x, y ∈ A1 & z ∈ A2 and thenx -1 y andyJzand, hence,xJz(according to the

theorem above) which implies thatx -0 z.
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(iii) x ∈ A1 & y,z ∈ A2 andthenxJyandy -2 z and, hence,xJz(according to the
theorem above) which implies thatx -0 z.

(iv) x, y,z ∈ A2 then x -2 y andy -2 z and hencex -2 z, which implies that
x -0 z.

Definition 10 A prejoining-system(preJs), is an ordered triple〈A1,A2, J〉 such that
A1 = 〈A1,R1〉 andA2 = 〈A2,R2〉 are quasi-orderings and J⊆ A1 × A2 and the
following conditions are satisfied whereE1,2 is the narrowness relation determined by
A1 andA2:
(1) for all b1, c1 ∈ A1 and b2, c2 ∈ A2, if 〈b1,b2〉 ∈ J and〈b1,b2〉 E1,2 〈c1, c2〉, then
〈c1, c2〉 ∈ J,
(2) for all b1, c1 ∈ A1 and b2 ∈ A2, if 〈b1,b2〉 ∈ J and〈c1,b2〉 ∈ J, then〈a1,b2〉 ∈ J for
all a1 ∈ lub-1

{b1, c1} ,

(3) for all b2, c2 ∈ A2 and b1 ∈ A1, if 〈b1,b2〉 ∈ J and〈b1, c2〉 ∈ J, then〈b1,a2〉 ∈ J for
all a2 ∈ glb-2

{b2, c2} .

Definition 11 A joining-system (Js), is an ordered triple〈A1,A2, J〉 such thatA1 =

〈A1,-1〉 andA2 = 〈A2,-2〉 are quasi-orderings, and J⊆ A1 × A2, and the following
conditions are satisfied whereE1,2 is the narrowness relation determined byA1 and
A2:
(1) for all a1,b1 ∈ A1 and a2,b2 ∈ A2, if 〈a1,a2〉 ∈ J and〈a1,a2〉 E1,2 〈b1,b2〉, then
〈b1,b2〉 ∈ J,
(2) for any X1 ⊆ A1 and a2 ∈ A2, if 〈a1,a2〉 ∈ J for all a1 ∈ X1, then〈b1,a2〉 ∈ J for all
b1 ∈ lub-1

X1,

(3) for any X2 ⊆ A2 and a1 ∈ A1, if 〈a1,a2〉 ∈ J for all a2 ∈ X2, then〈a1,b2〉 ∈ J for all
b2 ∈ glb-2

X2.

(In what follows, when we use the expression〈A1,A2, J〉, we presuppose that
A1 = 〈A1,-1〉 andA2 = 〈A2,-2〉.)

If 〈A1,A2, J〉 is a joining-system, then the elements inJ are calledjoinings from
A1 to A2, and we callJ the joining-spacein 〈A1,A2, J〉. We callA1 the bottom-
structureandA2 thetop-structurein theJs〈A1,A2, J〉.

In this paper we assume that if〈A1,A2, J〉 is apJsor aJs, thenA1 ∩ A2 = ∅.
In TJS the notions of connectivity of a joining-system is central.

Minimal Joinings and Connectivity

Definition 12 A pJs〈A1,A2, J〉 satisfiesconnectivityif whenever〈c1, c2〉 ∈ J there
is 〈b1,b2〉 ∈ J such that〈b1,b2〉 is a minimal element in J with respect toE1,2 and
〈b1,b2〉 E1,2 〈c1, c2〉.

The following theorem, which is Theorem 3.26 (p. 579) in Lindahl & Odelstad
(2013), gives a sufficient condition for connectivity.

Theorem 13 If A1 = 〈A1,-1〉 andA2 = 〈A2,-2〉 are complete quasi-lattices and
〈A1,A2, J〉 is a joining-system, then〈A1,A2, J〉 satisfies connectivity.

If 〈A1,A2, J〉 is a pJs the set of minimal elements (i.e. joinings) inJ is denoted
minE1,2 J. Under certain conditions it holds that

〈
minE1,2 J,-∗1,2

〉
is a complete quasi-

lattice, see Corollary 3.36 (p. 588) in Lindahl & Odelstad (2013).
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Isomorphisms SupposethatA = 〈A, ρ1, .., ρk〉 andB = 〈B, σ1, .., σk〉 are structures
such that the arity ofρi andσi areνi for all i, 1 ≤ i ≤ k. A functionϕ on A ontoB is an
isomorphism onA ontoB if for all i, 1 ≤ i ≤ k,

∀a1, ..., aνi ∈ A : ρi(a1, ..., aνi ) ⇔ σi(ϕ(a1), ..., ϕ(a
νi )).

The following terminology will be used:
Bi (A,B) the set of bijections (one-to-one correspondences) on the setA onto the
setB.
I (A,B) the set of isomorphisms onA ontoB.
I (A,A) is often shortened to I(A).

The following proposition, which is easily proven, will be used often and without
cross-references in this paper.

Proposition 14 Suppose thatA andB are structures of the same type andϕ ∈ Bi (A,B).
Then

ϕ ∈ I (A,B) iff ϕ [A] = B iff ϕ

−1 [B] = A.

2 Hypothetical consequences

2.1 Introduction

Let us construct a simplified “condition-implicative” representation of the legal rules
for citizenship in the system of the U.S. Constitution, see subsection 1.2.7 (Note that∧
is the operation of conjunction,∨ is the operation of disjunction and′ the operation of
negation for conditions.) According to the rules, the disjunction of the two conditions

b: to be a person born in the U.S.
n: to be a person naturalized in the U.S.

in conjunction with the condition
s: to be a person subject to the jurisdiction of the U.S.

implies the condition
c: to be a citizen of the U.S.

That this implicative relationship holds according to the system is represented in
the form ((b∨ n)∧ s)Rc. Since it is a settled matter that citizens who are minors do not
have the right to vote in general elections,c does not imply the condition

e: to be entitled to vote in general elections.
Therefore: not[cRe], and hence not[((b∨ n)∧ s)Re].
Let

a: to be adult.
Simplifying matters, suppose that,

(1) (c∧ a)Re.
It is easy to see that this is equivalent to

(2) cR(a′ ∨ e).

7Theconcept citizen regarded as an intermediary is discussed in a number of papers by Lars Lindahl and
myself. The presentation here follows mainly Lindahl & Odelstad (2000) pp. 273–277.
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Going from (1) to (2) can be calledexportation, and going from (2) to (1)importa-
tion.

We thus have within the system the following rules: ((b∨ n)∧ s)Rc andcR(a′ ∨ e),
stating that the condition ((b∨n)∧s) is a ground forc and (a′∨e) is a consequence ofc.
These two rules determine partly the role ofc (citizenship) in the constitutional system
under study. But there can also be other grounds forc and consequences ofc within
the constitutional system. Suppose thatg1,g2, ... are the grounds ofc andh1,h2, ... the
consequences ofc. Hence, the role ofc in the system is characterized by

g1Rc,g2Rc, ...,cRh1, cRh2, ...

Note that there are several sorts of conditions in this simplified version of the ex-
ample above. The grounds ofc, i.e. b, n, ands, are descriptive,e is normative and
c is an intermediary. Let us suppose that the grounds ofc belongs to stratumB1, the
intermediary to stratumB2 and the normative conditions to stratumB3, and, further,
thatJ1,2 is the set of joinings fromB1 toB2, J2,3 the set of joinings fromB2 toB3 and
J1,3 the set of joinings fromB1 toB3. Hence

〈((b∨ n)∧ s),c〉 ∈ J1,2.

However, note that 〈
c, (a′ ∨ e)

〉
< J2,3

since (a′∨e) is a mixture of two sorts, descriptive and normative, and belongs neither to
B1 nor toB3. To go from〈c, (a′ ∨ e)〉 to 〈(c∧ a),e〉 by importation does not solve the
problem, since we get (c∧ a) which is a mixture of an intermediary and a descriptive
condition. A solution seems to be to construct a “mixed stratum”B1 andB2 so that
(c ∧ a) belongs to that. But that procedure undermines the idea that an intermediary
is implied by its grounds and implies its consequences. However, there is another
possibility worth considering. Note that (a′ ∨ e) can be represented as a normaRe
and we can expresscR(a′ ∨ e) as the “nested implication”cR(aRe). We can represent
this implication as the ordered pair〈c, 〈a,e〉〉 that contains an ordered pair as one of its
components;〈a,e〉 is a norm within a norm. Note thata is a descriptive condition but
of another sort thanb, n, ands, sincea is not a ground forc, instead we may suppose
thata belongs to the stratumB4. We thus have

〈((b∨ n)∧ s),c〉 ∈ J1,2, 〈a,e〉 ∈ J4,3 〈c, 〈a,e〉〉 ∈ J2,(4,3).

The consequence ofc is hypothetical, since it is conditional on being adult. That the
consequence of a condition, for example an intermediary, is itself a norm is a phe-
nomenon of frequent occurrence in law, and jurists often call such consequences “hy-
pothetical legal consequences”.

2.2 Formal treatment

In this subsection we will investigate the relation between representing the same norm
either as〈〈c1, c2〉 , c3〉 or 〈c1, 〈c2, c3〉〉, and in that way hopefully contribute to the dis-
cussion of hypothetical legal consequences. The following abbreviations will be used:
‘Js’ for joining-system, ‘Js(i)’ for the i:th condition in the definition of a joining-system
and ‘pJs’ for protojoining-system.
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2.2.1 Narrowness and lowerness

SupposethatA1 =
〈
A1,-1

〉
, A2 =

〈
A2,-2

〉
andA3 =

〈
A3,-3

〉
are quasi-orderings.

We infer the following ordering relations.

Ei, j , also denotedE-i ,- j
, is the narrowness condition onAi × A j determined by-i

and- j .

-∗i, j , also denoted--i ,- j
, is the lowerness condition onAi × A j determined by-i and

- j .

E1,(2,3), also denotedE-1,E-2,-3
orE-1,E2,3

, is the narrowness relation onA1×(A2 × A3)
determined by-1 andE2,3.

E(1,2)∗,3, also denotedE-∗
-1,-2

,-3
or E-∗1,2,-3

, is the narrowness relation on(A1 × A2)×

A3 determined by-∗1,2 and-3.

The following structures are quasi-orderings:
〈
Ai × A j ,Ei, j

〉
,
〈
Ai × A j ,-

∗
i, j

〉
,〈

A1 × (A2 × A3) ,E1,(2,3)
〉

and
〈
(A1 × A2) × A3,E(1,2)∗,3

〉
.

The equality part ofE will be denoted⋍ (with appropriate index).
Note the following:

〈〈a1,a2〉 ,a3〉 E(1,2)∗,3 〈〈b1,b2〉 ,b3〉 ⇔ 〈b1,b2〉 -
∗
1,2 〈a1,a2〉 & a3 -3 b3⇔

⇔ b1 -1 a1 & b2 -2 a2 & a3 -3 b3.

And further:

〈a1, 〈a2,a3〉〉 E1,(2,3) 〈b1, 〈b2,b3〉〉 ⇔ b1 -1 a1 & 〈a2,a3〉 E2,3 〈b2,b3〉 ⇔

⇔ b1 -1 a1 & b2 -2 a2 & a3 -3 b3.

Hence,

〈〈a1,a2〉 ,a3〉 E(1,2)∗,3 〈〈b1,b2〉 ,b3〉 ⇔ 〈a1, 〈a2,a3〉〉 E1,(2,3) 〈b1, 〈b2,b3〉〉 .

More exhaustively it can be expressed

〈〈a1,a2〉 ,a3〉 E-∗
-1,-2

,-3
〈〈b1,b2〉 ,b3〉 ⇔ 〈a1, 〈a2,a3〉〉 E-1,E-2,-3

〈b1, 〈b2,b3〉〉 .

Theorem 15 Suppose that

ϕ : (A1 × A2) × A3→ A1 × (A2 × A3)

such that
ϕ (〈a1,a2〉 ,a3) = 〈a1, 〈a2,a3〉〉 .

Thenϕ is an isomorphism
on
〈
(A1 × A2) × A3,E(1,2)∗,3

〉
onto

〈
A1 × (A2 × A3) ,E1,(2,3)

〉
.

Proof. First note thatϕ is a bijection on(A1 × A2) × A3 ontoA1 × (A2 × A3). Further,

〈〈a1,a2〉 ,a3〉 E(1,2)∗,3 〈〈b1,b2〉 ,b3〉 ⇔ 〈a1, 〈a2,a3〉〉 E1,(2,3) 〈b1, 〈b2,b3〉〉 ⇔

ϕ (〈a1,a2〉 ,a3) E1,(2,3) ϕ (〈b1,b2〉 ,b3) .

This shows the theorem.
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2.2.2 Protojoining-systems

Theorem 16 Suppose J(1,2),3 ⊆ (A1 × A2) × A3 and J1,(2,3) ⊆ A1 × (A2 × A3) such that

〈〈a1,a2〉 ,a3〉 ∈ J(1,2),3⇔ 〈a1, 〈a2,a3〉〉 ∈ J1,(2,3). (JJ)

Then
(1)〈〈

A1 × A2,-
∗
1,2

〉
,

〈
A3,-3

〉
, J(1,2),3

〉
is a pJs⇔

〈〈
A1,-1

〉
,

〈
A2 × A3,E2,3

〉
, J1,(2,3)

〉
is a

pJs.
(2)
ϕ such thatϕ (〈a1,a2〉 ,a3) = 〈a1, 〈a2,a3〉〉 is an isomorphism on

〈
J(1,2),3,E(1,2)∗,3

〉
onto〈

J1,(2,3) E1,(2,3)
〉
.

Proof. (1) We prove(⇒). Suppose that
〈〈

A1 × A2,-
∗
1,2

〉
,

〈
A3,-3

〉
, J(1,2),3

〉
is a pJs.

