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Abstract 

 
I specify a very large class of logics with monadic and dyadic modal operators, 

primarily (but not exclusively) intended to represent monadic and dyadic agency 

in the tradition of Kanger, Pörn, Elgesem, etc. I explore logics both for pure 

monadic agency, pure dyadic agency, and mixed monadic-dyadic agency. 

Employing neighborhood semantic frames, but with an extra parameter governed 

by a modest algebraic structure, I prove determination theorems for all the 

consistent logics of those specified. I briefly present some motivation and 

rationales for some of the principles, but the main focus is on the framework and 

key meta-theorems. 

 

 

1  Introduction 

 
I prove a fundamental theorem for canonical models for logics developed for 

representations of agency broadly in the tradition of Kanger, Pörn, Elgesem, and 

others.3  Monadic and dyadic agency logics are explored in both pure forms as well as 

                                                 
1 An earlier version of this paper appeared in McNamara, Paul 2018. See note 8 for the main differences. 
2 This work owes a special debt to Lou Goble. Lou generously provided substantial comments that proved 

invaluable, as well as showing me that a somewhat complex algebraic structure for a parameter for 

propositions that I had proposed was overkill for proving completeness, although it did turn out that a more 
modest version of the algebraic structure was needed for soundness and thus for determination theorems. 

Some further particulars are mentioned below. Xavier Parent’s comments led to my revisiting Elgesem’s 

dissertation (Elgesem, 1993) and realizing that I had overlooked the second less obvious place in his 
dissertation where he takes the subject of dyadic agency back up (Chapter 3, section II.2). I also benefited 

indirectly from work on counts-as conditionals by Jones and Parent (Jones, Andrew and Xavier Parent 2007), 

and from discussion of principle K’s plausibility for agency with Andrew Jones, Mark Brown, Risto Hilpinen, 
and Marek Sergot. I benefited from illuminating discussion of system EK with Guram Bezhanishvili. I am 

also indebted to three anonymous referees for DEON 18 for comments on an earlier version of this paper, 

each of whom provided helpful comments, and special thanks go to Mark Brown for extremely generously 
detailed comments on earlier drafts. Lastly, I am indebted to Sarah Blagdon and Hein Duijf for helpful 

suggestions. 
3 Kanger, Stig and Helle Kanger 1966/2001, Kanger, Stig 1972; Pörn, Ingmar 1970; Pörn, Ingmar 1977; Pörn, 
Ingmar 1989; Lindahl, Lars 1977; Elgesem, Dag 1993; Elgesem, Dag 1997; Jones, Andrew and Marek Sergot 

1993, Jones, Andrew and Marek Sergot 1996; Santos, Filipe and Jose Carmo 1996; Santos, Filipe, Andrew 

Jones et al. 1997; Jones, Andrew and Xavier Parent 2007; Sergot, Marek 1999; Sergot, Marek 2013. In 
Governatori, Guido and Antonino Rotolo 2005, it is shown that an oft-cited basic monadic system for agency 

and ability is incomplete on Elgesem’s semantics, and the authors then go on to prove completeness for that 

system extended with one axiom, both using Elgesem’s semantics and that of standard neighborhood 
semantics. The work here, as a consequence of the core theorems within, entails completeness for a large 

class of such monadic agency logics, and goes on to do the same for logics for dyadic agency and dyadic-

monadic agency, dyadic agency being a much-underexplored area generally in this tradition (and others 
employing agential operators). There has been no systematic metatheory for monadic much less dyadic 
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mixed forms (monadic agency logics, dyadic agency logics, and monadic-dyadic 

agency logics). Special interest is given to dyadic agency. Elgesem is the only author 

in this tradition who explored dyadic agency. In my judgment, this constitutes a gap in 

this tradition, especially in the area of systematic exploration of these logics. 

   In places where I list formulae that to my knowledge have not been considered 

in this tradition, or considered and rejected perhaps prematurely, I will remark on those 

in footnotes. Otherwise, the focus will be on proving a fundamental theorem and then 

proving a variety of correspondence theorems for formulae and frame constraints, 

which will entail a very large number of strong completeness results. I then prove basic 

theorems entailing soundness results for these logics (save any inconsistent ones), and 

so collectively, a very large number of determination theorems follow, thus providing 

the first systematic account of such agency logics. Because I will consider some 

formulae and systems that are not usually considered for agency or ability, or for modal 

logic completeness using neighborhood frames (e.g. K, and system EK respectively), 

and for which completeness proofs appear to stall unless facilitated by some technical 

ploy like that used herein (or by using secondary canonical models devised on the fly), 

the model structures employed here will be slightly non-standard neighborhood 

frames.4  There will be one extra parameter, P for propositions, and some of the frame 

constraints will then be relativized to that parameter in fairly innocuous ways to 

facilitate basic theorems entailing copious strong completeness proofs. I will explain 

the role of P as the issue comes up, and indicate where I believe it is manifested in the 

proofs below, since the frames are slightly unusual, as are a few of the constraints. 

Appendix 1 provides a quick preview. I also impose a modest algebraic structure on the 

                                                 
agency logics using neighborhood semantics or minor variants thereof. Here I approach the subject 
systematically, closing gaps in the monadic work, and dyadic work and I do this via a fundamental theorem 

for canonical models for a large class of such logics.  
4 Appendix 1 contains a short email with such a stalled proof and then a “fixed” proof. This email or a similar 

version of it was shared with a number of logicians, including Brian Chellas, Eric Pacuit, Steven Kuhn, Ed 

Mares, Lou Goble, Xavier Parent, and various logicians at Bayreuth and Ghent, and the basic problem was 
outlined at Trends in Logic (McNamara, Paul 2017). There was no indication that the stalling of the apparent 

straightforward attempt at a correspondence proof for K, nor a solution (that would yield full completeness 

for say EK with a standard semantic neighborhood clause for K), was known. Pacuit, Eric 2017 does not 
mention the problem with K nor attempt completeness for EK, nor is it discussed in Arlo-Costa, Horacio and 

Eric Pacuit 2007, although in both places completeness for the normal modal logic K (i.e. EMCN) is 

discussed. Chellas leaves a proof of EK’s completeness as an exercise (Chellas, Brian F. 1980), apparently 
easy and in need of no hints, but in correspondence he was not sure what the solution was offhand. Segerberg 

passes over K (named differently) in his classic text as uninteresting. There are various reasons why K does 

indeed have limited applications in non-normal modal logics, but the ones that have been offered against K 
for monadic agency are fallacious in my opinion, an opinion shared by at least three others who have worked 

in this area, Risto Hilpinen, Andrew Jones and Mark Brown (in correspondence). Furthermore, the sort of 

problem noted with EK completeness proofs using standard neighborhood models, though solvable, appears 
to reiterate for other formulae, presumably indefinitely. Appendix 1 illustrates the problem of stalled 

completeness for system EK using standard neighborhood models and a preview of the approach to mending 

things back together used here. The strategy here taken is to modify the frames slightly and some of the 
semantic clauses associated with some formulae, and then have a uniform approach in all cases. The 

alternative of using a series of specifically tailored canonical models (as is done using the supplementation 

of a minimal canonical model for EKM completeness) for each such case is left for some other occasion. 
Although there are costs going in either direction, the approach within requires no on-the-fly gerrymandering 

to get completeness results. For an indication of the extent of work that might be needed to get completeness 

using standard neighborhood models and standard semantic clauses for just the cases of EK and EKC, see 
Van de Putte, Frederik, Paul McNamara et al. 2019. 
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extra parameter, P, which aids in some basic theorems entailing soundness results for 

all the consistent logics whose strong completeness was assured, and thus 

determination results for all such systems. 

  I will cast things with an eye toward generalization to classical modal logics and 

especially to various conditional logics (broadly conceived) for the dyadic systems. For 

this reason, in Part I, the “Monadic and/or Dyadic Agency” logics (MDAs) are defined 

weakly, although the intended interpretation that is nonetheless primarily in focus is 

that of logics of monadic and dyadic agency operators. Also, there are three sub-types 

of MDA logics considered: (Pure) Monadic Agency logics (PMAs), (Pure) Dyadic 

Agency logics (PDAs), and Dyadic-Monadic Agency logics (DMAs) containing both 

a monadic operator and a dyadic one.  