Suppose further thata1,b1 ∈ A1, 〈a2,a3〉 , 〈b2,b3〉 ∈ A2 × A3, 〈a1, 〈a2,a3〉〉 ∈ J1,(2,3) and
that the following holds:

〈a1, 〈a2,a3〉〉 E1,(2,3) 〈b1, 〈b2,b3〉〉 .

Then〈a1,a2〉 , 〈b1,b2〉 ∈ A1 × A2,a3 ∈ A3, 〈〈a1,a2〉 ,a3〉 ∈ J(1,2),3 and

〈〈a1,a2〉 ,a3〉 E(1,2)∗,3 〈〈b1,b2〉 ,b3〉 .

Since
〈〈

A1 × A2,-
∗
1,2

〉
,

〈
A3,-3

〉
, J(1,2),3

〉
is apJsthen〈〈b1,b2〉 ,b3〉 ∈ J(1,2),3. Hence,

〈b1, 〈b2,b3〉〉 ∈ J1,(2,3) which shows
〈〈

A1,-1
〉
,

〈
A2 × A3,E2,3

〉
, J1,(2,3)

〉
is a pJs. The

other direction, i.e.(⇐), of the equivalence in (1) is proved analogously.
(2) According to Theorem 15,ϕ is an isomorphism on

〈
(A1 × A2) × A3,E(1,2)∗,3

〉

onto 〈
A1 × (A2 × A3) ,E1,(2,3)

〉
.

Note that
〈
J(1,2),3,E(1,2)∗,3

〉
is a substructure of

〈
(A1 × A2) × A3,E(1,2)∗,3

〉

and
〈
J(1,2),3,E(1,2)∗,3

〉
is a substructure of

〈
A1 × (A2 × A3) ,E1,(2,3)

〉
and, furthermore,

〈〈a1,a2〉 ,a3〉 ∈ J(1,2),3⇔ 〈a1, 〈a2,a3〉〉 ∈ J1,(2,3) ⇔ ϕ (〈a1,a2〉 ,a3) ∈ J(1,2),3.

2.2.3 Equivalence results

For simplification of notation let

A1,(2,3) =
〈〈

A1,-1
〉
,

〈
A2 × A3,E2,3

〉
, J1,(2,3)

〉

A(1,2),3 =
〈〈

A1 × A2,-
∗
1,2

〉
,

〈
A3,-3

〉
, J(1,2),3

〉

In this subsection we suppose thatA(1,2),3 and thus alsoA1,(2,3) are pJs’s. Hence,〈
J(1,2),3,E(1,2)∗,3

〉
and
〈
J1,(2,3),E1,(2,3)

〉
are quasi-orderings. We also suppose that (JJ) in

Theorem 16 holds.ϕ is defined as in Theorem 15.
In the study ofpJs’sthe minimal joinings play a special role for characterizing the

system (see subsection 1.3.2). The following theorem and its corollary are therefore of
interest.
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Theorem 17 For all a1 ∈ A1, a2 ∈ A2 and a3 ∈ A3

〈〈a1,a2〉 ,a3〉 ∈ min J(1,2),3⇔ 〈a1, 〈a2,a3〉〉 ∈ min J1,(2,3).

Proof. We prove(⇒). Suppose that〈〈a1,a2〉 ,a3〉 ∈ min J(1,2),3 and, hence,〈a1, 〈a2,a3〉〉

∈ J1,(2,3). Suppose now that〈b1, 〈b2,b3〉〉 ∈ J1,(2,3) such that

〈b1, 〈b2,b3〉〉 E1,(2,3) 〈a1, 〈a2,a3〉〉 .

Then〈〈b1,b2〉 ,b3〉 ∈ J(1,2),3 and

〈〈b1,b2〉 ,b3〉 E(1,2),3 〈〈a1,a2〉 ,a3〉

and since〈〈a1,a2〉 ,a3〉 ∈ min J(1,2),3 it follows that

〈〈b1,b2〉 ,b3〉 ⋍(1,2),3 〈〈a1,a2〉 ,a3〉

which implies that
〈b1, 〈b2,b3〉〉 ⋍1,(2,3) 〈a1, 〈a2,a3〉〉

and, hence,〈a1, 〈a2,a3〉〉 ∈ min J1,(2,3). The proof of(⇐) is analogous.

Corollary 18 A(1,2),3 satisfiesconnectivity iffA1,(2,3) satisfies connectivity.

Theorem 16, Theorem 17 and Corollary 18 show in what sense there is an equiv-
alence between representing a norm as〈〈c1, c2〉 , c3〉 or 〈c1, 〈c2, c3〉〉. Note that it is of
course possible thatc3 is itself an ordered pair (for example a norm)〈d1,d2〉 and we
get〈〈c1, c2〉 , 〈d1,d2〉〉 and〈c1, 〈c2, 〈d1,d2〉〉〉 respectively. This process can be iterated.

2.2.4 Some theorems

Even ifA1,(2,3) andA(1,2),3 arepJs’sandϕ an isomorphism on
〈
J(1,2),3,E(1,2)∗,3

〉
onto〈

J1,(2,3),E1,(2,3)
〉

it does not seem to follow thatA1,(2,3) andA(1,2),3 share the same clas-
sification with regard to being aJs. Note for example that ifA1,(2,3) is a Js and the
quasi-orderings in the system are complete quasi-lattices, thenA1,(2,3) satisfies con-
nectivity, which implies that this holds ofA(1,2),3, too. But it does not seem to follow
thatA(1,2),3 is a Js. The situation is complicated, which is illustrated by the follow-
ing theorems. (This subsection can be omitted without loss of continuity.) In the next
three theorems we make assumptions aboutA1,(2,3) and examine the result of these for
A(1,2),3. In the last two theorems in this subsection we make assumptions aboutA(1,2),3

and examine the result of these forA1,(2,3).

Theorem 19 Suppose thatA1,(2,3) is a pJssuch thatJs(3) is satisfied and that(JJ)
holds. Suppose further that X2 ⊆ A2, a1 ∈ A1, a3 ∈ A3 and 〈〈a1,a2〉 ,a3〉 ∈ J(1,2),3 for
all a2 ∈ X2. If glbE2,3

(X2 × {a3}) , ∅ then〈〈a1,b2〉 ,a3〉 ∈ J(1,2),3 for all b2 ∈ lub-2
X2.8

8Notethat the condition glbE2,3
(X2 × {a3}) , ∅ is satisfied if

〈
A1 × A2,E1,2

〉
is a complete quasi-lattice

(see Lindahl & Odelstad, 2013, p. 568).
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Proof. Given the assumptions in the theorem we can proceed as follows.〈a1, 〈a2,a3〉〉 ∈

J1,(2,3) for all a2 ∈ X2. SinceA1,(2,3) satisfies conditionJs(3)it follows that〈a1, 〈a2,a3〉〉

∈ J1,(2,3) for all 〈a2,a3〉 ∈ X2 × {a3} implies that〈a1, 〈c2, c3〉〉 ∈ J1,(2,3) for all 〈c2, c3〉 ∈

glbE2,3
(X2 × {a3}). Suppose thatb2 ∈ lub-2

X2 andx2 ∈ X2. Thenx2 -2 b2 and, hence,

〈b2,a3〉 E2,3 〈x2,a3〉

from which follows that〈b2,a3〉 ∈ lbE2,3 (X2 × {a3}).
Suppose that〈c2, c3〉 ∈ glbE2,3

(X2 × {a3}). Then it follows that

(1) 〈b2,a3〉 E2,3 〈c2, c3〉

which impliesc2 -2 b2 anda3 -3 c3, and, furthermore, it follows that

(2) 〈c2, c3〉 E2,3 〈x2,a3〉

for all y2 ∈ X2, which impliesy2 -2 c2 andc3 -3 a3. Hence,c2 ∈ ub-2
X2 which

together withb2 ∈ lub-2
X2 impliesb2 -2 c2. We have thus shown thatc2 ∼2 b2 and

c3 ∼3 a3, and thus〈b2,a3〉 ∈ glbE2,3
(X2 × {a3}). From conditionJs(3) it follows that

〈a1, 〈b2,a3〉〉 ∈ J1,(2,3) which implies〈〈a1,b2〉 ,a3〉 ∈ J(1,2),3.

Theorem 20 Supposethat A1,(2,3) is a pJssuch thatJs(2) is satisfied and that(JJ)
holds. Suppose further that X1 ⊆ A1,a2 ∈ A2,a3 ∈ A3 and 〈〈a1,a2〉 ,a3〉 ∈ J(1,2),3 for
all a1 ∈ X1. Then〈〈b1,a2〉 ,a3〉 ∈ J(1,2),3 for all b1 ∈ lub-1

X1.

Proof. Given the assumptions in the theorem we can proceed as follows. From
〈〈a1,a2〉 ,a3〉 ∈ J(1,2),3 and (JJ) follows that〈a1, 〈a2,a3〉〉 ∈ J1,(2,3), and given the
assumptions in the theorem this holds for alla1 ∈ X1. Then, according to condi-
tion Js(2) applied toA1,(2,3), 〈b1, 〈a2,a3〉〉 ∈ J1,(2,3) for all b1 ∈ lub-1

X1. Hence,
〈〈b1,a2〉 ,a3〉 ∈ J(1,2),3 for all b1 ∈ lub-1

X1.

Theorem 21 Supposethat A1,(2,3) is a pJssuch thatJs(3) is satisfied and that(JJ)
holds. Suppose further that X3 ⊆ A3,a1 ∈ A1,a2 ∈ A2 and 〈〈a1,a2〉 ,a3〉 ∈ J(1,2),3 for
all a3 ∈ X3. Then the following holds: IfglbE2,3

({a2} × X3) , ∅ then〈〈a1,a2〉 ,b3〉 ∈

J(1,2),3 for all b3 ∈ glb-3
X3.9

Proof. Given the assumptions in the theorem we can proceed as follows.〈a1, 〈a2,a3〉〉 ∈

J1,(2,3) for all a3 ∈ X3, i.e. 〈a1, 〈a2,a3〉〉 ∈ J1,(2,3) for all 〈a2,a3〉 ∈ {a2}×X3. SinceA1,(2,3)

satisfies conditionJs(3)it follows that〈a1, 〈a2,a3〉〉 ∈ J1,(2,3) for all 〈a2,a3〉 ∈ {a2} × X3

implies that〈a1, 〈c2, c3〉〉 ∈ J1,(2,3) for all 〈c2, c3〉 ∈ glbE2,3
({a2} × X3). Suppose that

b3 ∈ glb-3
X3. Thenb3 -3 x3 for all x3 ∈ X3 and hence

〈a2,b3〉 E2,3 〈a2, x3〉 .

This shows that〈a2,b3〉 ∈ lbE2,3 ({a2} × X3). Suppose that

〈y2, y3〉 ∈ lbE2,3 ({a2} × X3) .

9Note that the condition glbE2,3
({a2} × X3) , ∅ is satisfied if

〈
A1 × A2,E1,2

〉
is a quasi-lattice (see

Lindahl & Odelstad, 2013, p. 568).
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Then for allx3 ∈ X3

〈y2, y3〉 E2,3 〈a2, x3〉

which implies thata2 -2 y2 andy3 -2 x3. It follows that y3 ∈ lb-3
X3 and since

b3 ∈ glb-3
X3 it follows thaty3 -2 b3. Suppose that〈y2, y3〉 ∈ glbE2,3

({a2} × X3). Then

〈a2,b3〉 E2,3 〈y2, y3〉 .

Then y2 -2 a2 and b3 -3 y3. It follows that y2 ∼2 a2 and y3 ∼3 y3 and, hence,
〈a2,b3〉 ∈ glbE2,3

({a2} × X3). From conditionJs(3)it follows that〈a1, 〈a2,b3〉〉 ∈ J1,(2,3)

which implies〈〈a1,a2〉 ,b3〉 ∈ J(1,2),3.

Theorem 22 SupposethatA(1,2),3 is a pJsand that(JJ)holds. Suppose further thatif
(1) X1 ⊆ A1, (2) a2 ∈ A2,a3 ∈ A3 and (3) 〈〈a1,a2〉 ,a3〉 ∈ J(1,2),3 for all a1 ∈ X1, then
〈〈b1,a2〉 ,a3〉 ∈ J(1,2),3 for all b1 ∈ lub-1

X1. ThenA1,(2,3) satisfiesJs(2).

Proof. Given the assumptions in the theorem we can proceed as follows: Suppose
that X1 ⊆ A1, (2) a2 ∈ A2,a3 ∈ A3 and (3)〈a1, 〈a2,b3〉〉 ∈ J1,(2,3) for all a1 ∈ X1.
Then〈〈a1,a2〉 ,a3〉 ∈ J(1,2),3 and according to the assumptions in the theorem it follows
that 〈〈b1,a2〉 ,a3〉 ∈ J(1,2),3 for all b1 ∈ lub-1

X1. Hence,〈a1, 〈a2,b3〉〉 ∈ J1,(2,3) for all
b1 ∈ lub-1

X1, which shows thatA1,(2,3) satisfiesJs(2).

Theorem 23 Supposethat A(1,2),3 is a pJssuch thatJs(3) is satisfied and that(JJ)
holds. Suppose further that X3 ⊆ A3,a1 ∈ A1,a2 ∈ A2 and〈a1, 〈a2,a3〉〉 ∈ J1,(2,3) for all
a3 ∈ X3. Then the following holds: IfglbE2,3

({a2} × X3) , ∅ then〈a1, 〈a2,b3〉〉 ∈ J1,(2,3)

for all 〈a2,b3〉 ∈ glbE2,3
{a2} × X3.

Proof. Note first thatA(1,2),3 satisfiesJs(3)iff the following holds:If (1) X3 ⊆ A3, (2)
a1 ∈ A1,a2 ∈ A2 and (3)〈〈a1,a2〉 ,a3〉 ∈ J(1,2),3 for all a3 ∈ X3 then〈〈a1,a2〉 ,b3〉 ∈

J(1,2),3 for all b3 ∈ glb-3
X3. Suppose thatX3 ⊆ A3,a1 ∈ A1,a2 ∈ A2 and〈a1, 〈a2,a3〉〉 ∈

J1,(2,3) for all a3 ∈ X3. From this follows that〈〈a1,a2〉 ,b3〉 ∈ J(1,2),3 for all b3 ∈

glb-3
X3. We now show that ifb3 ∈ glb-3

X3 then〈a2,b3〉 ∈ glbE2,3
{a2} × X3. Suppose

thatb3 ∈ glb-3
X3 and thatx3 ∈ X3. Thenb3 -3 x3 and

〈a2,b3〉 E2,3 〈a2, x3〉

from which follows that〈a2,b3〉 ∈ lbE2,3 {a2} × X3. Suppose that〈c2, c3〉 ∈ lbE2,3 {a2} ×

X3. Then
〈c2, c3〉 E2,3 〈a2, x3〉

and, hence,a2 -2 c2 andc3 -3 x3 and hencec3 ∈ lb-3
X3 which impliesc3 -3 b3.

Suppose further that〈c2, c3〉 ∈ glbE2,3
{a2} × X3. Then

〈a2,b3〉 E2,3 〈c2, c3〉

from which follows thatc2 -2 a2 andb3 -3 c3. Hence,c2 ∼2 a2 andb3 ∼3 c3 which
shows that〈a2,b3〉 ∈ glbE2,3

{a2} × X3.
The above theorems suggest that the relation between the formalproperties of

systems consisting of three sorts of concepts and used for representing norms as
〈〈c1, c2〉 , c3〉 or 〈c1, 〈c2, c3〉〉 is somewhat complicated. A complete analysis of this
problem area deserves a more thorough treatment than what is given here.
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3 Formal Concept Analysis and TJS

3.1 Introduction

Formal Concept Analysis (FCA for short) is a field of applied mathematics, chiefly a
branch of applied lattice theory. The topic was introduced by Rudolf Wille in 1982
and an excellent presentation of the field is given in Ganter & Wille (1999). A brief
introduction to Formal Concept Analysis is given in Davey & Priestley (2002) Chapter
3. In the first chapter of their book Davey and Priestley give the following very brief
description of the subject.

. . . the rather new discipline ofconcept analysisprovides a powerful
technique for classifying and for analysing complex sets of data. From a
set of objects (to take a simple example, the planets) and a set of attributes
(for the planets, perhaps large/small, moon/no moon, near sun/far from
sun), concept analysis builds an ordered set which reveals inherent hierar-
chical structure and thence natural groupings and dependencies among the
objects and the attributes. (Davey and Priestly, 2002, p. 6)

In an interesting paper Audun Stolpe sets out to study the particular tangential point
which exists between input/output logic and FCA (see Stolpe, 2015). As Stolpe points
out (p. 240):

Since the set of axioms in any given input/output logic is just a binary re-
lation between formulae, it ought to be possible to apply results from FCA
to the study of forms of conditionality that are not naturally assimilated to
the model based on inference relations and/or conditionals–e.g. to sets of
norms. . .

Stolpe uses FCA for providing a semantics for input/output logic. Since there are
some striking similarities (but also differences) between input/output logic (see Lindahl
& Odelstad 2013 pp. 627–631, Stolpe pp. 256–257 and Sun 2013) it is a reasonable
conjecture that formal concepts in the sense of Wille can be a useful tool in TJS. The
theorems below throw some light on this topic. It is important to note that the expres-
sion ‘[formal] concept’ as it is used in FCA does not have the same meaning as the
word ‘concept’ as that term is used in TJS.

Two central notions in FCA are ‘context’ and ‘concept’. With the notation used
in Davey & Priestley (2002) they can be introduced as follows. Acontextis a triple
(G,M, I ) whereG andM are sets andI ⊆ G × M. The elements ofG andM are called
objectsandattributesrespectively.

Let A ⊆ G andB ⊆ M . Then

A′ =d f {m ∈ M | (∀g ∈ A) gIm}

B′ =d f {g ∈ G | (∀m ∈ B) gIm}.
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Let (G,M, I ) be a context,A ⊆ G andB ⊆ M. Then (A,B) is a conceptof (G,M, I )
iff A′ = B and B′ = A. The set of all concepts of the context (G,M, I ) is denoted
B(G,M, I ).

A basic ingredient in FCA is thus a context consisting of two sets and a binary
relation between them, a relation which “join” elements in the two sets. In this aspect
FCA and TJS resemble each other. But there are also differences. In TJS the joinings
link elements in structures and the elements are themselves concepts. However, be-
cause of the formal similarity between FCA and TJS, methods and results from FCA
can hopefully be applied in the development of TJS. The general character of FCA is
emphasized by Davey and Priestley as follows:

The framework within which we are working – a pair of sets,G, M,
and a binary relationI linking them – is extremely general, and encom-
passes contexts which might not at first sight be viewed in terms of an
object-attribute correspondence. Consider, for example, a computer pro-
gram modelled by an input-output relationR between a finite set of initial
statesX and a finite set of final statesY with xRyif and only if the program
when started in statex can terminate in statey. Then (X,Y,R) is the context
for what is known as a (non-deterministic) transition system. HereA′ (for
A ⊆ X) is to be interpreted as the set of final states in which the program
can terminate when started from any one of the states inA. (Davey &
Priestly, 2002, p. 67.)

Formal concepts (or just concepts) in FCA are concepts of a special kind. They
have intensions and extension as concepts usually have but of a special kind and are
called intent and extent. The extent of a concept consists of objects that satisfy certain
attributes, and these attributes constitute the intent of the concept. The extent and the
intent of a concept constitute two different sets and an object is joined to an attribute
if the object satisfies the attribute. The intended interpretation of a formal concept is
a subset of what in TJS is considered as concepts, but is not the kind of concepts that
TJS were primarily intended to capture.

We shall use FCA as a tool for the study of TJS. To avoid confusions with the
notations in TJS some adjustments of the terminology and formalism used in FCA are
necessary. The terms ‘objects’ and ‘attributes’ are not appropriate in TJS and will not
be used here. (For the use of ‘attribute’ in this paper, see Section 4.) Even the notion
‘formal concept’ is problematic. As a preliminary solution to this problem the notion
‘conception’ will be used for ‘formal concept’. The notions ‘context’ and ‘conception’
will here be used as follows.

Suppose thatA1 = 〈A1,-1〉 andA2 = 〈A2,-2〉 are quasi-orderings and that
〈A1,A2, J〉 is a protojoining-system. Then〈A1,A2, J〉 is a context(a context based
on quasi-orderings). LetC1 ⊆ A1 andC2 ⊆ A2. Then define

C△1 = {c2 ∈ A2 | (∀c1 ∈ C1) 〈c1, c2〉 ∈ J}

C▽2 = {c1 ∈ A1 | (∀c2 ∈ C2) 〈c1, c2〉 ∈ J} .
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Note that

(
C△1
)▽
=

{
c1 ∈ A1 |

(
∀c2 ∈ C△1

)
〈c1, c2〉 ∈ J

}

and,furthermore, ((
C△1
)▽)△
= C△1 .

We often denote
(
C△1
)▽

with C△▽1 and
((

C△1
)▽)△

with C△▽△1 . If 〈A1,A2, J〉 is a protojoin-

ing-system (pJs) andC1 ⊆ A1 and C2 ⊆ A2 such thatC△1 = C2 and C▽2 = C1,
then (C1,C2) is a conceptionin the context〈A1,A2, J〉. The set of conceptions in
〈A1,A2, J〉 is denotedB(A1,A2, J) or, when there is not risk of confusion, justB(J).
If (C1,C2) is a conception in thepJs〈A1,A2, J〉 thenC2 is an up-set with respect to-2

andC1 is a down-set with respect to-1.10 The set of conceptions in apJs〈A1,A2, J〉
has an interesting structure. Let us define an ordering relation on conceptions as fol-
lows. If 〈C1,C2〉 , 〈D1,D2〉 ∈ B (A1,A2, J) then

〈C1,C2〉 ⊆̂ 〈D1,D2〉 ⇐⇒ C1 ⊆ D1 & C2 ⊇ D2.

The partial ordering
〈
B (A1,A2, J) , ⊆̂

〉
is a complete lattice. (For a proof see for

example Davey & Priestley (2002) p. 69.)

3.2 Three theorems on conceptions and minimal joinings

In this section, the following abbreviations will be used: ‘Js’ for joining-system, ‘Js(i)’
for the i:th condition in the definition of a joining-system and ‘pJs’ for protojoining-
system.

The three theorems in this subsection say roughly that in aJs a conception cor-
responds to a minimal joining. It is an interesting fact especially because minimal
joinings are closely connected to intermediate concepts.

Suppose that〈A1,A2, J〉 is apJsand thata1 ∈ A1 anda2 ∈ A2. Then

-−1
1 [a1] =

{
x1 ∈ A1 | x1 -1 a1

}

-2 [a2] =
{
x2 ∈ A2 | a2 -2 x2

}
.

(See the subsection on correspondences in subsection 1.3.2.)
Note that

-−1
1 [a1]△ =

{
b2 ∈ A2 |

(
∀b1 ∈-

−1
1 [a1]

)
〈b1,b2〉 ∈ J

}

-2 [a2]▽ =
{
b1 ∈ A1 |

(
∀b2 ∈-2 [a2]

)
〈b1,b2〉 ∈ J

}
.

In this subsection we denote for simplicity the narrowness-relation ofJ with E

instead ofE1,2 and the lowerness-relation ofJ with -∗ instead of-∗1,2.

10For definitions of ‘up-set’ and ‘down-set’ see for example Davey & Priestley (2002) p. 20. Cf. Lindahl
& Odelstad (2013) p. 570 Definition 3.10.
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Theorem 24 Supposethat 〈A1,A2, J〉 is a pJsand 〈a1,a2〉 ∈ minE J, i.e. 〈a1,a2〉 is a
minimal element in J with respect toE. Then

(1) -−1
1 [a1]△ =-2 [a2]

(2) -2 [a2]▽ =-−1
1 [a1]

i.e.
(
-−1

1 [a1] ,-2 [a2]
)

is a conception in the context〈A1,A2, J〉.

Proof. Proof of (1). Since〈a1,a2〉 ∈ minE J and thus〈a1,a2〉 ∈ J it follows that for all
b1 ∈-

−1
1 [a1] it holds that〈b1,a2〉 ∈ J. Suppose thatb2 ∈-

−1
1 [a1]△. Then〈a1,b2〉 ∈ J.

But since〈a1,a2〉 ∈ minE J it follows that a2 -2 b2. Since for allb1 ∈-
−1
1 [a1] it

holds that〈b1,a2〉 ∈ J, it follows for all b1 ∈-
−1
1 [a1] that b1 ∈-2 [a2]▽. Hence,

-−1
1 [a1]△ ⊆-2 [a2].

Suppose now thatb2 ∈-2 [a2]. Then for allb1 ∈-
−1
1 [a1] it follows that b1 -1

a1, a1Ja2, a2 -2 b2, which implies that〈b1,b2〉 ∈ J. Hence-2 [a2] ⊆-−1
1 [a1]△.

Together with-−1
1 [a1]△ ⊆-2 [a2] this implies (1).

Proof of (2). Suppose thatb1 ∈-2 [a2]▽. Then for allb2 ∈-2 [a2], 〈b1,b2〉 ∈ J
and hence〈b1,a2〉 ∈ J. Since〈a1,a2〉 ∈ minE J it follows that b1 -1 a1 and thus
b1 ∈-

−1
1 [a1]. Hence,-2 [a2]▽ ⊆-−1

1 [a1].
Suppose thatb1 ∈-

−1
1 [a1]. Then〈b1,a2〉 ∈ J and thus〈b1,b2〉 ∈ J for all b2 ∈-2

[a2]. Hence,b1 ∈-2 [a2]▽. We have thus shown that-−1
1 [a1] ⊆-2 [a2]▽. Together

with -2 [a2]▽ ⊆-−1
1 [a1] follows (2).

Theorem 25 Suppose〈A1,A2, J〉 is a Jssuch thatA1 = 〈A1,-1〉 andA2 = 〈A2,-2〉

are complete quasi-lattices. If(C1,C2) ∈ B(A1,A2, J) then there is b1 ∈ A1 and
b2 ∈ A2 such that〈b1,b2〉 ∈ minE J and

C1 =-
−1
1 [b1]

C2 =-2 [b2] .

In the proof of the theorem we use the following lemma.

Lemma 26 Suppose that〈A1,A2, J〉 is a Js such thatA1 = 〈A1,-1〉 andA2 =

〈A2,-2〉 are quasi-orderings. Let C1 ⊆ A1 such that C△1 , ∅. Then the following
holds:

(1) b1 ∈ C△▽1 for all b1 ∈ lub-1
C1

(2) b2 ∈ C△1 for all b2 ∈ glb-2
C△1 .