  In a planned extension, I hope to adapt and expand the results here to include 

monadic and dyadic ability operators and then amalgamations with the agency logics 

herein, converging on monadic-dyadic logics of agency and ability.5  

  Let me simply mention some contexts (especially but not exclusively, normative 

ones) where I think the logics have application when the agency interpretation is in 

mind. 1) Obviously, obligations often are to do things or make things happen.6 So 

representing agential obligations calls for an agency operator. 2) The well-developed 

theory of Normative Positions utilizes a monadic agency operator.7 However, there is 

good reason to think this can be extended and generalized to include dyadic agency in 

characterizing more fully one’s agential normative position. For example, I may be 

obligated to bring about φ, but my normative position may be more fully characterized 

by considering further conditions I might meet (e.g. that I am permitted to bring about 

φ by bringing about ψ, forbidden to do so by bringing about ψ, obligated to do so 

thereby, etc. 3) Work on analysis of Hohfeldian legal notions: rights, privilege, powers 

… via (often directed) obligations might also be extended in analogous directions. For 

example, if I have a normative power over you to render you obligated to bring about 

φ, then that will be the sort of thing I can bring about only by bringing something else 

about, and often it will be of interest to know by what means I am able to do so or have 

done so. 4) Here are two special cases of the exercise of normative powers of interest 

in many normative systems. a) Commitment (in at least one sense) seems to involve 

dyadic agency (e.g. by promising to bring about φ, I render myself obligated to bring 

about φ); b) likewise for consent (e.g. by bringing it about that I agree to the surgery, I 

bring it about that it is permissible for the Doctor to perform it). 5) We must often 

reason about means to obligatory ends. If I’m obligated to bring about φ, then, unless 

bringing that about is a basic exercise of my agency, I will need to find some ψ such 

that I am able to bring about φ by bringing about ψ. 6) Dyadic agency seems crucial for 

understanding the important difference between basic and non-basic exercises of my 

agency. 7) More generally, for most any end that is not basic, we must reason about 

means to bringing about those ends, and so dyadic agency will be helpful here. 8) 

Obligation fulfillment is more fully specified if we specify how one fulfilled one’s 

obligation: Jane fulfills her obligation to bring about φ by (her) bringing about ψ; or 

                                                 
5 It appears that most of the ability additions can be generated by additions to the framework, and minor links 
to the agency operators (e.g. what Jane Doe brings about she is able to bring about), the importance of which 

is stressed rather persuasively in Governatori, Guido and Antonino Rotolo 2005.  
6 But not always—see McNamara, Paul 2004. 
7 See the references in footnote 3 and especially Sergot, Marek 2013.  
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Jane fulfills Jim’s obligation to be such that his bill is paid by (Jane) bringing it about 

that Jim’s bill is paid. 9) We are also interested in the normative status of fulfillments 

of obligations themselves, and special interest lies in permissible fulfillment (e.g. I’m 

obligated to bring it about that φ, I do so by bringing about ψ, and it is permissible to 

bring about φ by bringing about ψ). 10) We can also inquire into the status of an act of 

commitment itself: it may be beyond the call of duty for me to bring it about by 

volunteering to take on a dangerous mission that I thereby render myself obligated to 

do so.  

  In section 2, I specify three classes of logics, the pure monadic agency logics 

(PMAs), the pure dyadic agency logics (PDAs), and the Dyadic-Monadic Agency 

logics (DMAs), collectively the superclass of Monadic and Dyadic Agency logics 

(MDAs). (Appendix 2 briefly explores reductive schemes for the monadic and dyadic 

logics.)  In section 3, I specify the variant neighborhood semantics for the MDAs with 

the extra parameter P and its modest algebraic structure, and prove that for any MDA 

model and formula in its associated language, the truth set for the formula on the model 

is contained in P. In section 4, I define the notion of a canonical model for any of the 

MDAs, show any canonical model is an MDA model, and with the aid of two minor 

lemmas, prove a fundamental theorem for canonical models, and strong completeness 

with respect to the frames of such models. In section 5, I prove twenty-five 

correspondence theorems to the effect that any canonical model for an MDA logic 

containing a given formula specified in section 2, satisfies an associated constraint 

specified in section 3. Section 6 briefly summarizes the correspondence theorems, and 

notes the derivative completeness results. Section 7 provides the key theorems for 

generating soundness results for all consistent MDA logics, and notes the derivative 

determination theorems for all the consistent MDAs. Finally, section 8 contains some 

brief concluding remarks.8  

 

 

2   The PMA, PDA, DMA logics  

 

We will be concerned with logics for languages with a set PV = {p1, …, pn, …} of 

propositional variables and either or both of two agency operators: 

 

 BAφ: Jane Doe brings it about that φ 

 BAʹψφ: Jane Doe brings it about that φ by bringing it about that ψ.9 

 

2.1  Monadic Agency  
 

The monadic agency logic framework is as follows. 

 

                                                 
8 Although much of the work in McNamara, Paul 2018 carries over, changes were called for in the frames of 

that earlier version in order to extend completeness results to determination results, which turned out to be 

not possible in the frames as previously specified. This required changes first and foremost in sections 3 and 
4. Since I also consider more formulae (and so more logics) here, there are expansions in sections 2, 5, and 

6. Section 7 with soundness and determination results is new. Lastly, there is a new sketch on applications in 

the introduction, and a second appendix on reductive schemes.  
9 Or by bringing it about that ψ Jane Doe brings it about that φ. 
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 Formulae of Pure Monadic Agency (PMA) Logics:  

1)  All members of PV are PMA formulae. 

2) The Propositional Constants,  and , are PMA formulae.      

3)  If φ, ψ are PMA formulae, so are φ, (φ  ψ), (φ  ψ), (φ  ψ), (φ  ψ), and  

 BAφ. 

        

For generality, I define a weaker class of logics than those apt for agency alone: 

 

A PMA Logic, L: L is a set of PMA formulae such that  

1) All tautologous formulae are in L  

2)  L is closed under MP and closed under REBA, if  φ  ψ, then  BAφ  BAψ  

3)  L is non-trivial (does not contain all formulae). 

 

We will consider the following further candidate axiom schemata for PMA logics, the 

first two of which are standard in most presentations of agency operators: 

 

 TBA:  BAφ  φ                         [BA is an alethic operator] 

 NOBA: BA        [Nothing logically necessary is agential] 

 CBA:  (BAφ  BAψ)  BA(φ  ψ)   [(Agential) Composition/Conjunction]10 

 CSBA:  BA(φ  ψ)  (BAφ  BAψ) [Conjunctive Syllogism]11 

 KBA: BA(φ  ψ)  (BAφ  BAψ) [K principle]12 

                                                 
10 It is important to note that bringing about conjunctions in this tradition does not require bringing about 
both conjuncts, just making the conjunction true. For example, if φ is already settled true, then if one brings 

it about that ψ one thereby brings it about that the conjunction, φ  ψ, is true. This is important for 

understanding the significance of the next overlooked and unusual modal scheme. 
11 CSBA says that if I bring about the conjunction of two propositions, but not one of the conjuncts, then I 

bring about the other conjunct, or equivalently, if I bring about the conjunction, then I bring about at least 

one of the conjuncts (i.e. BA(φ  ψ)  (BAφ  BAψ)). It would seem that if I do bring about a conjunction, 

but not (say) its first conjunct, then that is because that conjunct is rendered true independently of my agency. 

But then the only way the truth of the conjunction could result from my agency is if the truth of the other 

conjunct results from it. Conversely, if I neither bring about p nor bring about q, then it would seem that I 
can’t bring about both p and q. At the least, this formula seems worth exploring. CS is not considered (or 

validated) in Jones and Sergot 1996, Santos, Filipe, Andrew Jones et al. 1997, Santos and Carmo 1996, 

Elgesem 1997 or Elgesem 1993. I endorsed this principle in McNamara, Paul 2004. Note: should it be 

objected that one brings about a conjunction only if one brings about both conjuncts, that is, BA(φ  ψ)  

(BAφ  BAψ), then CS is trivially true, but this is not the usual way of analyzing agential operators for 

conjunctions. Mark Brown reminded me of this possible objection in correspondence. 
12 KBA is rejected by Walton and Elgesem (and not included in later writers in this tradition) via the following 

purported counterexample: Green, by removing a platform, brings it about that if Brown falls from the roof 

of a certain building then Brown will die. Furthermore, Green brings it about that Brown falls from the roof 
of said building, say by pushing him off. Yet on the way down, Black shoots Brown dead. Thus Black, not 

Green, brings it about that Brown dies. Note the shift in tense. This is not a counterexample to K, for as soon 

as Green pushes Brown at t in the scenario described, Green does bring it about at t that Brown will die 
(momentarily), and Black’s shooting Brown on the way down does not change this prior fact. If we have 

Green push Brown at the exact moment that Black shoots Brown then it is plausible to say each brings it 

about that Brown will die (momentarily), in which case we have a classical instance of over-determination 
(cf. the killing of Caesar). So even if we adjust the times of acting to coincide, we should not then rule out 

by fiat over-determination of Brown’s inevitable death, nor K thereby derivatively. See Elgesem, Dag 1993, 

p.83 for the above recasting of Walton’s example, but see Walton, D 1975, pp. 105110 for a much more 
extensive and nuanced discussion of agential K). 
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 FSBA (φ  BAψ)  BA(φ  ψ)   [Factual Supplementation]13   

 MBA: BA(φ  ψ)  (BAφ  BAψ)  [Decomposition]14 

 RBA:   BA(φ  ψ)  (BAφ  BAψ) [Composition-Decomposition]. 