Proof. Proof of (1). Suppose thata2 ∈ C△1 . Then for allc1 ∈ C1, 〈c1,a2〉 ∈ J. From
Js(2)it follows that〈b1,a2〉 ∈ J for all b1 ∈ lub-1

C1. Sincea2 is an arbitrary element
in C△1 it follows that for all c2 ∈ C△1 that 〈b1, c2〉 ∈ J for all b1 ∈ lub-1

C1. Hence,
b1 ∈ C△▽1 for all b1 ∈ lub-1

C1.
Proof of (2). Suppose thata1 ∈ C△▽1 . Then for allc2 ∈ C△1 , 〈a1, c2〉 ∈ J. FromJs(3)

it follows that〈a1,b2〉 ∈ J for all b2 ∈ glb-2
C△1 . Sincea1 is an arbitrary element inC△▽1

it follows that for allc1 ∈ C△▽1 that〈c1,b2〉 ∈ J for all b2 ∈ glb-2
C△1 . Hence,b2 ∈ C△▽△1

and sinceC△▽△1 = C△1 it follows thatb2 ∈ C△1 for all b2 ∈ glb-2
C△1 .
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The proof of the theorem follows below.
Proof. Since(C1,C2) is a conception it follows thatC△1 = C2 andC▽2 = C1. Hence,
C△▽1 = C▽2 = C1. SinceA1 = 〈A1,-1〉 andA2 = 〈A2,-2〉 are complete quasi-lattices
then lub-1

C1 , ∅, i.e. lub-1
C▽△1 , ∅, and glb-2

C▽1 , ∅.
Suppose thatb1 ∈ lub-1

C1 and b2 ∈ glb-2
C△1 . Then, according to (1) in the

lemma,b1 ∈ C△▽1 and, according to (2),b2 ∈ C△1 . SinceC△▽1 = C1 it follows that
b1 ∈ C1, which together withb2 ∈ C△1 implies thatb1Jb2. Suppose now that〈d1,d2〉 ∈ J
such that〈d1,d2〉 E 〈b1,b2〉. Hence,b1 -1 d1 andd2 -2 b2. Note that

d1Jd2 & d2 -2 b2 & b2 -2 c2

and, hence,d1Jc2 wherec2 is an arbitrary element inC△1 . Hence,d1 ∈ C△▽1 . Note that

c1 -1 b1 & b1 -1 d1 & d1J2d2

wherec1 is an arbitrary element inC1. Hence,d2 ∈ C△1 .
SinceC△▽1 = C1 andd1 ∈ C△▽1 it follows that d1 ∈ C1. Sinceb1 ∈ lub-1

C1 it
follows thatd1 -1 b1. From d2 ∈ C△1 andb2 ∈ glb-2

C△1 it follows that b2 -2 d2.
Together withb1 -1 d1 andd2 -2 b2 it follows that b1 ∼1 d1 andb2 ∼2 d2. Hence
〈b1,b2〉 ∈ minE J. From the previous theorem follows that

(
-−1

1 [b1] ,-2 [b2]
)

is a
conception in〈A1,A2, J〉.

We show now that
(i) C1 =-

−1
1 [b1]

(ii) C2 =-2 [b2] .

(i) Suppose thata1 ∈ C1. Sinceb1 ∈ lub-1
C1 it follows that a1 -1 b1 and, hence,

a1 ∈-
−1
1 [b1]. This shows thatC1 ⊆-

−1
1 [b1]. Suppose thata1 ∈-

−1
1 [b1]. Then

a1 -1 b1 and sinceb1J2b2 it follows that a1J2b2, and sinceb2 ∈ glb-2
C△1 it follows

for all c2 ∈ C△1 that a1J2c2 and, hence,a1 ∈ C△▽1 and sinceC△▽1 = C1 it follows that
a1 ∈ C1. This shows that-−1

1 [b1] ⊆ C1 and it follows thatC1 =-
−1
1 [b1].

(ii) Suppose thata2 ∈ C2. Sinceb2 ∈ glb-2
C△1 andC△1 = C2 it follows thatb2 -2 a2

and, hence,a2 ∈-2 [b2]. This shows thatC2 ⊆-2 [b2]. Suppose thata2 ∈-2 [b2]. Then
b2 -2 a2 and sinceb1J2b2 it follows thatb1J2a2, and fromb1 ∈ lub-1

C1 follows that
c1J2a2 for all c1 ∈ C1 and, hence,a2 ∈ C△1 . SinceC△1 = C2 it follows that a2 ∈ C2,
which shows that-2 [b2] ⊆ C2 and it follows thatC2 =-2 [b2].

The two theorems above in this subsection show that ifA1 = 〈A1,-1〉 andA2 =

〈A2,-2〉 are complete quasi-lattices and〈A1,A2, J〉 is a joining-system then there
is a correspondence between the elements in minE J and the set of conceptions in
〈A1,A2, J〉. The following theorem shows that this correspondence is in fact a ho-
momorphism on

〈
minE J,-∗

〉
onto

〈
B (J) , ⊆̂

〉
. As pointed out above

〈
B (J) , ⊆̂

〉
is a

complete lattice. This fact together with the theorem below is thus related to Corollary
3.36 (p. 588) in Lindahl & Odelstad (2013). (Note that the relation-∗ in the Corollary
3.36 is not exactly the same as the relation-∗ in the theorem below.)

Theorem 27 Suppose thatA1 = 〈A1,-1〉 andA2 = 〈A2,-2〉 are complete quasi-
lattices and〈A1,A2, J〉 is aJs. Let

ϕ : minE J→ B(J)
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such that
ϕ (〈a1,a2〉) =

(
-−1

1 [a1] ,-2 [a2]
)
.

Thenϕ is a homomorphism on
〈
minE J,-∗

〉
onto

〈
B (J) , ⊆̂

〉
.

Proof. According to Theorem 24,
(
-−1

1 [a1] ,-2 [a2]
)

is a conception in〈A1,A2, J〉,
i.e. ϕ assigns to every element in minE J a corresponding conception in〈A1,A2, J〉.

(I) We first prove thatϕ is ontoB(J). Suppose that〈C1,C2〉 ∈ B(J). Then, accord-
ing to Theorem 25, there is〈c1, c2〉 ∈ minE J such that

C1 =-
−1
1 [c1]

C2 =-2 [c2] .

Hence,
ϕ (〈c1, c2〉) =

(
-−1

1 [c1] ,-2 [c2]
)
= (C1,C2) .

(II) We now prove that

〈a1,a2〉 -
∗ 〈b1,b2〉 ⇔ ϕ (〈a1,a2〉) ⊆̂ ϕ (〈b1,b2〉) .

Suppose that〈a1,a2〉 -∗ 〈b1,b2〉. Thena1 -1 b1 anda2 -2 b2 and, hence,a1 ∈-
−1
1

[b1] andb2 ∈-2 [a2]. If x1 ∈-
−1
1 [a1] thenx1 -1 a1 which implies thatx1 -1 b1 and,

further,x1 ∈-
−1
1 [b1]. This shows that

-−1
1 [a1] ⊆-−1

1 [b1] .

If x2 ∈-2 [b2] thenb2 -2 x2 which implies thata2 -2 x2 and, further,x2 ∈-2 [a2].
This shows that

-2 [b2] ⊆-2 [a2] .

We have thus proved that

-−1
1 [a1] ⊆-−1

1 [b1] & -2 [a2] ⊇-2 [b2]

which is equivalent to
(
-−1

1 [a1] ,-2 [a2]
)
⊆̂
(
-−1

1 [b1] ,-2 [b2]
)

i.e.
ϕ (〈a1,a2〉) ⊆̂ ϕ (〈b1,b2〉) .

This shows that

〈a1,a2〉 -
∗ 〈b1,b2〉 ⇒ ϕ (〈a1,a2〉) ⊆̂ ϕ (〈b1,b2〉) .

Suppose now thatϕ (〈a1,a2〉) ⊆̂ ϕ (〈b1,b2〉) from which follows that

-−1
1 [a1] ⊆-−1

1 [b1] & -2 [a2] ⊇-2 [b2] .

This implies thata1 ∈ -−1
1 [b1] andb2 ∈ -2 [a2] and, hence,a1 -1 b1 anda2 -2 b2,

which shows that

ϕ (〈a1,a2〉) ⊆̂ ϕ (〈b1,b2〉) ⇒ 〈a1,a2〉 -
∗ 〈b1,b2〉 .
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4 Joining systems of aspects

4.1 Aspects

Thecis model of TJS was developed primarily as a framework for representing legal
systems and other normative systems based on implications between conditions. How-
ever, as has been pointed out in Section 1, TJS can be used as a framework for other
kinds of msic-systems, too. In this section we will focus onaspects, in many disci-
plines called attributes but here ‘aspect’ will be preferred. Well-known examples of
aspects are area, temperature, age, loudness and archeological value. Some kinds of
aspects have special names, primarily in certain contexts, for example quantity, quality,
criterion, feature, characteristic, property, indicator, dimension or magnitude. Quanti-
tative aspects, i.e. quantities, are usually measurable and such aspects are not seldom
confused with a measure of it (utility is one example). It is a common view of aspects
that they can, in some way or another, from a formal point of view be represented as
relational structures. We will return to the formal representation of aspects below.

Conditions can be of different sorts and the same holds for aspects. Like condi-
tions, aspects can, among other things, be descriptive or normative (i.e. evaluating) or
something in between, which means that they are intermediaries between descriptive
and normative conceptual systems. There are aspects which are intermediate between
conceptual systems of other sorts, too, but we will in the informal part of this section
focus on intermediaries between descriptive and normative aspects.

In the cis model a conceptual system consists of conditions and the relation of
implication between them. In a conceptual system of aspects there is an implicative
relation from its grounds to its consequences, but this relation is not sentential impli-
cation. (See further Section 4.4.2.)

The meaning of an intermediate aspect consists jointly of stating its descriptive
grounds and its normative (evaluative) consequences. Which conceptual systems that
intermediate aspects are in between, are often not immediately evident. In many con-
texts it can be more informative to regard them as concepts determined by grounds
and consequences and initially leaving open the exact character of the top and the bot-
tom conceptual systems. In such cases the aspects can be called ground-consequence
concepts.11

Ground-consequence concepts are of course related to what is often called thick
concepts. The philosophical discussion of such concepts, especially in ethics, is rele-
vant for the understanding of ground-consequence concepts.12 But this line of thought
will not be pursued here. The concepts that are in focus in this section are not those

11Cf. Odelstad (2002), especially Chapter 12.
12Lacey (1996) p. 347 headword ‘Thick and thin concepts’:

Terms used especially in recent ethics. Thick concepts are those which seem to combine a
purely descriptive element with an element of evaluation or prescription, such as ‘cowardly’,
‘heroic’, ‘treacherous’, ‘loyal’, ‘brutal’, ‘lewd’, while thin terms embody only an evaluative
or prescriptive element, such as ‘good’, ‘evil’, ‘ought’, ‘right’. It seems hard for someone
who does not accept the relevant values or prescriptions to decide whether to call attributions
of the thick concepts true or false. However, the correct analysis of the thick concepts is
disputed.
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usually discussed in moral philosophy but are instead of importancefor planning as
well as decision and policy making, i.e. so-called policy relevant concepts. Among
such concepts normative indicators play an important role. In Sen (1977) the following
examples are mentioned.

Normative indication:Measurement of “national income”, “inequal-
ity”, “poverty”, and other “indicators” defined with normative motivation
incorporating interpersonal weighting in some easily tractable way. (Sen,
1977, p. 53.)

Other examples are gross domestic product, inflation, unemployment, gender equality,
public interest, archeological value and accessibility to social services. In Páez et.al.
(2012) the authors discuss measuring of accessibility in the transportation sector focus-
ing on positive and normative implementations of various accessibility indicators. In
the abstract the authors emphasize the following:

Accessibility is a concept of continuing relevance in transportation re-
search. A number of different measures of accessibility, defined as the
potential to reach spatially dispersed opportunities, have been proposed in
the literature, and used to address various substantive planning and pol-
icy questions. Our objective in this paper is to conduct a review of various
commonly used measures of accessibility, with a particular view to clarify-
ing their normative (i.e. prescriptive), as well as positive (i.e. descriptive)
aspects. This is a distinction that has seldom been made in the literature
and that helps to better understand the meaning of alternative ways to im-
plement the concept of accessibility. (Páez et.al., 2012, p. 141.)

Accessibility in the transportation sector seems to be a nice example of a policy-
relevant intermediate aspect and since accessibility is a quantity the question of its
measurement is relevant.

The problem how an aspect ought to be measured can be interpreted in different
ways. Suppose that the meaning of the aspectα is a joining of descriptive grounds
and normative consequences. When you determine how such an aspect ought to be
measured you take a normative stand. Grounds and consequences must match each
other, which is a normative problem. The decision how to measure is a part of clarifying
the meaning of the concept.

In many contexts, for example in multi-criteria decision analysis, there are con-
cepts joining descriptive grounds and normative consequences which are ground open
(and perhaps even consequence open).13 They function as decision nodes in the step
by step decision process where the decision is partially determined by the grounds and

13Thenotions ‘ground open’ and ‘consequence open’ are explained, exemplified and discussed in Lindahl
& Odelstad (2013) pp. 557–559 and 617–620. A short remark on the notions based on Odelstad (2009) pp.
15–16 follows below.

The concept ‘work of equal value’, which is an essential concept in the Swedish Equal Opportunities Act,
is an intermediary with one face looking at the nature of and requirements for the work and the other face
looking at efforts to promote equality in working life, especially equal pay for equal work. The law does not
supply us with a complete set of introduction rules for the concept. Instead it mentions some criteria that
equality of value depends on, viz. knowledge and skills, responsibility and effort. The applicability of the
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Figure 5: Aggregation tree with four strata.

consequencesof the concept. One important part of the decision process in a multi-
criteria decision problem is the aggregation of the different factors or components that
influence the value of the outcomes. The result of the aggregation is the value of the
outcomes all things considered. In Figure 5 a simple aggregation is pictured as an ag-
gregation tree. The factorsγi, j at the bottom are descriptive aspects and the aggregate
α0 at the top states the value all things considered and has purely normative conse-
quences (for example in terms of what ought to be chosen). The aspectsαi andβ j are
intermediaries, where theβ j :s represent “higher, more normative” strata than theαi :s.

In Lindahl & Odelstad (2008) p. 205 it is emphasized that the pattern of a com-
prehensive system of legal concepts is usually that of a network of structures of inter-
mediate concepts and this is illustrated as the middle part of Figure 6. (Note that the
consequences of one intermediate concept can be the grounds of another.)

The similarity between the network of structures of intermediate legal concepts and
the strata of decision analytic intermediate aspects is from a structural perspective ob-
vious, which is illustrated in Figure 7. Note that the input of facts refer to “factual”, i.e.
descriptive, aspects and not to extensions of descriptive facts. (Extensions of aspects
will be discussed in subsection 4.4.)

We end this section with a fictitious but not unrealistic example. Assume that a

concept work of equal value in a certain case must often be based onjudgments of what holds in the actual
case. And even if the law does not state detailed rules for these judgments it gives guidelines, for example
in terms of what are possible inputs in such judgments or what factors or circumstances must be taken into
account. The grounds of the concept ‘work of equal’ value is thus only partially determined by the law in the
form of introduction rules. The application of the concept in special cases deserves interpretative decisions
based on the role and function of the concept in the law. We call such intermediariesground-open. Concepts
such that the consequences are only partially determined by elimination rules are calledconsequence-open.
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Figure 6: A legal system as a network of strata.

countycouncil has adopted a public transport policy. Part of the policy concerns bus
traffic, including stipulations that the punctuality of buses should be gradually increased
by at least 5% per year, which is an objective expressed in quantitative terms. In order
to evaluate the effects of the policy, one must examine whether the objectives are met.
In that case, the punctuality of the buses must be measured. Measuring how much a
bus is delayed at a certain occasion is quite simple. But measuring how much all buses
used by a bus company are delayed during one month seems to be more complicated.
Assume that bus companyA has many buses that are a bit late while bus companyB
has few buses that are late, but instead they are very late. How do you compare these
two outcomes to each other, which is the worst? Does it further matter if late buses
have many or few passengers and if the delays occur in rush or in low traffic?

The punctuality of a class of buses is, as emphasized above, a multi-dimensional
concept. Measurement with regard to this concept is not straightforward. Should you
try to find an aspect of punctuality that is easy to measure and see it as an operational-
ization of punctuality? Or should you measure with regard to as many dimensions of
punctuality as possible and aggregate them? Or should you choose some particularly
important dimensions and aggregate them? Anyway, the choice will involve valuations.
Punctuality of buses is not a directly measurable concept, not even a purely descriptive
concept. On the other hand, the concept punctuality has a descriptive ground consist-
ing of a number of different aspects, but to determine punctuality, one has to evaluate
the ground with regard to the specific character of the normative consequences. Bus
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Figure 7: A multi-criteria decision system as a network of strata.

punctualitycannot be measured in strict terms but must be judged or evaluated based
on measurements of the descriptive dimensions of the concept. The punctuality of the
bus company depends on facts, buthow involves valuations. Hence, the punctuality of
buses is an intermediary that has descriptive grounds and normative consequences.

4.2 Relations and aspects as functions

Aspects are constituted by relations and operations in the sense that an aspect is a
structure consisting of relations and operations. An operation can be regarded as a
relation of a special kind, for example a binary operation can formally be understood
as a ternary relation. In many situations this is not a wise procedure but, anyhow, in
this paper I will temporarily accept this simplification and regard aspects as constituted
by relations only.

Suppose thatα is an aspect constituted by the relationsR1, ...,Rn. Thenα is a
structure withR1, ...,Rn as components. But which is the domain of the structure?
To specify one special domain for the aspect and the relations is in many contexts
awkward. For example, it is reasonable to think that a person’s preference relation
always is restricted to a special set of alternatives. Hence, thatRi , the individuali’s
preference relation on setA of alternatives, isρi is best represented as〈A, ρi〉, in other
words

Ri (A) = 〈A, ρi〉 .
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From a formal standpoint this means thatRi is a function that takes sets of alternatives
as arguments and a relation (or a relational structure) as values. Suppose now that this
holds for alli, 1 ≤ i ≤ n (i can be individuals in a group that will make a decision), then

α (A) = 〈A,R1 (A) , ...,Rn (A)〉 = 〈A, ρ1, ..., ρn〉 .

ρi as well as〈A, ρi〉 can be regarded as the extension ofRi on A, and analogously,α (A)
the extension ofα onA. The domain ofRi andα as functions is a family of setsD. If α
is constituted byR1, ...,Rn thenα can be represented as〈R1, ...,Rn〉 which is a function
that takes elements inD as values. Hence,

α = 〈R1, ...,Rn〉 .

Relations regarded as functions in the way just described will be calledrelationals.
Note that conditions are relations but conditions in legal systems are often of an-

other type than the ordinary relations in aspects. However, legal conditions can of
course be represented as relationals, see subsection 4.4.3. Furthermore, note that an
aspect can be constituted by different but equivalent compositions of relationals.

In Odelstad (1992), a theory of relations and aspects as functions, primarily as base
for a study of dependence and independence in systems of aspects, is presented. Some
central notions and results will be presented in the next subsection. For an elaborate
presentation of the theory, see Odelstad (1992).

This subsection ends with a short historical and philosophical remark on relation-
als. (For further details, see Odelstad, 1992, especially subsection 3.5 pp. 93–95.) One
of the ideas behind the notion of a relational is that it is meaningful to talk about the
extension of a relation over a set. This idea seems to be an old one which in different
contexts has taken different forms. InMeaning and necessityCarnap suggested that
certain intensional entities be identified with functions that take possible state of affairs
as arguments. The value of such a function is the extension of the intensional entity at
that state of affair. Carnap’s idea has been developed further by Kanger, Kripke, Kaplan
and Montague among others. Relationals resemble especially Montague’s predicates
in that they are functions with extensions as values. (See Montague, 1974, p. 152.)
There are thus some formal similarities between relationals and some notions in theo-
ries of modal logic. Most striking is perhaps the similarity with Kanger’s version of the
semantics for modal logic since functions representing intensional objects there have
domains as arguments. But the domains in the range of definition of a relational are not
intended to represent possible worlds; even in the actual world, a relational can have
different extensions depending on what domain one considers. The idea of intensional
entities as functions which have extensions as values was first used in formal seman-
tics, while the notion of a relational was intended to be used within measurement and
decision theory. In this paper relationals is a part of the framework for the aspect model
of TJS.
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4.3 Relationals: some definitions and results

4.3.1 Basic terminology for relationals

Definition 28 P is aν-ary one-component relationalwith range of definitionD if for
all A ∈ D

P (A) = 〈A, ρ〉

whereρ is a ν-ary relation on A.

Definition 29 P is a relational of type〈ν1, ..., νk〉 with range of definitionD if for all
A ∈ D

P (A) = 〈A, ρ1, ..., ρk〉

whereρi is an νi-ary relation on A. P is aν-ary one-component relationalif P is a
relational of type〈ν〉. The range of definition of a relational P is a family of sets and is
generally denoted byDP, i.e. DP = D.

If P is a relational of type〈ν〉 thenP (A) = 〈A, ρ〉 whereρ is a ν-ary relation on
A. For simplicity, instead of ‘ρ(x1, ..., xν)’ we often use one of the following notations
when there is no risk of ambiguity:

〈x1, ..., xν〉 ∈ P (A)

P (A; x1, ..., xν)

P (x1, ..., xν) ; A.

If % is a binary ordering relation then the following notations are used synony-
mously:

〈x, y〉 ∈% (A)

x % y;A.

If P (A) = 〈A, ρ〉 then we say that〈A, ρ〉 is the graph of P on A and thatρ is
the proper extensionof P on A. The termextensionwill be used for graph or proper
extension in situations where it is clear from the context what is meant. The extension
of P on A is thus〈A, ρ〉 or ρ depending on the context.

Definition 30 Theextension classof the relational P, denotedEP, is the set

{P (A) |A ∈ DP} .

Thecharacteristic classof the relational P, denotedCP, is EP closed under isomor-
phisms, i.e.

CP = {X | ∃A ∈ DP : I (P (A) ,X) , ∅} .

Definition 31 If for all i, 1 ≤ i ≤ k, Pi is one-component relational of type〈νi〉 with
the range of definitionD, then theconcatenationof P1,P2, ...,Pk is the relational P of
type〈ν1, ..., νk〉 such that for all A∈ D

P (A) = 〈A, ρ1, ..., ρk〉
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where
Pi (A) = 〈A, ρi〉 .

Theconcatenation of P1,P2, ...,Pk is denoted(P1,P2, ...,Pk).

Note that
(P1P2...Pk) (A) = 〈A,P1 (A) ,P2 (A) , ...,Pk (A)〉

wherePi (A) = ρi , i.e. Pi (A) is here the proper extension ofPi onA. The concatenation
of P andQ are sometimes writtenPQ instead of(PQ).

If the aspectα is constituted by〈P1, ...,Pn〉 then we can regardα as constituted by
one relational, viz.(P1...Pn) , the concatenation ofP1, ...,Pn.

4.3.2 Subordination, superiority and rank

Definition 32 Suppose that P and Q are relationals with the same range of definition
D. Q issubordinateto P, denoted by Q⇓ P, if for all A,B ∈ D

I (Q (A) ,Q (B)) ⊇ I (P (A) ,P (B)) .

If Q is subordinateto P then P issuperiorto Q denoted by P⇑ Q. If Q issubordinate
to P and P issubordinateto Q then P and Q are said tobe on a par, which is denoted
P m Q.

The notion of subordination is closely related to definability. In first order logic
a distinction between explicit and implicit definability is often made (see for example
Chang & Keisler, 2012, p. 90) and the equivalence of the two notions in first-order
logic is the celebrated Beth’s theorem on definability. In the theory of relationals a
formal language is not used and, hence, ‘explicit definability’ is not applicable here.
But ‘implicit definability’ is, as a model-theoretic notion of definability, meaningful
in the theory of relationals and is equivalent to ‘subordination’. This is made clear by
Theorem 37 in subsection 4.3.4. (This is a simplified presentation of definability in the
context of relationals, for a more detailed presentation see Odelstad, 1992, especially
subsection 4.2 pp. 103–105. Beth’s theorem and Padoa’s method are useful tools for
a more profound study of subordination and transitions than what is aimed at in this
paper.)

If an aspectα is constituted by the relationalP andP m Q thenα can from a formal
point of view be constituted byQ as well.

The following proposition is easily verified.

Proposition 33 LetR be a set of relationals withD as range of definition. Then〈R, ⇑〉
is a quasi-ordering.

Note thatP ⇑ Q iff for all A,B ∈ D

I (P (A) ,P (B)) ⊆ I (Q (A) ,Q (B))

andP m Q iff for all A,B ∈ D

I (P (A) ,P (B)) = I (Q (A) ,Q (B)) .
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We introduce the following abbreviations:

IP (A,B) = I (P (A) ,P (B)) ,

IP (A,A) = IP (A) ,

Bi (D×D) = {Bi (A,B) | A,B ∈ D} .

Note that
IP (A,B) ⊆ Bi (A,B) .

Let us call IP therank of P.
We infer componentwise versions of⊆ and∩ and denote them

·

⊆ and
·

∩: Suppose
that F andG are functions fromD×D into Bi (D×D) such thatF (A,B) ,G (A,B) ⊆
Bi (A,B). Then for allA,B ∈ D

(
F
·

∩G
)
(A,B) = F (A,B) ∩G (A,B)

F
·

⊆ G iff ∀A,B ∈ D : F (A,B) ⊆ G (A,B) .

We define
.

= as follows:
F
·
= G iff F

·

⊆ G & G
·

⊆ F.

Hence, (
IP
·

∩ IQ

)
(A,B) = IP (A,B) ∩ IQ (A,B)

IP
·

⊆ IQ iff ∀A,B ∈ D : IP (A,B) ⊆ IQ (A,B) .

Note thatR ⇑ S iff IR
·

⊆ IS. And R m S iff IR
·
= IS. Hence, the quasi-ordering⇑ on a

set of relationals corresponds to the partial ordering
·

⊆ on the ranks of the relationals.
There are other interesting quasi-orderings on relationals than subordination and

two such quasi-orderings will be mentioned here but not further studied in this paper.

Definition 34 Suppose that P and Q are relationals with the same range of definition
D. Q is automorphicallysubordinateto P, denoted by Q⇓a P, if for all A ∈ D

I (Q (A)) ⊇ I (P (A)) .

If Q ⇓a P and P⇓a Q then Q and P are said to be automorphically on a par, which is
denoted Pma Q.

Let C (X) be the set of congruence relations onX.

Definition 35 Suppose that P and Q are relationals with the same range of definition
D. Q conforms toP, denoted by P↑ Q if for all A ∈ D

C (S (A)) ⊇ C (R(A)) .

If Q conforms to P and P conforms to Q then P and Q are said to beequiform.
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4.3.3 Transitions

In the rest of this paper we suppose that all relationals that are the subject of study have
the range of definitionD.

Definition 36 The transition from P to Q, denoted PQ, is the correspondence fromCP

to CQ defined by

PQ
=
{
〈X,Y〉 ∈ CP×CQ | X = Y& ∃Z ∈ D : I (X,P (Z)) ∩ I (Y,Q (Z)) , ∅

}
.

The definition can also be written

PQ
=

{
〈X,Y〉 ∈ CP×CQ | X = Y & ∃Z ∈ D : ∃ϕ ∈ Bi (X,Z) :

X =ϕ−1 [P (Z)] andY =ϕ−1 [Q (Z)]

}

In the sequel,〈X,Y〉 ∈ PQ is often writtenXPQY. Note thatP (A) PQQ (A).
The transitionPQ is a correspondence from CP to CQ, which we also express by

saying that
〈
CP,CQ,PQ

〉
is a correspondence.PQ is thus a correspondence with CP as

domain and CQ as image. When there is no risk of ambiguity we omit the references
to domain and image and say thatPQ is a correspondence.

Note that sincePQ is a correspondence from CP to CQ, if X ∈CP then

PQ [X] =
{
Y∈CQ | XPQY

}
.

Note further that ifP (A) = A thenAPQQ (A), i.e. Q (A) ∈ PQ [A]. Hence, ifP (A) =
A then the possible extensions ofQ overA are elements inPQ [A]. And furthermore,
the elements inPQ [A] are the possible values forQ (A) given thatP (A) = A and no
other information is accessible.