 

2.2  Dyadic agency 
 

 We now turn to the dyadic systems. We also characterize the normal Pure Dyadic 

Agency logics (PDAs) very leanly with an eye to alternative interpretations of agency (e.g. 

where there is a time lag between the “antecedent” (means) and “consequent” (end)), but 

also with an eye to non-agential interpretations of the operator (e.g. as conditionals or 

propositionally-relativized modal operators), which may not involve some of the theses 

that are quite plausible for the instantaneous agency interpretation typical of the Kanger, 

Pörn, Elgesem tradition we have primarily in mind.  

 

 Formulae of Pure Dyadic Agency (PDA) Logics: 

1) All members of PV are PMA formulae. 

2) The Propositional Constants,  and , are PMA formulae.     

3) If φ, ψ are PDA formulae, so are: φ, (φ  ψ), …, (φ  ψ) and BAʹφψ. 

        

A PDA Logic, L:  L is a set of PDA formulae such that:  

0)  L is non-trivial (does not contain all formulae) 

1) All tautologous PDA formulae are in L 

2) L is closed under MP  

3) L is closed under REr
BAʹ and REl

BAʹ: REr
BAʹ: If  φ  ψ then  BAʹχφ  BAʹχψ   

           REl
BAʹ: If   φ  ψ then  BAʹφχ  BAʹψχ. 

 

We will consider the following candidate additional axiom schemata for PDA logics: 

 

TBAʹ:     BAʹψφ  (φ  ψ)       [BAʹ is an alethic operator] 

NOBAʹ:     (BAʹφ  BAʹφ)       [No Agency for Logical Truths] 

ASBAʹ:     BAʹφψ   BAʹψφ       [Asymmetry]  

IRBAʹ:     BAʹφφ          [Irreflexivity] 

CCBAʹ:     (BAʹφψ  BAʹφχ)  BAʹφ(ψ  χ)   [Composition of  “Consequents”] 

                                                 
13 This is a controversial principle but a rationale might be offered to the effect that if φ is true by Jane’s 

agency, then there is no problem, and if φ is true but not by her agency, then her agency is still involved in 

making the conjunction true, and specifically, she makes the conjunction true by bringing about ψ. (Cf. 
Humberstone, I. L. 2016, chapter 6.) There are various weakenings that might be expressed in a richer 

language, and perhaps found more plausible. For example, with agents and quantifiers, we could restrict φ to 

things not brought about by any other agent; alternatively, one could introduce a necessity operator so that φ 
would be restricted to things that are determined or in some sense necessary. However, these would also rule 

out multi-agent over-determination, but surely we want a logical framework which at least allows for some 

logics both compatible with and incompatible with over-determination. 
14 We will say a bit more about this often-included modal schema since it helps to reveal things about the 

primary intended interpretation. Although, MBA might sound plausible at first blush, it is not in this agency 

tradition, and seeing why will reveal some nuances of this traditional approach to agency. Likewise for the 
next stronger schema. 
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DCBAʹ:     (BAʹφψ  BAʹφψ)  BAʹ(φ  φ)(ψ  ψ)  [Double Composition]15 

DCSBAʹ:  BAʹχ(φ  ψ)  (BAʹχφ  BAʹχψ)   [Dyadic Conjunctive Syllogism] 

CKBAʹ:     BAʹχ(φ  ψ)  (BAʹχφ  BAʹχψ)   [Conditional K principle]   

DABAʹ:     (BAʹψφ  BAʹχφ)  BAʹ(ψ  χ)φ    [Disjunction of “Antecedents”]16 

DDBAʹ:     (BAʹφψ  BAʹφψ)  BAʹ(φ  φ)(ψ  ψ)  [Double Disjunction]17 

TRBAʹ:     (BAʹφψ  BAʹψχ)  BAʹφχ     [Transitivity] 

CTBAʹ:      (BAʹφψ  BAʹ(φψ)χ)  BAʹφχ    [Cumulative Transitivity] 

SSBAʹ:      BAʹχBAʹφψ  BAʹ(χ  φ)ψ       [Stage-Setting Principle]18 

DFSBAʹ: (φ  BAχψ)  BAχ(φ  ψ)     [Dyadic Factual Supplement- 

               ation.] 

CMBAʹ:  BAχ(φ  ψ)  (BAχφ  BAχψ)   [Conditional Decomposition]19 

CRBAʹ:   BAχ(φ  ψ)  (BAχφ  BAχψ)   [Conditional Composition- 

                Decomposition] 

 

2.3   Dyadic and monadic agency 
 

The mixed dyadic and monadic agency logic framework is as follows. 

 

Formulae of Dyadic-Monadic Agency (DMA) Logics: 

1) All members of PV are PMA formulae. 

2) The Propositional Constants,  and  are PMA formulae.      

3) If φ, ψ are DMA formulae, so are: φ, (φ  ψ), …, (φ  ψ) and BAφ, BAʹφψ. 

 

For the logics with both monadic and dyadic agency operators, one new schema will 

                                                 
15 CCBAʹ is a special case of this more general principle. Just let φ = φʹ and then apply REl

BAʹ to get CCBAʹ. 
16 This principle is unusual, but I think over-determination by the same agent is possible (e.g. I vote by raising 

each hand, ψ, χ); then the antecedent can be true where ψ and χ in the antecedent are not identical (not 

logically equivalent), and then the consequent plausibly holds—either of ψ and χ is sufficient; on the other 
hand, if such over-determination is not possible, then the principle is true because the only case where the 

antecedent can be true is where ψ and χ are identical (up to logical equivalence), and so the consequent would 

then hold trivially by REl
BAʹ. In either event, it serves to introduce the analogs, for single agents, of the often 

discussed issue about multi-agent over-determination (e.g. the killing of Caesar). 
17 DABAʹ is a special case of this more general principle. Just let ψ = ψʹ and then apply REr

BAʹ to get DABAʹ. 
18 This principle is unusual, but suppose as a chair of my department, following much discussion that appears 
to have ended, I request a show of hands by saying “All those in favor of the proposal—raise your hand?” 

(χ), and I do this while raising my own hand (φ). Then, by requesting this vote, I bring it about that by raising 

my hand, I bring it about that (ψ) I vote. This in turn implies that I bring it about that I vote by both saying 
what I said (χ) and raising my hand (φ). Neither of these acts alone would suffice for my voting: calling for 

a show of hands is what sets the stage for the possibility that raising my hand can constitute voting in favor. 

As with DA, perhaps the important thing is to raise the issue, in this case, of stage-setting agency. With an 
ability operator, and two agents, we can express my bringing it about by calling for a show of hands that you 

are able to vote by raising your hand. These sorts of agency cases are particularly important for changing 

normative positions by our actions in moral and institutional settings. Commitment for example can be 
analyzed along these lines with the addition of a personal (but not agential), obligation operator, OB (see 

McNamara, Paul 2004 on such an operator): for Jane Doe is obligated to be such that φ commits Jane Doe 

to ψ might be rendered as BAʹφOBψ, so that for example, Jane’s bringing it about that she promises to meet 
you would ordinarily bring it about that she is obligated to bring it about that she does meet you. We can of 

course inquire into the status of this commitment itself.  
19 As with monadic MBA, this dyadic schema does not fit the intended agency framework well, and so a fortiori 
for the next schema. More below on these. 
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be central, one that says that if I bring about φ by bringing about ψ, then I bring about 

each: 

 

 S:  BAʹφψ  (BAφ  BAψ) [Separation]. 

 

For the combined system, for generality, we define the normal DMA logics as:  

 

A DMA Logic, L: L is a set of DMA formulae such that:  

0) L is non-trivial (does not contain all DMA formulae) 

1) L contains all tautologous DMA formulae  

2) L is closed under MP and REBA (see normal PMA logic above)  

3) L is closed under REr
BAʹ and REl

BAʹ (see normal PDA logic above). 

 

The base logics for the three logic types are as follows. 

 

Base Pure Monadic Agency Logic (PMA):  

SL:  All Tautologies 

MP:   If  φ and  φ  ψ then  ψ 

REBA: If  φ  ψ then  BAφ  BAψ.  

 

Base Pure Dyadic Agency Logic (PDA): 

SL:  All Tautologies 

MP:   If  φ and  φ  ψ then  ψ 

REr
BAʹ: If   φ  ψ then  BAʹχφ  BAʹχψ  [Rule of Right Replacement for BAʹ] 

REl
BAʹ: If   φ  ψ then  BAʹφχ  BAʹψχ   [Rule of Left Replacement for BAʹ]. 