A transitionPQ is closed under isomorphismsin the following sense: IfXPQY,
ϕ ∈ I (X,X′), ϕ ∈ I (Y,Y′) thenX′PQY′. Note that this condition can also be stated as
If XPQY, andϕ ∈ I (X,X′) thenX′PQ

ϕ

[
Y
]
. The notion ‘closed under isomorphism’

can be extended to a correspondenceΓ from a setK1 of structures of the same typeτ1

(closed under isomorphisms) to a setK2 of structures of the same typeτ2 (closed under
isomorphisms) in the following way: IfXΓY, ϕ ∈ I (X,X′), ϕ ∈ I (Y,Y′) thenX′ΓY′.
This condition can also be stated as follows: IfXΓY andϕ ∈ I (X,X′) thenXΓϕ

[
Y
]
.

Note that ifPQ
= Γ then the following holds: (1)Γ ⊆ CP×CQ, (2) P (A)ΓQ (A),

(3)XΓY impliesX = Y and (4)Γ is closed under isomorphisms and (5) ifXΓY then
there isA ∈ D andϕ ∈ I (X,P (A)) such thatϕ ∈ I (Y,Q (A)). These five conditions on
Γ are also sufficient forPQ

= Γ. If PQ
= Γ thenΓ together withP confines the set of

possible values forQ given the value ofP in the following senseQ (A) ∈ (P|Γ) [A], and
we say thatQ is partially determinedby P andΓ.

4.3.4 Transitions as functions

Note thatPQ is a function iffPQ [X] contains exactly one element for allX ∈CP. Then
P determinesQ completely.

Theorem 37 P ⇑ Q iff PQ is a function onCP ontoCQ .
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For a proof see Odelstad (1992) Theorem 4.1.1.
If a transitionPQ is a function thenPQ is isomorphism-preservingin the following

sense: IfXPQY, X′PQY′ andϕ ∈ I (X,X′) thenϕ ∈ I (Y,Y′).
Note thatP andQ are functions and the same holds forPQ if P ⇑ Q:

P : D → EP, Q : D → EQ, PQ : CP → CQ.

The two lemmas below show the interrelationship between these functions. First we
observe the following. The notion of isomorphism-preservation can be extended to
a function on a setK1 of structures of the same typeτ1 closed under isomorphisms
into a setK2 of structures of the same typeτ2 closed under isomorphisms in the fol-
lowing way: F is isomorphism-preserving iffXFY, X′FY′ andϕ ∈ I (X,X′) im-
pliesϕ ∈ I (Y,Y′). The second part of the equivalence can be written as follows: If
ϕ ∈ I (X, ϕ [X]) thenF (ϕ [X]) = ϕ [F (X)].

Lemma 38 If F : CP → CQ such that PQ = F then Q= F ◦ P.

Proof. Suppose thatPQ
= F andF : CP → CQ. Then for allA ∈ D,

PQ (P (A)) = F (P (A)) .

SinceP (A) PQPQ(A) andPQ is a function it follows thatQ (A) = F (P (A)) and, hence,
Q = F ◦ P.

SupposeQ = F ◦ P. Sinceall functions are correspondences so isF, and we can
of course state the equation asQ = P|F. But when a correspondence is a function we
preferF ◦ P instead ofP|F.

Lemma 39 If F : CP → CQ such that F is isomorphism-preserving and Q= F ◦ P
then PQ

= F.

Proof. SupposeX ∈CP. Then there isA ∈ D and such thatϕ ∈ I (P (A) ,X). Since
F (P (A)) = Q (A), ϕ ∈ I (P (A) ,X) andF is isomorphism-preserving

F (X) = ϕ [Q (A)] .

SincePQ (P (A)) = Q (A) andϕ ∈ I (P (A) ,X) it follows that

PQ (ϕ [P (A)]) = ϕ [Q (A)]

which means thatPQ (X) = F (X), and, hence,PQ (X) = F (X).
Suppose thatP is a relational with range of definitionD andF is a function on CP to

a classK of structures of the same typeτ closed under isomorphism and, furthermore,
F is isomorphism-preserving. ThenQ = F ◦ P determinesa relationalQ with range of
definitionD and CQ = K andPQ

= F.
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4.3.5 Uncorrelation and the strength of dependence

Definition 40 P isuncorrelatedwith Q, denoted PuncorrQ and P∦ Q if

PQ
=
{
〈X,Y〉 ∈ CP×CQ | X = Y

}

and we say that the transition PQ is sweeping. If P is not uncorrelated with Q then P
is correlated with Q, denoted P||Q.

Note that ifP ∦ Q thenQ ∦ P, and ifP||Q thenQ||P. Note further that ifP ⇑ Q and
P (A) = A then there is only one possible extension ofQ overA and we can denote it
PQ (A) sincePQ is a function. IfP ∦ Q andP (A) = A thenAPQX holds for allX
such thatX ∈ CQ andA = X. Hence the following holds: IfP ⇑ Q thenP completely
determinesQ. If P ∦ Q thenP does not determineQ at all. If P||Q thenP determines
Q to some degree. The strength of determination or dependence can be of different
degrees. Note that determination is directed.P can completely determineQ while Q
only partially determinesP. The determination ofQ by P is therefore not necessarily
of the same strength as the determination ofQ by P. Subordination and uncorrelation
are in a sense endpoints on a dependence scale.

As was pointed out in subsection 4.3.2P ⇑ Q means thatQ is implicitly definable
by P andPQ is a representation of the implicit definition ofQ from P. From this follows
that complete determination is equivalent to implicitly definability. And, hence, partial
determination is equivalent to partial implicitly definability. Note further: the “wider”
PQ is, the less dependent isQ on P. These remarks is intended to give an “informal
characterization” of subordination, correlation and transition and must not be taken too
literally.

4.3.6 From correspondences to set-valued functions

There are in some contexts simplifying to transform a correspondence to a function.
The general method is presented in subsection 1.3.2 by introducing−→

γ . We use this
method in two of the following three definitions. (℘(X) is the power set ofX.)

Definition 41
−→
PQ : CP → ℘

(
CQ
)

such that

−→
PQ (X) = PQ [X] .

Definition 42 PQ
∗ is the correspondence fromDP to CQ defined by

APQ
∗ Y iff P (A) PQ

∗ Y.

Definition 43
−→
PQ
∗ : DP → ℘

(
CQ
)

such that

−→
PQ
∗ (A) =

−→
PQ (P (A)) .

Suppose that P∦ Q andX ∈ CP and A∈ DP. Then

−→
PQ (X) =

{
Y | XPQY

}
=
{
Y ∈CQ | X = Y

}

−→
PQ
∗ (A) =

{
Y ∈CQ | A = Y

}
.
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4.3.7 Relative product of transitions

Therelative product of two correspondences
〈
CP,CQ,PQ

〉
and
〈
CQ,CR,QR

〉
is the cor-

respondence
〈
CP,CR,PQ|QR

〉
wherePQ|QR is defined by

PQ|QR
=

{
〈X,Y〉 ∈ CP×CR | ∃Z ∈ CQ : XPQZ & ZPQY

}
.

Theorem 44 PQ|QR ⊇ PR and if Q⇑ P or Q ⇑ R then PQ|QR
= PR.

Proof. (I) We first provePQ|QR ⊇ PR. Suppose thatXPRY. Then there isA ∈ DP and
ϕ ∈ Bi (X,A) such that

ϕ

−1 [P (A)] = X

ϕ

−1 [R(A)] = Y.

Let Z = ϕ−1 [Q (A)]. Since

ϕ

−1 [P (A)] PQ
ϕ

−1 [Q (A)]

ϕ

−1 [Q (A)] QR
ϕ

−1 [R(A)]

it follows thatXPQZ andZQRY, which implies thatXPQZ.
(II) Now suppose thatXPQ|QRY. Then there isZ such that

XPQZ & ZQRY.

Hence, there isA,B ∈ D andϕ ∈ Bi (X,A), ψ ∈ Bi (Y, B) such that

X =ϕ−1 [P (A)] Z =ϕ−1 [Q (A)]

Z =ψ−1 [Q (B)] Y =ψ−1 [R(B)]

From this follows that
ϕ

−1 [Q (A)] = ψ−1 [Q (B)]

and hence
ϕ ◦ ψ−1 [Q (B)] = Q (A)

which implies thatϕ ◦ ψ−1 ∈ IQ (B,A).
(i) Now suppose thatQ - P from which follows that IQ

.

⊆ IP. Henceϕ ◦ ψ−1 ∈

Ip (B,A), which implies that

ϕ ◦ ψ−1 [P (B)] = P (A) .

Thus
ψ

−1 [P (B)] = ϕ−1 [P (A)] .

Note that
ψ

−1 [P (B)] PR
ψ

−1 [R(B)]

and hence
ϕ

−1 [P (A)] PR
ψ

−1 [R(B)]
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and therefore
XPRY.

This proves thatQ ⇑ P implies thatPQ|QR
= PR. See the illustration below.

(ii) Finally suppose thatQ ⇑ R and hence IQ
·

⊆ IR. Sinceϕ ◦ ψ−1 ∈ IQ (B,A) it
follows thatϕ ◦ ψ−1 ∈ IR (B,A) which implies that

ϕ ◦ ψ−1 [R(B)] = R(A) .

Thus
ψ

−1 [R(B)] = ϕ−1 [R(A)] .

Note that
ϕ

−1 [P (A)] PR
ϕ

−1 [R(A)]

and hence
ϕ

−1 [P (A)] PR
ψ

−1 [R(B)]

and therefore
XPRY.

This proves thatQ ⇑ R implies thatPQ|QR
= PR.14

The following diagrams illustrate part of the theorem, were⇑ illustratessuperiority.
(PQ is a correspondence from CP to CQ andQR is a correspondence from CQ to CR. PR

as well asPQ|QR are correspondences from CP to CR.)

R
ր

P ↑⇑ =⇒ PQ|QR
= PR

.

ց

Q

P
ց

↓⇑ R =⇒ PQ|QR
= PR

.

ր

Q

Relative product of transitions are correspondences and some results of applying
transitions to structures (extensions) and sets of structures are shown below.

It holds generally that

(PQ|QP) [X] = QR
[
PQ [X]

]
.

SincePQ|QR ⊇ PR it follows thatPR [X] ⊆ QR
[
PQ [X]

]
, i.e.

−→
PR (X) ⊆ QR

[
−→
PQ (X)

]
.

14Cf. Odelstad (1992) Theorem 7.3.8–7.3.10.
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LetX =P (A). Then
PR [A] ⊆ QR

[
PQ [A]

]

andthus
−→
PR
∗ (A) ⊆ QR

[
−→
PQ
∗ (A)

]
.

If PQ|QR
= PR then

PR [X] = QR
[
PQ [X]

]

PR [X] = QR

[
−→
PQ (X)

]

and hence
PR [A] = QR

[
PQ
∗ [A]

]

−→
PR
∗ (A) = QR

[
−→
PQ
∗ (A)

]
.

4.3.8 Tightness

The notion ‘tightness’ defined below expresses a kind of dependence relation between
relationals (cf. subsection 4.3.5).

Definition 45 We say that PR is at least as tightas QR
, which is denoted PR⋖QR, if for

all A ∈ D
−→
PR
∗ (A) ⊆

−→
QR
∗ (A) .

If PR
⋖QR and QR

⋖PR we denote it PR
.

= QR andsay that PR and QR areequally tight.
If PR

⋖QR but not PR .

= QR wedenote it PR ⋖ QR and say that PR is tighterthan QR.

Note thatPR
⋖QR means informally thatR is more dependent onP than onQ (more

determined byP than byQ).

Theorem 46 Suppose that P⇑ Q. Then P(A) PRX implies that Q(A) QRX, i.e. for all
A ∈ D

−→
PR
∗ (A) ⊆

−→
QR
∗ (A)

in other words PR⋖QR.

Thetheorem is illustrated below.

Q
ց

⇑ R =⇒ PR
⋖QR

ր

P

Proof. Suppose thatP ⇑ Q. Then

QP|PR
= QR

.
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Suppose thatP (A) PRX. This together withQ (A) QPP (A) implies

Q (A)
(
QP|PR

)
X

and hence
Q (A) QRX.

This shows thatX ∈
−→
PR
∗ (A) implies thatX ∈

−→
QR
∗ (A), i.e. for allA ∈ D

−→
PR
∗ (A) ⊆

−→
QR
∗ (A)

and hence
PR

⋖QR
.

Theorem 47 If PQ|QR
= PR then for all A∈ D,

−→
QR
∗ (A) ⊆

−→
PR
∗ (A)

i.e.
QR

⋖PR
.

Proof. Let A ∈ D arbitrary. Suppose thatA ∈
−→
QR
∗ (A). Hence,Q (A) QRA. Since

P (A) PQQ (A) it follows that
P (A)

(
PQ|QR

)
A.

SincePQ|QR
= PR it follows that P (A) PRA and henceA ∈

−→
PR
∗ (A). We have thus

proved thatA ∈
−→
QR
∗ (A) impliesA ∈

−→
PR
∗ (A), i.e.

−→
QR
∗ (A) ⊆

−→
PR
∗ (A) .

SinceA ∈ D arbitrary it follows thatQR
⋖PR.

4.4 Transitions and joinings between relationals of different sorts

4.4.1 Introduction

This section is a first presentation of a work in progress on the aspect model of TJS.
The TJS-framework is here used as a toolbox for an inquiry into the joining of sys-
tems of aspects of different sorts and, as the work proceeds, with focus on the function
and structure of intermediate concepts. One important aspect of the inquiry is “con-
ceptual openness”, i.e. the feature of intermediaries being ground and/or consequence
open. Such intermediaries can function as decision nodes in a step by step decision
process where the “Spielraum” of the decision is partially determined by the grounds
and consequences of the concepts and will be more and more restricted as the process
proceeds. In multi-criteria analysis such step by step processes seem to be frequent
and reasonable, and open intermediaries may play a role in decision support systems
for multi-critera problems.
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4.4.2 The implicative character of transitions

As was emphasized already in the subsection 1.2 it is essential for the TJS-perspective
on conceptual structures that there is an implicative relation between the concepts. The
characteristics of this implicative relation differ depending on the type and sort of the
conceptual structure. In thecis model a - b represents in a sense the conditional
statement ‘∀x : a (x) → b (x)’ and - represent implication. We can of course see the
conditionsa andb as functions which assign truth values toa (x) andb (x) in case the
conditional statement is represented as follows: ‘Ifa (x) = ⊤ thenb (x) = ⊤.’ In the
aspect modelP ⇑ Q (QsubP) represents the statement that if the extension ofP on a
setA is given then the extension ofQ on A is determined. However, from the extension
of P on A does not follow the extension ofQ on A, just that it is determined. Here
the transitions enter the picture. LetP andQ be relationals with the same rangeD of

definition. If A ∈ D, A ∈ CP andP (A) = A thenQ (A) ∈
−→
PQ (A), where

−→
PQ (A) =

PQ [A]. A somewhat more detailed formulation is the following. IfA ∈ D, A ∈ CP,

P (A) = A andPQ
= Γ thenQ (A) ∈

−→
Γ (A), where

〈
CP,CQ,Γ

〉
is a correspondence

closed under isomorphisms. IfP ⇑ Q thenΓ is an isomorphism-preserving function
andQ (A) = Γ (A) if P (A) = A.

In the cis model the joinings between structures of different sorts are conditional
statements (implications). In the aspect model the joinings can be represented as tran-
sitions and the same holds for the grounds and consequences of intermediaries. This
line of thought will be developed below (see subsections 4.4.6–4.4.8).

4.4.3 Conditions as relationals

A condition can in many situations be regarded as a relational. Leta be aν-ary condi-
tion onX. a (X) is then the set of all elements inXν such that they satisfya, i.e.

a (X) = {〈x1, x2, ..., xν〉 ∈ Xν|a (x1, x2, ..., xν)} .

Let a andb be conditions regarded as relationals with the same range of definitionD

and leta - b represents thata impliesb. Suppose thata - b. Thena (X) ⊆ b (X) for
all X ∈ D which we denotea

.

⊆ b (using pointwise definition, see subsection 4.3.2).
The transition froma to b is denotedab. Then

a
·

⊆ b iff ∀X ∈ D : ∀λ, µ ⊆ Xν : 〈X, λ〉ab 〈X, µ〉 ⇔ λ ⊆ µ.

But suppose now thata andb are of different sorts and that there is a conditional norm
a

.

⊆ b which holds according to a normative system. Then the transition froma to b, i.e.
ab, is a norm determined by the normative system. Transitions can therefore in some
contexts represent conditional norms. And even if they do not represent conditional
norms since the relationals involved are not conditions, the transitions can in some
situations be of a normative character. This shows more generally that transitions can
function as joinings between relational systems of different sorts.

4.4.4 Relational arrangements

As has been pointed out several times in this paper there are different sorts of condi-
tions. The same holds for aspects. IfR is a set of relationals with the same range of
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definition and of the same sort, let us sayσ, thenwe presuppose that for allP,Q ∈ R

the value of the transitionPQ “is determined”, i.e. with regard to the transitions be-
tween relations of the same sort there is no indeterminacy.15 Below we shall contrast
this with contexts where indeterminacy exists. First a reminder. IfP||Q, i.e. P andQ
are correlated, then

PQ ⊂
{
〈X,Y〉 ∈ CP×CQ | X = Y

}

andP can be said to partially determineQ.
Suppose thatR1 andR2 are sets of relationals of different sorts. LetR0 = R1∪R2.

If P1,Q1 ∈ R1 andP2,Q2 ∈ R2 thenPQ1

1 andPQ2

2 are meaningful (determined) whereas
this is not certainly the case forPP2

1 andQQ2

1 . If PP2
1 is determined such thatP1||P2 then

PP2
1 can represent a joining betweenR1 andR2 and be a part of the joined systemR0.

The joiningPP2
1 is especially strong ifPP2

1 is a function. A special case of joining ofR1

andR2 is obtained if all the joinings betweenR1 andR2 are functions. We will study
this in some detail further below. The narrowness-relation in a protojoining-system
represents a kind of implication relation between joinings. What this means in the case
of aspects will also be set out below in subsection 4.4.6.

In order to simplify the presentation in the coming subsections the following notion
is introduced. A set of relationals with the same range of definition is arelational
arrangementif the transitions between all elements inR are determined. A set of
relations of the same sort and the same range of definition is therefore a relational
arrangement.

4.4.5 Two derivation schemata

In the presentation of thecis model in subsection 1.2 two “derivation schemata” are
mentioned. There are corresponding schemata for aspects. At first we take schema
(II):

(II-A)
Q1⇑1P1

〈P1,P2〉
[
joining

]

P2⇑2Q2

————-
〈Q1,Q2〉

[
joining

]

In schema (I-A) the input is the extension of a relational. Suppose thatP1 (A) = A
and〈P1,P2〉 is a joining. What is the output? It may seem reasonable to propose that
the output isPP2

1 [A]. But sinceP1 andP2 belong to different sorts it is not clear what
PP2

1 means.PP2
1 is a kind of bridging or crossing transition,cross-transitionfor short,

and the meaningfulness (and meaning) of such transitions is determined by the actual
system of joinings. If joining〈P1,P2〉 is assigned a correspondenceΓ (closed under
isomorphisms) thenP2 (A) ∈ Γ (A) and if Γ is a function thenP2 (A) = Γ (A). The
schema (I-A) can be stated:

(I-A)
P1 (A) = A

15“Determined”will here not imply “known”. Our knowledge can be uncertain.
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〈P1,P2〉
[
joining to whichΓ is assigned

]

———————
P2 (A) ∈ Γ (A)

We will return to cross-transition below.

4.4.6 Protojoining-systems of aspects

Suppose thatR1 andR2 are sets of relationals with range of definitionD but of differ-
ent sorts. Then〈R1, ⇑1〉 and〈R2, ⇑2〉 are quasi-orderings. From a formal point of view
⇑1 and⇑2 are different relations since they are defined for different sorts.16 Let Ê1,2 be
the narrowness-relation relative to〈R1, ⇑1〉 and〈R2, ⇑2〉. Hence, forP1,Q1 ∈ R1 and
P2,Q2 ∈ R2

〈P1,P2〉 Ê1,2 〈Q1,Q2〉 ⇐⇒ Q1⇑1P1&P2⇑2Q2.

Note that
〈
R1 ×R2, Ê1,2

〉
is a quasi-ordering.

Suppose thatJ1,2 ⊆ R1 ×R2 and letΘ1,2 =
〈
〈R1, ⇑1〉 , 〈R2, ⇑2〉 , J1,2

〉
be apJs. Let

R0 = R1 ∪R2, R1 ∩R2 = ∅ and

⇈0 = ⇑1 ∪ J1,2 ∪ ⇑2. (3)

According to Theorem 9〈R0, ⇑0〉 is a quasi-ordering.
There are different kinds of aspect-typepJslike Θ1,2 and we will here throw some

light upon this. We start offwith a reminder. Suppose thatR is a set of relationals
with range of definitionD. Then, according to Theorem 44, ifQ ⇑ P or Q ⇑ R then
PQ|QR

= PR. Note further that ifPQ andQR are functions thenPQ|QR
= PR and we

can write itPR
= QR ◦ PQ.

If P1,Q1 ∈ R1 thenP1⇈0Q1 implies thatP1⇑1Q1 and, hence, there is an isomorph-
ism-preserving function (ipffor short)F1 : CP1 → CQ1 such thatQ1 = F1 ◦ P1. If
P2,Q2 ∈ R2 thenP2⇈0Q2 implies thatP2⇑2Q2 and, hence, there is anipf F2 : CP2 →

CQ2 such thatQ2 = F2 ◦ P2. Consider now the following condition:
(*) If P1 ∈ R1, P2 ∈ R2 andP1⇈0P2 then there is anipf F0 : CP1 → CP2 such that

P2 = F0 ◦ P1.
This condition does not follow from the assumption thatΘ1,2 is apJs. But it is of

course possible that it holds for somepJs’s, but in these casesΘ1,2 results in a much
stronger joining of〈R1, ⇑1〉 to 〈R2, ⇑2〉 then that Θ1,2 is just apJs. Note that the
strength of this kind of joining system is of another kind than being apreJsor aJs. But
for (*) to express an interesting kind of joining of〈R1, ⇑1〉 to 〈R2, ⇑2〉 something more
is needed. Suppose thatP1,Q1,R1 ∈ R1, P1⇑1Q1 andQ1⇑1R1. ThenPQ1

1 andQR1
1 are

ipf ’s andPR1
1 = PQ1

1 |Q
R1
1 = QR1

1 ◦ PQ1

1 . And the same also holds forR2. Suppose now
that P1 ∈ R1, P2 ∈ R2 and there is anipf F0 : CP1 → CP2 such thatP2 = F0 ◦ P1.
Suppose thatQ1 ∈ R1, Q2 ∈ R2 and that there is anipf G0 : CQ1 → CQ2 such that
Q2 = G0 ◦ Q1. Let us now representPP2

1 = F0 andQQ2

1 = G0. Then

F0 = PP2
1 = PQ1

1 |Q
Q2

1 |Q
P2
2 = QP2

2 ◦ QQ2

1 ◦ PQ1

1 = QP2
2 ◦G0 ◦ PQ1

1 .

16Notethat⇑ is in fact a relational with⇑1 and⇑2 as its extensions on different domains.
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This shows the dependence between theips’s associated to different elements〈P1,P2〉

and〈Q1,Q2〉 in ⇈0.
Conditions as the above lie behind the following definition, where⇈0 is defined as

above (see equation (3)):

Definition 48 Θ1,2 =
〈
〈R1, ⇑1〉 , 〈R2, ⇑2〉 , J1,2,Φ

〉
is a sub relational pJs (sr-pJs)if〈

〈R1, ⇑1〉 , 〈R2, ⇑2〉 , J1,2
〉

is apJsandΦ is a function that assigns anips to each〈P,Q〉
in ⇈0 such that

(i) For i = 1,2 : Pi ,Qi ∈ Ri ⇒ Φ (Pi ,Qi) = PQi

i .

(ii) 〈P,Q〉 , 〈Q,R〉 ∈ ⇈0⇒ Φ (Q,R) ◦ Φ (P,Q) = Φ (P,R) .

Note that the joinings in asr-pJs, i.e. the elements inJ1,2, are functions and we call
themfunctional joinings. It is intuitively appealing to denoteΦ (P1,P2) asPP2

1 and in
that way viewΦ (P1,P2) as a transition but of a special kind, viz. a cross-transition.
In many contexts cross-transitions represent norms. But it must be remembered that a
cross-transitionPP2

1 of this kind is only meaningful if〈P1,P2〉 ∈ J1,2 and the meaning of
PP2

1 is relative toΦ. Note that̂E1,2 is a quasi-ordering on the set of cross-transitions in
Θ1,2. Suppose that〈P1,P2〉 , 〈Q1,Q2〉 ∈ J1,2 and〈P1,P2〉 Ê1,2 〈Q1,Q2〉. ThenQ1⇑1P1,
P2⇑2Q2 and

QP1
1 |Φ (P1,P2) = Φ (Q1,P2) i.e. PP2

1 ◦ QP1
1 = QP2

1 .

Further,

PQ2

2 |Φ (Q1,P2) = Φ (Q1,Q2) i.e. PQ2

2 ◦ QP2
1 = QQ2

1 .

and, hence,
PQ2

2 ◦ PP2
1 ◦ QP1

1 = QQ2

1 . (4)

Note that (4) expresses a relationship between the functional joinings in asr-pJs.
There are at least two different approaches to the study ofsr-pJs’s.In one approach

the starting point is a givensr-pJsand the questions are how it is constructed, what is
its content and its implications and so on. For the other approach the main question is
to construct asr-pJsfrom quasi-orderings of aspects, for example by the way of speci-
fying a set of joinings and theΦ-values for those. For both these approaches the set of
minimal joinings will play an important role, and we will make some observations on
this problem.

The notion of connectivity can of course be applied tosr-pJs’s.LetΘ1,2 be asr-pJs
specified as in Definition 48 and satisfying connectivity with respect toÊ1,2. Suppose
thatQ1 ∈ R1, Q2 ∈ R2 and〈Q1,Q2〉 ∈ ⇈0. Then there is〈P1,P2〉 ∈ minJ1,2 such that

〈P1,P2〉 Ê1,2 〈Q1,Q2〉

and by using (4) we get
PQ2

2 ◦ PP2
1 ◦ QP1

1 = QQ2

1 .

Suppose now that〈R1,R2〉 ∈ minJ1,2 such that

〈R1,R2〉 Ê1,2 〈Q1,Q2〉 .
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Then
QQ2

1 = RQ2

2 ◦ RR2
1 ◦ QR1

1

and,hence,
PQ2

2 ◦ PP2
1 ◦ QP1

1 = RQ2

2 ◦ RR2
1 ◦ QR1

1 .

This shows that it is not possible to choose theΦ-value for every element in minJ1,2

separately, independently of theΦ-values for the other elements in minJ1,2. This de-
pends on the structure on

〈
minJ1,2,⇈0

〉
(see Lindahl & Odelstad, 2013, p. 588 Corol-

lary 3.36, cf. subsection 1.3.2 above) but this problem area will be left for future
research.

4.4.7 Non-functional cross-transitions

A transition that is a function will below be called afunctional transitionand a tran-
sition which is not a function will be callednon-functional. In the subsections 4.4.6
above it was assumed that a joining is a functional cross-transition. However, a non-
functional cross-transition that does not imply uncorrelation can be considered as a par-
tial or open joining (an open norm if normativity is involved) determining aSpielraum
of consequences.17 To what extent the non-functional cross-transitions are determined
by the functional ones in asr-pJswill be discussed in this subsection.