 

Base Dyadic-Monadic Agency System (DMA):  

SL:  All Tautologies 

MP:   If  φ and  φ  ψ then  ψ 

REBA: If  φ  ψ then  BAφ  BAψ    

REr
BAʹ: If   φ  ψ then  BAʹχφ  BAʹχψ    

REl
BAʹʹ: If   φ  ψ then  BAʹφχ  BAʹψχ. 

 

Let me note here that on the intended interpretation we might expect the following basic 

formulae to hold in all of what we might call the “Preferred DMA Logics”: 

 

TBA:    BAφ  φ                       

NOBA: BA 

ASBAʹ: BAʹψφ  BAʹφψ   [Asymmetry] 

S:   BAʹψφ  (BAφ  BAψ)  [Separation]. 

 

All instances of TBAʹ and NOBAʹ are theorems of all Preferred DMA logics:   

 

 TBAʹ: BAʹψφ  (φ  ψ) 
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 NOBAʹ: (BAʹφ  BAʹφ).20 

 

Note also that Asymmetry entails Irreflexivity:  

 

 IRBAʹ:  BAʹφφ [Irreflexivity].21 

 

Conversely, Irreflexivity combined with Transitivity entails Asymmetry.22  Also it is 

obvious that FSBA, (φ  BAψ)  BA(φ  ψ), coupled with the T axiom, entails CBA, 

(BAφ  BAψ)  BA(φ  ψ).23          

 Let me also note here that modal principle M (BA(φ  ψ)  (BAφ  BAψ)) is not 

plausible for agency in this framework, however attractive at first blush. For given 

REBA and NOBA, it rules out all agential productivity: 

 

 If  MBA and  NOBA, then  BAφ, for any φ. 

 Proof: Assume  BA(φ  ψ)  (BAφ  BAψ) and suppose BAφ, for arbitrary φ.  

 We have  φ  (φ  ), so  BAφ  BA (φ  ) by REBA, and then  BAφ   

 BA(φ  ), and so  BAφ  BA from MBA, and then finally,  BAφ by NOBA. 

 

As one might expect, the dyadic version of M has a similar problem.24  Of course, RBA 

and RBAʹ inherit these difficulties.25 

 

 

3  Semantics for PMA, PDA, DMA logics 
 

We first define the frames for the logics. 

 

                                                 
20 For the first, Assume BAʹψφ. By S, BAφ  BAψ. So by TBA, φ  ψ. For the second, assume BAʹφ  BAʹφ. 

So by S, BA, contrary to (monadic) NOBA. 
21 For assume  BAʹφψ   BAʹψφ. So, in particular,  BAʹφφ   BAʹφφ, and hence  BAʹφφ. I am well 

aware that certain efficiencies might be achieved by dropping irreflexivity (e.g. by then defining monadic 
agency via dyadic agency (BAφ as BAʹφφ)), and although this might be worth exploring technically (see 

Appendix 2 for more), I do not think irreflexivity (or asymmetry) can be denied given the intended notion of 

dyadic agency: that of bringing about φ by bringing about ψ. This notion, like that of “because”, “in virtue 
of the fact that” and others, is intrinsically irreflexive. Put another way, if we allow for reflexive cases, we 

then must read BAʹφψ along some such lines as Either Jane Doe brings it about that ψ by bringing it about 

that φ, or, Jane brings it about that ψ and Jane brings it about that φ, the latter now being equipped to 
plausibly handle BAʹφφ. 
22 For reductio, assume BAʹφψ  BAʹψφ. Then Transitivity gives us BAʹφφ, contrary to Irreflexivity. 
23 See Humberstone, I. L. 2016, p.451. 
24 We show that if  BAʹχ(φ  ψ)  (BAʹχφ  BAʹχψ) and  (BAʹχ  BAʹχ), then  BAʹχφ, for any φ. 

Proof: 

Assume  BAʹχ(φ  ψ)  (BAʹχφ  BAʹχψ) and suppose BAʹχφ, for arbitrary φ and χ. We have  φ  (φ  

), so  BAʹχφ  BAʹχ(φ  ) by REr
BAʹ, and then  BAʹχφ  BAʹχ(φ  ), and so  BAʹχφ  BAʹχ from 

MBAʹ, and then finally,  BAʹχφ by NOBAʹ.  
25 I regret that I have not been able to explore interactions between some of these schemata much here. For 
example, one anonymous reviewer pointed out a more subtle entailment: irreflexivity coupled with double 

composition (of consequents) entails asymmetry. Suppose for reductio that BAʹφψ  BAʹψφ for some φ and 

ψ. Then composition of consequents yields BAʹ(φ  ψ)(ψ  φ), and by one application of RE (right or left) we 
have a violation of irreflexivity, and so asymmetry follows.  
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A preliminary definition will be convenient, then the frame definitions: 

 

 A set P of subsets of W is proper iff (if and only if) it meets these closure conditions:  

 (P1) P is closed under complementation regarding W: if X  P, then WX P;  

 (P2) P is closed under unions: if X, Y  P then X  Y  P.26 

 

A PMA Frame, F = <W, P, 1>: 

1) W is non-empty    [Worlds]  

2)  P  Pow(W)    [The Propositions]27 

3)  1: W  Pow(P)    [Maps worlds to sets of propositions] 

4) P is a proper set of subsets of W meeting this additional condition: 

 (P3) P is closed under b: if X  P, then b(X)  P, where b(X) = {w  W: X   

 f1(w)}.28 

 

A PDA Frame, F = <W, P, 2>: 

1)  W is non-empty    [Worlds]  

2) P  Pow(W)    [The Propositions] 

3) 2: W × P  Pow(P)  [Maps world-proposition pairs to sets of propositions]  

4) P is a proper set of subsets of W meeting this additional condition:  

  (P4) P is closed under bʹ: if X  P & Y  P, then bʹ(Y, X)  P, where bʹ(Y, X) =  

 {w  W: Y  f2(w, X)}.29 

 

A DMA Frame, F = <W, P, 1, 2>:  

1)  W is non-empty     

2) P  Pow(W)     

3) 1:W  Pow(P)    

4) 2: W  P  Pow(P)   

5)  P is a proper set of subsets of W meeting these additional conditions:  

 (P3): P is closed under b 

  (P4): P is closed under bʹ. 

 

Additional normal PMA and DMA frames will be considered with one or more of these 

clauses for the monadic operator: 

 

 t)  If X  1(w), then w  X   

 no)  W  1(w)        

 c)  If X  1(w) & Y  1(w), then X  Y  1(w)  

                                                 
26 If P is a non-empty proper set of subsets of W, it follows immediately that  and W are elements of P. It 

will turn out that in any DMA frame, P ≠ . Closure under intersection follows for X  Y = (Xʹ  Yʹ)ʹ. 
27 Or the admissible/expressible propositions: P can be any subset of Pow(W), consistent with constraints to 

be placed on P resulting in its being the case that the truth sets of all formulae in all models are in P. P will 

be used to facilitate correspondence proofs for completeness that otherwise stall as illustrated in Appendix 1; 
and imposing modest structure on P will facilitate validity proofs for soundness that would otherwise fail. 
28 Intuitively, b(X) is the set (perhaps empty) of worlds where the proposition X is brought about. 
29 Intuitively, bʹ(X, Y) is the set of worlds (perhaps empty) where the proposition Y is brought about by 
bringing about X. 
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 cs)  If X  P, Y  P, then if X  Y  1(w) then X  1(w) or Y  1(w)30 

 kʹ)  If Y  P, X  Y  1(w) and X  1(w), then Y  1(w) 

 s)  If X  P & w  X & Y  1(w), then X  Y  1(w) 

 mʹ)  If X, Y  P & X  Y  1(w), then X  1(w) 31 

 r)  If X, Y  P, then X  Y  1(w) iff X  1(w) & Y  1(w). 

 

Additional normal PDA and DMA frames will be considered with one or more of these 

clauses for the dyadic operator: 

 

 t)  If Y  2(w, X), then w  Y  X 

 no) X(W  2(w, X)) and 2(w, W) =   

 as)  If Y  2(w, X), then X  2(w, Y) 

 ir)   X  2(w, X) 

 cc)  If Y  2(w, X) and Z  2(w, X), then Y  Z  2(w, X)  

 dc)  If Y  2(w, X) and Yʹ  2(w, Xʹ), then Y  Yʹ  2(w, X  Xʹ) 

 dcs) If X  P, Y  P and X  Y  2(w, Z) then X  2(w, Z) or Y  1(w, Z) 

 ck) If Y  P, X  Y  2(w, Z), and X  2(w, Z), then Y  2(w, Z) 

 da)  If X  2(w, Y) and X  2(w, Z), then X  2(w, Y  Z) 

 dd)  If Y  2(w, X) and Yʹ  2(w, Xʹ), then Y  Yʹ  2(w, X  Xʹ)  

 tr)   If Y  2(w, X) and Z  2(w, Y), then Z  2(w, X)  

 ct)  If Y  2(w, X) and Z  2(w, X  Y), then Z  2(w, X)   

 ss)  If X P, Y  P, Z  2(w, U) and Z = {w: Y  2(w, X)}, then  

   Y  2(w, U  X) 

  dfs) If X  P & w  X & Y  2(w, Z), then X  Y  2(w, Z) 

 cmʹ)  If X, Y  P & X  Y  2(w, Z), then X  2(w, Z) 

 cr)  If X, Y  P, then X  Y  2(w, Z) iff X  2(w, Z) & Y  2(w, Z). 