Let Θ1,2 be asr-pJsspecified as in Definition 48 above. ThenJ1,2 determines an
extension of〈R1, ⇑1〉 and〈R2, ⇑2〉 to the quasi-ordering

〈
R0,⇈0

〉
in an unique way.

Note that if〈P,Q〉 ∈ ⇈0 then the transitionPQ is, as explained above, meaningfully
characterized and can be regarded as a primary transition. We will here discuss the
possibility to extend the set of meaningful transitions. Suppose thatQ1 ∈ R1 and
Q2 ∈ R2 such that there is noR2 ∈ R2 such that〈Q1,R2〉 ∈ J1,2 and noR1 ∈ R1 such
that 〈R1,Q2〉 ∈ J1,2. NeitherQ1 nor Q2 is thus a component in a joining. We have
not, so far, given any meaning toQQ2

1 . Suppose now that〈P1,P2〉 ∈ J1,2 which implies
that there is anipf F such thatPP2

1 = F. QP1
1 is a transition inR1 andPQ2

2 a transition
in R2 and, hence, there is a correspondenceΓ1 closed under isomorphisms such that
QP1

1 = Γ1 and a correspondenceΓ2 closed under isomorphisms such thatPQ2

2 = Γ2.
We can construct the correspondenceΓ1|F|Γ2 which is a correspondence closed under
isomorphism with CQ1 as domain and CQ2 as codomain. SinceΓ1|F|Γ2 = QP1

1 |P
P2
1 |P

Q2

2

there is a relation betweenQQ2

1 andΓ1|F|Γ2. But it is not certain that we can define
QQ2

1 = Γ1|F|Γ2. To see this, suppose that〈R1,R2〉 ∈ J1,2 and thatQR1
1 = Γ

∗
1, RR2

1 = F∗

andRQ2

2 = Γ
∗
2. ThenΓ∗1|F

∗|Γ∗2 = QQ2

1 . It is not certain thatΓ1|F|Γ2 = Γ
∗
1|F
∗|Γ∗2, not even

if Θ1,2 satisfies connectivity and

〈P1,P2〉 , 〈R1,R2〉 ∈ minÊ1,2
J1,2.

Instead it seems reasonable that

QQ2

1 ⊆ Γ1|F|Γ2 & QQ2

1 ⊆ Γ
∗
1|F
∗|Γ∗2

17Notethat a non-functional transitionPQ can be “transformed” to
−−→
PQ which is a function assigning sets

of values to the possible extension ofQ overA given the extension ofP overA.
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and we see these statements as approximations ofQQ2

1 . With a slight extension of the
notion of tightness (see Definition 45) we say thatΓ1|F|Γ2 is at least as tight asΓ∗1|F

∗|Γ∗2,
which is denoted

Γ1|F|Γ2⋖Γ
∗
1|F
∗|Γ∗2,

if the following holds: IfX1 ∈ CQ1, X2 ∈ CQ2 andX1 = X2 then

X1 (Γ1|F|Γ2)X2⇒ X1
(
Γ
∗
1|F
∗|Γ∗2
)
X2.

Different approximations ofQQ2

1 may differ in tightness and the optimization of one
transition can affect what is a possible optimization of other transitions. The conditions
under which there is a tightest approximation ofQQ2

1 and under which this is compatible
with the tightest approximation of all other cross-transitions will here be left open for
future research. Instead we will shift focus somewhat and consider the case where all
cross-transitions are meaningful. We take the following definition as a starting point.

Definition 49 Θ1,2 =
〈
〈R1, ⇑1〉 , 〈R2, ⇑2〉 , J1,2,Φ, 〈R0, ⇑0〉

〉
is anextensively relational

pJs (er-pJs)if
〈
〈R1, ⇑1〉 , 〈R2, ⇑2〉 , J1,2,Φ

〉
is a sr-pJsandR0 is a relational arrange-

ment such that

1. R0 = R1 ∪R2

2. ⇑0 = ⇑1 ∪ J1,2 ∪ ⇑2

3. If Pi ,Qi ∈ Ri for i = 1,2 then the transition PQi

i in R0 agree with the transition
PQi

i in Ri .

4. If 〈P1,P2〉 ∈ J1,2 then PP2
1 = Φ (P1,P2).

Let Θ1,2 be aer-pJsspecified as in Definition 49 above. With a cross-transition in
R0 = R1 ∪R2 is meant a transitionPQ such that eitherP ∈ R1 andQ ∈ R2 or P ∈ R2

andQ ∈ R1. J1,2, the set of joinings inΘ1,2, consists of functional cross-transitions.
Suppose thatP1 ∈ R1 andP2 ∈ R2 such thatPP2

1 is a non-functional cross-transition.
Then it is possible that the correspondenceΓ such thatPP2

1 = Γ may not be inferred
from J1,2 andPP2

1 = Γ may be informative.PP2
1 is then a kind of partial (vague, open)

joining from 〈R1, ⇑1〉 to 〈R2, ⇑2〉.
In R0 all transitions, even cross-transitions, are meaningful. Hence, ifP1 ∈ R1 and

P2 ∈ R2 thenPP2
1 is meaningful. However, that does not imply thatPP2

1 is a proper
joining, not even a proper partial joining. IfPP2

1 is sweeping, i.e.P1uncorrP2, then
information on the extension ofP1 on A contains no information on the extension of
P2 on A. To be a proper joiningPP2

1 must be non-sweeping, i.e.P1 andP2 must be
correlated.

There is some vagueness in Definition 49 since the notion of a relational arrange-
ment has not been given a formal characterization (for example by an axiomatization)
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that is satisfactory for the application of the notion in the actualcontext. This short-
coming will hopefully be possible to remedy with a deeper study of the structure of
transitions.18

At this point some rules regulating the behavior of transitions ought to be remem-
bered, see Theorem 44:

(1) Generally:PQ|QR ⊇ PR

(2) If Q ⇑ P thenPQ|QR
= PR

(3) If Q ⇑ R thenPQ|QR
= PR.

Of another kind but still related is the following (see Definition 45 and Theorem 46):
(4) If P ⇑ Q thenPR

⋖QR.

4.4.8 Non-functional joinings

Let Θ1,2 =
〈
〈R1, ⇑1〉 , 〈R2, ⇑2〉 , J1,2

〉
be apJs. We have so far studied the case where

J1,2 consists of functions. This is the case ifΘ1,2 is aner-orsr-pJs, but it is also possible
thatJ1,2 consists of non-functional correspondences or a mixture of functional and non-
functional correspondences. The narrowness-relation for such apJsis the relation̂E1,2

defined above in terms of⇑1 and⇑2. If one accepts to determine approximative values
for cross-transitions that are not joinings from the joinings inJ1,2 as was discussed
in subsection 4.4.7, these can be regarded as a kind of secondary joinings while the
elements inJ1,2 are primary joinings.

Suppose thatΘ1,2 satisfies connectivity and that〈Q1,Q2〉 ∈ J1,2. Then there is
〈P1,P2〉 ∈ minÊ1,2

J1,2 such that

〈P1,P2〉 Ê1,2 〈Q1,Q2〉 i.e. Q1⇑1P1&P2⇑2Q2.

It is often convenient to denote the elements inJ1,2 not as ordered pairs〈P1,P2〉 but
as transitionsPP2

1 . Suppose thatΓ is a correspondence closed under isomorphism (and
satisfying some other minor conditions, see subsection 4.3.3) such thatP2 = P1|Γ. Let
us for the sake of simplicity accept the “transition-formalism” and, hence,PP2

1 = Γ and

QQ2

1 ⊆ QP1
1 |Γ|P

Q2

2 .

Hence, the set of minimal elements does not necessarily determine all the elements in
J1,2.

If J1,2 consists of correspondences that are not certainly functions then the connec-
tion between〈R1, ⇑1〉 and〈R2, ⇑2〉 seems to be in a sense unspecified or vague. But
this vagueness can be the result of lack of knowledge about the joined system and may
be settled at a later stage of the investigation. ApJswith correspondences as joinings
can be a useful tool in the initial stage of a research about apJsof relationals but also
a tool for constructing a more developed joined system.

18In apJs〈A1,A2, J〉 there is often more “structure” on the topA1 and the bottomA2 than just the quasi-
orderings. In thecismodel the top and bottom are Boolean quasi-orderings. In a system of relations there is
also “more structure” than just the quasi-orderings, for example the concatenation operation of relationals,
that fromP andQ form PQ (see Definition 31). In some applications we can have a set of “generators”
G such that each relational inG is uncorrelated to the concatenation of all the other elements inG. For all
finite subsetsH of G we construct the concatenation of the element inH. The resulting set of relationals (G
included) can in a sense be regarded as a set of relationals generated byG. However, structures on sets of
relationals can be specified in other ways, too.
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4.4.9 Relationals as intermediaries

In the subsections above some aspects of the connection between functional and non-
functional cross transitions from relationals of one sort to relationals of another sort has
been discussed. Some light has been shed upon the following questions. To what ex-
tent are the non-functional cross-transitions determined by the functional ones? And to
what degree are the functional cross-transitions determined by the non-functional ones?
These questions are relevant in connection with intermediaries. Can an intermediary
have a non-functional cross-transition as the defining ground and/or consequence? Is
that what “openness” means for aspects as intermediaries? Does this introduce inde-
terminacy in the conceptual system?

Suppose that

Θ1,2 =
〈
〈R1, ⇑1〉 , 〈R2, ⇑2〉 , J1,2,Φ1,2,

〈
R1,2, ⇑1,2

〉〉

Θ2,3 =
〈
〈R2, ⇑2〉 , 〈R3, ⇑3〉 , J2,3,Φ2,3,

〈
R2,3, ⇑2,3

〉〉

Θ1,3 =
〈
〈R1, ⇑3〉 , 〈R3, ⇑3〉 , J1,3,Φ1,3,

〈
R1,3, ⇑1,3

〉〉

are extensively relationalpJs’s (er-pJs’s). We represent elements inJi, j as cross-
transitions. Let us suppose thatΘ1,2, Θ2,3 andΘ1,3 are interconnected in such a way
that if P1 ∈ R1, P2 ∈ R2 andP3 ∈ R3 thenPP2

1 |P
P3

2 ⊇ PP3

1 .
Let us now introduce intermediaries in the aspect model as follows:P2 ∈ R2 is

an intermediaryin
〈
Θ1,2,Θ2,3,Θ1,3

〉
if there are correspondencesΓ1,2 andΓ2,3 closed

under isomorphisms such that the meaning ofP2 is given byPP2
1 = Γ1,2 andPP3

2 = Γ2,3

taken together as a whole, and
PP3

1 = Γ1,2|Γ2,3.

In other words,PP2
1 = Γ1,2 (i.e. P2 = P1|Γ1,2) is the defining ground ofP2 andPP3

2 =

Γ2,3 (i.e. P3 = P2|Γ2,3) is the defining consequence ofP2. If P1 (A) = A then

P2 (A) ∈
−−→
PP2

1 (A) & P3 (A) ∈
−−→
PP3

2

[
−−→
PP2

1 (A)

]
.

Suppose thatP2 ∈ R2 is an intermediary in
〈
Θ1,2,Θ2,3,Θ1,3

〉
with PP2

1 as the defin-
ing ground andPP3

2 as the defining consequence, which we express by saying that the
meaning ofP2 is given byP2 =d f PP2

1 |P
P3

2 . Then there are four different combinations
of functional/non-functional grounds and consequences:

1. PP2
1 andPP3

2 are both functions;P2 is neither ground nor consequence open

2. PP2
1 is a function butPP3

2 is not a function;P2 is consequence open

3. PP2
1 is not a function butPP3

2 is a function,P2 is ground open

4. neitherPP2
1 nor PP3

2 are functions,P2 is ground and consequence open.
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The four items above constitutes the initial fragment of a typologyof intermediaries.
If

P2 =d f PP2
1 |P

P3

2 & PP2
1 = Γ1,2 & PP3

2 = Γ2,3

then PP3

1 = Γ1,2|Γ2,3 is a condition onΘ1,3. The use of intermediaries is thus one
possible method for characterizing, completely or partially, the joining of two sets of
relationals of different sorts

There are two different perspectives on the role of intermediaries in the joining of
systems: The aim of the investigation is (1) the conceptual analysis of the intermediary
or (2) the construction of a system that joins two sets of relationals of different sorts and
the intermediary is a vehicle for establishing joinings. If the aim is (1) then the joined
system is the starting point, whereas if the aim is (2) the intermediary is the starting
point.

If P2 =d f PP2
1 |P

P3

2 and, furthermore,PP2
1 = F1,2 and PP3

2 = F2,3 whereF1,2 and
F2,3 are ips’s, then there is no openness with regard toP2, i.e. if P1 (A) = A then
P3 (A) = F2,3

(
F1,2 (A)

)
. But some kind of uncertainty may still play a role. It may

be the case that we cannot determineP1 (A) directly but know thatQ1 (A) = A, and

therefore,P1 (A) ∈
−−→
QP1

1 (A) and

P2 (A) ∈ F1,2

[
−−→
QP1

1 (A)

]
& P3 (A) ∈ F2,3

[
F1,2

[
−−→
QP1

1 (A)

]]
.

4.5 Conclusion

The aim of this paper is to further develop TJS in some respects and widen the range of
application of the theory. We have seen how the idea of norms as ordered pairs is flex-
ible enough to handle nested implications and hypothetical consequences. Tools from
Formal Concept Analysis may be useful in TJS since formal concepts and minimal
joinings are shown to be closely related. An aspect model of TJS has been outlined.
All three investigations can be pursued further, but especially the application of TJS
on aspects may hopefully develop TJS and result in useful practical methods and tools.
Cross-transitions can in normative contexts be regarded as norms, partial (vague, open)
if the cross transitions are not functional. A problem area not touched upon in this
paper but presumably of great relevance is the numerical representation of aspects, for
example by means of measurement, since measures can represent (and in a sense be-
come) intermediaries. We end this paper with the conjecture that the aspect model of
TJS may be a useful tool for the analysis of the notion of supervenience.
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