 

We will also consider this key clause linking 1 and 2, 

 

  s)  If Y  2(w, X), then X  1(w) & Y  1(w). [Dyadic-Monadic Bridge]. 

 

However, for DMA frames with clauses t, no, ir, and s, clauses t and no are derivable, 

just as their sentential analogs, TBAʹ and NOBAʹ, are derivable in the DMA logics 

containing TBA, NOBA, IRBAʹ, and S.  

 

                                                 
30 Note the relativization to P in the antecedent for this constraint, and others below. I will use such 
underlining to remind the reader of those places where it appears that a straightforward correspondence proof 

would stall (as illustrated in Appendix 1) and so where such relativization to P is invoked and facilitates 

proving the correspondence theorems for the associated formulae in the canonical models as defined (without 
tinkering), and thus to getting completeness. In all other cases, no relativization to P is invoked or useful. 

More on this below. 
31 The Constraint mʹ is equivalent to if X, Y  P & X  Y and X  1(w), then Y  1(w), as well as the more 

explicit form, if X, Y  P & X  Y  1(w), then X  1(w) and Y  1(w). If we drop the relativization to P 

we appear to run into the same problem as indicated in Appendix 1. We use parameter P to resolve this, 

whereas others use supplementation of the models. P relativization appears to provide one systematic way to 
prove that any canonical model for an MDA logic meets the associated P-relativized constraint.  
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A PMA Model, M = <F, V>, where F is an PMA frame, <W, P, 1> such that  

V: PV  P¸ where V maps the propositional variables to elements of P, the 

expressible propositions. 

 

Similarly, for a PDA Model and for a DMA Model. 

 

Truth on a PMA Model, M = <<W, P, 1>, V>: 

[PV]  If φ  PV, M, w  φ iff w  V(φ)  

[]  M, w  , for each w  W 

[]  M, w  , for each w  W 

[] M, w  φ iff M, w  φ 

[]  M, w  (ψ  χ) iff M, w  ψ and M, w  χ 

. . . 

[]  M, w  (ψ  χ) iff M, w  ψ or M, w  χ 

[BA] M, w  BAψ iff ψM 1(w), where ψM is {w: M, w  ψ}, “the truth set  

  of φ for M”.  

 

 Truth on an PDA Model, M: As above, but replace f1 with f2 and [BA] with:  

 [BAʹ] M, w  BAʹφψ iff ψM 2(w,φM). 

 

 Truth on an DMA Model, M = <<W, P, 1
, 2>, V>: Same clauses as with PMA, but  

 add clause [BAʹ] to the truth conditions. 

 

 We now show that the truth sets for all formulae are in P for any of the MDA logics 

and associated models. This will facilitate soundness proofs, and thus be of aid in 

determination proofs. 

 

Lemma 1: 

For any MDA model M, and formula φ in the associated language, φM  P. 

Proof: Induction is on the complexity of the formulae.32   

Recall that by definition φM = {w: M, w  φ}. 

Base Case: φ is a member of PV. By definition of V in M, V(φ)  P, and by [PV] in the 

truth clauses, it follows that V(φ) = φM.  

Inductive Case:  

a)  Suppose φ = ψ, for some ψ. By inductive hypothesis (IH), ψM  P. So by P1,  

 WψM  P, that is, ψM   P. 

b)  Suppose φ = (ψ  χ), for some ψ and χ. By IH, ψM  P and χM  P. So by P2,  

 ψM  χM  P, and so ψ  χM  P. 

c)  Suppose φ = BAψ, for some ψ. By IH, ψM  P. By clause P3, bψM  P, so by  

 definition of b, {w  W: ψM  f1(w)}  P. But then by [BA], it follows that  

 {w  W: M, w  BAψ}  P, that is, BAψM  P. 

d) Suppose φ = BAʹχψ, for some ψ and χ. By IH, ψM  P and χM  P. By clause  

 P4, bʹ(ψM, χM)  P, so by definition of bʹ, {w  W: ψM  f2(χM, w)}  P.  

                                                 
32 Given standard truth functional equivalences, it suffices to cover atomics, negation, disjunction (and then 
the modal operators). 

Paul McNamara

168



 But then by [BAʹ], it follows that {w  W: M, w  BAʹχψ}  P, that is, BAʹχψM  

  P. 

 

 

4   The Fundamental Theorem for Canonical Models  
 

We now define the canonical models for the MDA logics (i.e. the PMA, PDA, and 

DMA logics), and prove a fundamental theorem for such models, and then proceed to 

prove various theorems linking logics containing all instances of the preceding 

formulae schemata we listed as theorems and their canonical models.33 In a familiar 

way, these will entail a large array of completeness results. 

 

Let ΣL be the set of maximal consistent sets (MCSs) of formulae for MDA logic, L. 

Then let |φ|L be the set of MCSs that contain φ: {δ ∈ ΣL: φ ∈ δ}.34  

 

For any given MDA logic, L, from here on, the superscript “L” will be left as understood 

for a canonical model of L and its components (unless invoked for emphasis/clarity).  

 

A Canonical Model, M = <W, P, 1, 2, V> for any DMA logic, L, is defined as follows: 

a) W = Σ 

b) P = {X: φ(|φ| = X)} 

c) 1(w) = {X: φ(|φ| = X & BAφ  w)} 

 (So X  1(w) iff there is a formula, BAφ, in w such that X is the set of the MCSs 

 containing φ.)35 

d) 2(w, X) = {Y: ψ(|ψ| = Y & φ(|φ| = X & BAʹφψ  w))} 

 (So Y  2(w, X) iff there is a formula BAʹφψ in w such that Y is the set of MCSs  

 containing ψ and X is the set of MCSs containing φ.)36 

e)  V(Pn) = |Pn|. 

   

Canonical Models for PMA logics: drop 2 and d.  

Canonical Models for PDA logics: drop 1 and c.  

 

We note these Basic Properties (BP) of MCSs apply to W in our canonical model:  

 

 φ iff w  W: φ  w;  

|¬φ| = Σ − |φ|;  

|φ ∧ ψ| = |φ|  |ψ|;  

|φ ∨ ψ| = |φ|  |ψ|;  

  φ ↔ ψ iff |φ| = |ψ|. 

 

The following two-part lemma will come in handy. 

                                                 
33 We will often talk of a logic as containing a theorem (e.g. “containing theorem TBA”) where this will be 
understood as shorthand for a logic containing all instances of the schemata in question. 
34 See for example Chapter 2.6 of Chellas, Brian F. 1980. 
35 Given REBA, it will turn out that |φ|  1(w) iff BAφ  w. See Lemma 2a. 
36 Given REr

BAʹ and REl
BAʹ, it will turn out that |ψ|  2(w, |φ|) iff BAφψ  w. See Lemma 2b. 
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Lemma 2:  

a) For any φ and w: BAφ  w iff |φ|  1(w).  

Proof:   

: Suppose BAφ  w. Then since |φ| = |φ|, we have φ(|φ| = |φ| & BAφ  w), which 

suffices by clause c for |φ|  1(w).  

: Assume |φ|  1(w). So by clause c, φ(|φ| = |φ| & BAφ  w). So fixing φ, we 

have |φ| = |φ| & BAφ  w. So by BP,  φ  φ, and then by REBA, (BAφ  BAφ)  

w, and so BAφ  w. 

b) For any φ, ψ, and w: BAʹφψ  w iff |ψ|  2(w, |φ|).  

Proof:   

: Suppose BAʹφψ  w. Then since |ψ| = |ψ| and |φ| = |φ|, we have ψ(|ψ| = |ψ| &  

φ(|φ| = |φ| & BAʹφψ  w)), which suffices by clause d for |ψ|  2(w, |φ|).  

: Assume |ψ|  2(w, |φ|). So by clause d, ψ(|ψ| = |ψ| & φ(|φ| = |φ| & BAʹφψ  

w)). So fixing ψ and φ, we have |ψ| = |ψ| & |φ| = |φ| & BAʹφψ  w. So by BP,  φ  

φ and  ψ  ψ, and hence by REr
BAʹ and REl

BAʹ, we get (BAʹφψ  BAʹφψ)  w, and 

so BAʹφψ  w. 

 

 We now show that the canonical model of any MDA logic as defined above is really 

an MDA model. This will be needed in using our correspondence theorems in section 

5. In the proof below, it is straightforward to separate the components for the three 

types of logics. For PMA logics, only clauses 13 and 5 sub-clauses P1 through P3 

below are relevant; for PDA logics only clauses 1, 2, 4 and 5 sub-clauses P1, P2, and 

P4 below are relevant, and for DMA logics, all clauses below are relevant.  

 

Lemma 3: 

For any canonical model, ML, for an MDA logic, L, ML is an MDA model. 

Proof:  

1) W ≠ . Since by definition, no MDA logic contains all MDA formulae, some 

 formula φ will be a non-theorem, so there will be a maximal consistent extension  

 of φ, contained in W.  

2) P  Pow(W), for by definition, for each X  P, there is a formula φ such that |φ| =  

 X, and by design of W, |φ|  W.  

3) 1: W  Pow(P), for by definition of 1, its domain is W, and for any such w, 1(w)  

 is {X: φ(|φ| = X & BAφ  w}, but by definition of P,  it must contain all such Xs. 

4) 2: W  P  Pow(P), for by definition of 2, its domain must be W  P, for its 

 Image for any pair (w, X) in its domain is {Y: ψ(|ψ| = Y & φ(|φ| = X & BAʹφψ   

 w))}, and by definition of P, it must contain all such values of X and Y. 

5)  Recall that by definition of the canonical model, P = {|φ|: φ is a formulae of  

 the logic, L}. P is clearly a proper subset of W and we show it meets conditions  

 P1   P4 as well:  

 (P1) P is closed under complementation regarding W: If |φ|  P, for some φ, then  

 by definition of P (in ML),  |φ|  P. But by BP, |φ| = Σ|φ|. So W|φ|  P. 

 (P2) P is closed under unions: Suppose for some φ and ψ, |φ|  P and |ψ|  P. 

 Then by definition of P, |φ  ψ|  P; but by BP, |φ  ψ| = |φ|  |ψ|, so |φ|  |ψ|  

  P. 
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 (P3) P is closed under b: if |φ|  P, then |BAφ|  P, that is {w  W: BAφ  w}   

 P. By Lemma 2a, {w  W: BAφ  w} = {w  W: |φ|  1(w)}. So {w  W: |φ|   

 1(w)}  P, that is, b(|φ|)  P.  

 (P4) P is closed under bʹ: if |φ|  P & |ψ|  P, then |BAʹφψ|  P, that is, {w  W:  

 BAʹφψ  w}  P. By Lemma 2b, {w  W: BAʹφψ  w} = {w  W: |ψ|  2(w, |φ|)}.  

 So {w  W: |ψ|  2(w, |φ|)}  P, that is, bʹ(|ψ|, |φ|)  P.  

 

 We can now easily prove the fundamental theorem: 

 

(FT) Fundamental Theorem for the Canonical Models for MDA Logics:  

 

M, w  φ iff φ  w, that is, φM = |φ|. 

 

Proof: Assume the theorem is to be proved in the usual way by induction on the 

complexity of the formulae, and that it is already proved for formulae whose main 

connective is one of our truth-functional operators. (The base case holds by stipulation 

of clause e of the definition of a canonical model for any MDA logic.) We show that it 

holds for the remaining possible formula types, BAψ, and BAʹχψ.  

A) Suppose φ = BAψ, for some ψ. So by IH, for every w, M, w  ψ iff ψ  w, thus ψM 

= |ψ|. By the semantic clause for BAψ, M, w  BAψ iff ψM  1(w). So M, w  BAψ 

iff |ψ|  1(w). But by lemma 2a, |ψ|  1(w) iff BAψ  w. Thus M, w  BAψ iff BAψ 

 w.  

B) Suppose φ = BAʹχψ, for some χ, ψ. So by IH, χM =  |χ| and ψM =  |ψ|. By the 

semantics clause for BAʹχψ, M, w  BAʹχψ iff ψM  2(w, χM). So M, w  BAʹχψ iff 

|ψ|  2(w, |χ|). But by lemma 2b, BAʹχψ  w iff |ψ|  2(w, |χ|). So M, w  BAʹχψ iff 

BAʹχψ  w. 

 

Thus the theorem holds generally, and so the theorems of any MDA logic, L, are exactly 

those valid in any canonical model, ML, with case A pertaining to the PMA logics, and 

case B pertaining to the PDA logics and both pertaining to the DMA logics. 

 

Strong Completeness Corollary of FT: For any canonical model M = <W, P, 1, 2, 

V> for an MDA logic L, where F is the frame <W, P, 1, 2> of that model: if Γ F φ, 

then Γ L φ (where Γ is any set of formula for the language of L).  

Proof: Suppose Γ L φ. Then Γ  φ is an L-consistent set. L contains classical 

propositional logic, so by Lindenbaum’s Lemma, for some maximal L-consistent set, 

w, Γ  φ  w. So by the Fundamental Theorem, there is a canonical model M with 

frame F such that ψ  Γ, M, w  ψ, and M, w  φ, so Γ F φ. 

 

 With these proofs in place, we focus on correspondences between the key formulae 

we have listed above and the frame constraints we have informally associated with 

them, also listed above (e.g. TBA with t). For each such association, we will show in the 

next section that if any MDA logic contains one of these formulae, then any canonical 

model for that logic must satisfy the associated constraint. Given our fundamental 

theorem, these correspondence proofs will imply that for any (consistent) MDA logic, 

L, specified by any (consistent) combination of the formulae below, any of its canonical 
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models will satisfy the combination of associated constraints. This in turn will entail a 

strong completeness theorem for any such L with respect to any class of models that 

contains a canonical model for L, and given the Corollary of FT just above, it will 

follow that the logic is strongly complete for the intended class of frames. 

 

 

5  Correspondence results for completeness 
 

For theorems where the proof depends on the propositions involved being relativized 

to para-meter P in the structures, we will label the theorem number with a superscript 

“p” (e.g. see T4p).37  

 

T1. Any canonical model for an MDA logic with TBA satisfies the constraint t: If X  

1(w), then w  X. Suppose X  1(w). So φ(|φ| = X & BAφ  w). Fixing φ, it follows 

that |φ| = X and BAφ  w. But since  BAφ  φ, BAφ  φ  w, and thus φ  w. Thus, 

w  |φ|, that is w  X. 

 

T2. Any canonical model for an MDA logic with NOBA satisfies the constraint no: W 

1(w). Assume that W  1(w). So φ(|φ| = W and BAφ  w). Fixing φ, we have |φ| = 

W and BAφ  w. But |φ| = W iff  φ  , so by REBA,  BAφ  BA, and so BA 

 w. Yet  BA, so BA  w, contrary to assumption that w is consistent. 

 

T3. Any canonical model for an MDA logic with CBA satisfies the constraint c: If X  

1(w) and Y  1(w), then X  Y  1(w). Suppose X  1(w) and Y  1(w). So by the 

reasoning above in T1, we have that there exists a φ and a ψ such that: |φ| = X and |ψ| = 

Y and BAφ  w and BAψ  w. But  (BAφ  BA ψ)  BA(φ  ψ), so BA(φ  ψ)  

w. But |φ  ψ|= |φ  ψ|, so Z(Z = |φ  ψ| & BA(φ  ψ)  w), and so |φ  ψ| 

1(w). But |φ  ψ| = |φ|  | ψ| = X  Y, so X  Y  1(w).  
 

 The next five correspondence proofs utilize the parameter, P, and the next two 

footnotes explain P’s utility.  

 

T4P. Any canonical model for an MDA logic with CSBA satisfies the constraint cs: If X, 

Y  P and X  Y  1(w), then X  1(w) or Y  1(w). Suppose for reductio that (1) 

X, Y  P, (2) X  Y  1(w), and (3) X  1(w) and (4) Y  1(w). So from 2 we have 

φ(|φ| = X  Y & BAφ  w), and then fixing φ, we get (2) |φ| = X  Y & BAφ  w. 

Given 3 and 4 it follows that ψ(|ψ| = X & BAψ  w) and χ(|χ| = Y & BAχ  w), 

that is (3) ψ(if |ψ| = X, then BAψ  w) and (4) χ(if |χ| = Y then BAχ  w). But 

given 1, it follows from clause b of M that ψ(|ψ| = X) and χ(|χ| = Y), and then 

instantiating, we get |ψ| = X and |χ| = Y. 38 Then from 3 and 4, we get BAψ  w and 

BAχ  w. Given 2 and the identifications above for X, Y, we have |ψ|  |χ|  1(w), and 

by BP, we get |ψ  χ|  1(w). Then from lemma 2a, it follows that BA(ψ  χ)  w. So 

                                                 
37 As well as continuing to use underlining as explained in note 31. 
38 Here is our first case other than K where we encounter the same sort of problem illustrated in Appendix 1 
for K: How do we know that Y is expressible? (See T5P and the next note on the case of K itself.) 
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we have BA(ψ  χ)  w, BAψ  w, and BAχ  w, but CSBA is also in w, so w turns out 

to be not an MCS.  

 

T5P. Any canonical model for an MDA logic with KBA satisfies constraint kʹ, that if Y 

 P, X  Y  1(w), and X  1(w), then Y  1(w). Assume (1) Y  P, and (2) X  

Y  1(w) and X  1(w). From 2 by clause c of M, φ(|φ| = X  Y & BAφ  w) and 

ψ(|ψ| = X & BAψ  w). Fixing φ and ψ, we get (2ʹ) |φ| = X  Y & BAφ  w and |ψ| 

= X & BAψ  w. Since |ψ| = X, |ψ| = X, and so by BP, |ψ| = X. From assumption 

1, by clause b of M, we get χ(|χ| = Y).39 Fixing χ, we have |χ| = Y. Substituting for X 

and Y in the first conjunct of 2ʹ, we get |φ| = |ψ|  |χ|. By BP again, |ψ|  |χ| = |ψ 

 χ|. Substituting again, we get |φ| = |ψ  χ|. By BP, we then get  φ  (ψ  χ). So 

by REBAʹ, we have  BAφ   BA(ψ  χ). Then by BP again and 2ʹ, we get BA(ψ 

 χ)  w and BAψ  w. From the former, BA(ψ  χ)  w follows by REBA and BP. 

But since we are assuming a logic with KBA, by BP, BA(ψ  χ)  (BAψ  BAχ)  

w. And we have BA(ψ  χ)  w, and BAψ  w, so by BP, BAχ  w. Finally, by lemma 

2a, it follows that |χ|  1(w), that is Y  1(w). 

 

T6P. Any canonical model for an MDA logic with FSBA satisfies constraint fs: If X  P 

& w  X & Y  1(w), then X  Y  1(w). Suppose (1) X  P & (2) w  X & (3) Y  

1(w). From 1, for some φ, X = |φ|, and fixing φ, we get from 2, w  |φ|, and φ  w, by 

definition of |φ| for a canonical model. Given 3, for some ψ, |ψ| = Y & BAψ  w. So we 

have φ  w & BAψ  w, and hence by BP, φ  BAψ  w. But then since FSBA  w & 

w is an MCS, we have BA(φ  ψ)  w. Then by lemma 2a, it follows that | φ  ψ|  

1(w), that is |φ|  |ψ|  1(w), that is, X  Y  1(w). 

 

T7P. Any canonical model for an MDA logic with MBA satisfies constraint mʹ: If X, Y 

 P & X  Y  1(w), then X  1(w). Suppose first that X  Y  1(w). So there exists 

a χ such that |χ| = X  Y and BAχ  w. Fix χ. By assumption, X, Y  P, and so there is 

a φ and a ψ such that |φ| = X and |ψ| = Y. So fixing φ and ψ, |φ|  |ψ| = |χ| = X  Y; but 

by BP, |φ|  |ψ| = |φ  ψ|, so we have |φ  ψ| = |χ|, and then by BP again, we have  φ 

 ψ  χ. Given REBA, it follows that  BA(φ  ψ)  BAχ, and hence BA(φ  ψ)  w. 

But given MBA, by BP, BA(φ  ψ)  (BAφ  BAψ)  w, but w is an MCS, so (BAφ  

BAψ)  w. By BP again, BAφ  w. Then by Lemma 2a), we have |φ|  1(w), that is, 

X  1(w). 

 

T8P. Any canonical model for an MDA logic with RBA satisfies constraint r: If X, Y  

P, X  Y  1(w) iff X  1(w) & Y  1(w). This is a corollary of T3 and T7. 

 

 

                                                 
39 Without the relativization to P in the frames, although we have |φ| = X  Y and ψ = X, we have no 

guarantee there is any formula, ψʹ such that |ψʹ| = Y, so that in turn we can get |φ| = X  Y = |ψ|  |ψʹ| = |ψ 

 ψʹ|. With X, Y  P, this is assured and so strong completeness results. See the Appendix of Goble, Lou 

2004 for an encounter with a similar problem, and an alternative strategy that generates weak completeness 

using the standard semantic constraint for K. The use of P here allows for strong completeness proofs, but 
only with the constraint involving the relativization to P. 
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 We next turn to correspondences involving candidate axioms for pure dyadic 

systems. 

 

T9. Any canonical model for any MDA logic with TBAʹ satisfies constraint tʹ: If Y  

2(w, X), then w  Y  X. Suppose Y  2(w, X). Then ψ(Y = |ψ| & φ(|φ| = X & 

BAʹφψ  w)). Fixing ψ, φ, we have: Y = |ψ| & |φ| = X & BAʹφψ  w. But TBAʹ is a thesis, 

so BAʹφψ  (φ  ψ)  w, and so (φ  ψ)  w. So w  |φ  ψ|, that is, w  |φ|  |ψ|, and 

then the consequent of t follows: w  Y  X. 

 

T10. Any canonical model for any MDA logic with NOBAʹ satisfies the constraint noʹ: 

X such that W  2(w, X) and 2(w, W) = . For suppose instead that (1) X[W  

2(w, X)] or (2) 2(w, W) ≠ . Fixing X in case 1, we have W = 2(w, X). But since || 

= W, we have ||  2(w, X). So by definition of the canonical models (and since || = 

||), we have φ(|φ| = X & BAʹφ  w). Fixing φ, we have |φ| = X & BAʹφ  w. But 

by schema NOBAʹ, we have (BAʹφ  BAʹφ)  w, and thus BAʹφ  w, so w is not 

consistent. In case 2, X  2(w, W), for some X. But since || = W, X  2(w, ||). So by 

definition of the canonical models, φ(|φ| = X & BAʹφ  w). Fixing φ, we have |φ| = 

X & BAʹφ  w. But given NOBAʹ, (BAʹφ  BAʹφ)  w, and thus BAʹφ  w, so w 

is not consistent. 

 

T11. Any canonical model for an MDA logic with ASBAʹ satisfies constraint as: If Y  

2(w, X), then X  2(w, Y). Suppose Y  2(w, X). So there exists a ψ and φ such that: 

|ψ| = Y, |φ| = X and BAʹφψ  w. But given ASBAʹ and BP, (BAʹφψ   BAʹψφ)  w, and 

since w is an MCS, BAʹψφ  w, and so BAʹψφ  w. Hence by lemma 2b, |φ|  2(w, |ψ|), 

that is, X  2(w, Y). 

 

T12. Any canonical model for any MDA logic with IRBAʹ satisfies the constraint ir: X 

 2(w, X). Suppose X  2(w, X), for some X. Then ψ(|ψ| = X & φ(|φ| = X & BAʹφψ 

 w)). Fix ψ and φ. So |ψ| = X = |φ| & BAʹφψ  w. But since |ψ| = |φ|,  ψ  φ, and so 

by REr
BAʹ, we have BAʹφφ  w. But given IRBAʹ, BAʹφφ  w too, so w is not consistent. 

 

T13. Any canonical model for any MDA logic with CCBAʹ satisfies constraint cc: If Y 

 2(w, X)  and Z  2(w, X), then Y  Z  2(w, X). Suppose Y  2(w, X) and Z  

2(w, X). Then ψ(Y = |ψ| & φ(|φ| = X & BAʹφψ  w)) and ψ(Z = |ψ| & φ(|φ| = X 

& BAʹφψ  w)). Fixing ψ, φ, ψ, and φ, we have: Y = |ψ| & |φ| = X & BAʹφψ  w and 

Z = |ψ| & |φ| = X & BAʹφψ  w. Since |φ| = X & |φ| = X, |φ| = |φ|, and thus  φ  φ. 

Then given REl
BAʹ,  BAʹφψ  BAʹφψ and thus BAʹφψ  BAʹφψ w. So we have X 

= |φ| & Y = |ψ| & Z = |ψ| & BAʹφψ  w & BAʹφψ  w. But given CCBAʹ, (BAʹφψ  

BAʹφψ)  BAʹφ(ψ  ψ)  w, so BAʹφ(ψ  ψ)  w. By lemma 2b, BAʹφ(ψ  ψ)  w iff 

|ψ  ψ|  2(w, |φ|). But |ψ  ψ| = |ψ|  |ψ|, that is, |ψ  ψ| = Y  Z, and we already 

have |φ| = X. So the consequent of cc follows: Y  Z  2(w, X).  

 

 The following theorem generalizes the preceding one. 

 

T14. Any canonical model for any MDA logic with DCBAʹ satisfies constraint dc: If Y 
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 2(w, X) and Yʹ  2(w, Xʹ), then Y  Yʹ  2(w, X  Xʹ). Assume Y  2(w, X) and 

Yʹ  2(w, Xʹ). Then ψ(Y = |ψ| & φ(|φ| = X & BAʹφψ  w)) and ψ(Yʹ = |ψ| & φ(|φ| 

= Xʹ & BAʹφψ  w)). Fixing ψ, φ, ψ, and φ, we have: Y = |ψ| & |φ| = X & BAʹφψ  w 

and Yʹ = |ψ| & |φ| = Xʹ & BAʹφψ  w. So Y  Yʹ = |ψ|  |ψʹ|, and so by BP, Y  Yʹ = 

|ψ  ψʹ|. Similarly, X  Xʹ = |φ|  |φʹ| = |φ  φʹ|. But since BAʹφψ  w and BAʹφψ  w 

and all instances of DCBAʹ are in w, it follows that BAʹ(φ  φ)(ψ  ψ)  w. So by lemma 

2b, |ψ  ψ|  2(w, |φ  φ|), and then from the identities above, Y  Yʹ  2(w, X  

Xʹ) follows. 

 

T15P. Any canonical model for an MDA logic with DCSBAʹ satisfies constraint dcs: If 

X, Y  P and X  Y  2(w, Z) then X  2(w, Z) or Y  2(w, Z). Suppose for reductio 

that (1) X, Y  P, (2) X  Y  2(w, Z), and (3) X  2(w, Z) and (4) Y  2(w, Z). From 

2 we have ψ(|ψ| = X  Y & φ(|φ| = Z & BAʹφψ  w)), and then fixing ψ, φ, we get 

(2) |ψ| = X  Y & |φ| = Z & BAʹφψ  w. From 3 and 4 it follows that ψ(|ψ| = X & 

φ(|φ| = Z & BAʹφψ  w)) and ψ(|ψ| = Y & φ(|φ| = Z & BAʹφψ  w)), that is, (3) 

ψ(if |ψ| = X then φ(|φ| = Z only if BAʹφψ  w)) and (4) ψ(if |ψ| = Y then φ(|φ| 

= Z only if BAʹφψ  w)). From assumption 1 we have ψ(|ψ| = X) and ψ(|ψ| = Y); 

instantiating, we have |ψ| = X and |ψ| = Y. Then applying these to 3 and 4, we get 

(3)φ(if |φ| = Z  then BAʹφψ  w) and (4) φ(if |φ| = Z then BAʹφψ  w). So from 

|φ| = Z in 2, we have BAʹφψ  w & BAʹφψ  w. Given 2 and the identifications above 

for X, Y, Z, we have |ψ|  |ψ|  2(w, |φ|), and by BP, it then follows that |ψ  ψ|  

2(w, |φ|). Invoking lemma 2b, it follows that BAʹφ(ψ  ψ)  w. But since |ψ| = X and 

|ψ| = Y, and |ψ| = X  Y, it follows that |ψ| = |ψ|  |ψ|, and then from BP, we get |ψ| 

= |ψ  ψ|. By BP again,  ψ  (ψ  ψ) follows, and then by REr
BAʹ,  BAʹφψ  

BAʹφ(ψ  ψ) follows, and then from 2 and BP, we get BAʹφ(ψ  ψ)  w. So now we 

have BAʹφ(ψ  ψ) & BAʹφψ  w & BAʹφψ  w, but by DCSBAʹ, w is rendered 

inconsistent. 

 

T16P. Any canonical model for an MDA logic with CKBAʹ satisfies constraint ckʹ:  if Y 

 P, X  Y  2(w, Z), and X  2(w, Z), then Y  2(w, Z). Assume (1) Y  P and 

(2) X  Y  2(w, Z) & X  2(w, Z). So from 2 by clause d of M, ψ(|ψ| = X  Y & 

φ(|φ| = Z & BAʹφψ  w)) and ψ(|ψ| = X & φ(|φ| = Z & BAʹφψ  w)). Fixing φ, 

ψ, φ, and ψ, we get (3) |ψ| = X  Y & |φ| = Z & BAʹφψ  w and (4) |ψ| = X & |φ| = 

Z & BAʹφψ  w. From 1 by definition of P, χ(|χ| = Y). Fixing χ, we have |χ| = Y, and 

from 4 by BP, |ψʹ| = X. Substituting in 3 we get (3) |ψ| = |ψʹ|  |χ| & |φ| = Z & 

BAʹφψ  w. By BP again, |ψʹ|  |χ| = |ψʹ  χ|. Substituting again in 3, we get (3) 

|ψ| = |ψʹ  χ| & |φ| = Z & BAʹφψ  w. By BP from 3ʺ, we get  ψ  (ψʹ  χ). So by 

REr
BAʹ, we have  BAʹφψ   BAʹφ(ψʹ  χ). Then from BP and BAʹφψ  w in 3, we 

get BAʹφ(ψʹ  χ)  w. But from (3) and (4) we also have |φ| = Z and |φʹ| = Z. So by 

BP,  φ  φʹ, and hence by REl
BAʹ, we have  BAʹφψ  BAʹφψ. And then from BP 

and BAʹφʹψʹ  w in 4, we get BAʹφψ.  w. So we have both BAʹφ(ψʹ  χ)  w and 

BAʹφψʹ  w. Given  CKBAʹ, CKBAʹ  w, so from BP, it follows that BAʹφχ  w. Then 

from lemma 2b, it follows that |χ|  2(w, |φ|), that is, Y  2(w, Z). 

 

T17. Any canonical model for any MDA logic with DABAʹ satisfies constraint da:  If X 
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 2(w, Y) and X  2(w, Z), then X  2(w, Y  Z). Suppose X  2(w, Y) and X  

2(w, Z). Then ψ(X = |ψ| & φ(|φ| = Y & BAʹφψ  w)) and ψ(X = |ψ| & φ(|φ| = Z 

& BAʹφψ  w)). Fixing ψ, φ, ψ, and φ, we have: X = |ψ| & |φ| = Y & BAʹφψ  w and 

X = |ψ| & |φ| = Z & BAʹφψ  w. Since |ψ| = X & |ψ| = X, |ψ| = |ψ|, and thus  ψ  

ψ. Then given REr
BAʹ,  BAʹφψ  BAʹφψ and thus BAʹφψ  BAʹφψ w. So we have 

X = |ψ| & Y = |φ| & Z = |φ| & BAʹφψ  w & BAʹφψ  w. But given DABAʹ, (BAʹφψ  

BAʹφψ)  BAʹ(φ  φ)ψ  w, so BAʹ(φ  φ)ψ  w. By lemma 2b, BAʹ(φ  φ)ψ  w iff |ψ|  

2(w, |φ  φ|). But |φ  φ| = |φ|  |φ|, that is, |φ  φ| = Y  Z, and we already have |ψ| 

= X. So the consequent of da follows: X  2(w, Y  Z).  

 

 The following theorem also generalizes its preceding one. 

 

T18. Any canonical model for any MDA logic with schema DDBAʹ satisfies constraint 

dd: If Y  2(w, X) and Yʹ  2(w, Xʹ), then Y  Yʹ  2(w, X  Xʹ). Assume Y  2(w, 

X) and  

Yʹ  2(w, Xʹ). Then ψ(Y = |ψ| & φ(|φ| = X & BAʹφψ  w)) and ψ(Yʹ = |ψ| & φ(|φ| 

= Xʹ & BAʹφψ  w)). Fixing ψ, φ, ψ, and φ, we have: Y = |ψ| & |φ| = X & BAʹφψ  w 

and Yʹ = |ψ| & |φ| = Xʹ & BAʹφψ  w. So Y  Yʹ = |ψ|  |ψʹ|, and so by BP, Y  Yʹ = 

|ψ  ψʹ|. Similarly, X  Xʹ = |φ|  |φʹ| = |φ  φʹ|. But since BAʹφψ  w and BAʹφψ  w 

and using DDBAʹ, it follows that BAʹ(φ  φ)(ψ  ψ)  w. So by lemma 2b, |ψ  ψ|  

2(w, |φ  φ|), and then from the identities above, Y  Yʹ  2(w, X  Xʹ) follows. 

 

T19. Any canonical model for any MDA logic with TRBAʹ satisfies constraint tr: If Y  

2(w, X)  and Z  2(w, Y), then Z  2(w, X). Suppose Y  2(w, X) and Z  2(w, Y). 

Then ψ(Y = |ψ| & φ(|φ| = X & BAʹφψ  w)) and ψ(Z = |ψ| & φ(|φ| = Y & BAʹφψ 

 w)). Fixing ψ, φ, ψ, and φ, we have: Y = |ψ| & |φ| = X & BAʹφψ  w and Z = |ψ| & 

|φ| = Y & BAʹφψ  w. Since Y = |ψ| & |φ| = Y, |ψ| = |φ|, and thus  ψ  φ. Then 

given REl
BAʹ,  BAʹφψ  BAʹψψ and thus BAʹψψ w. So we have X = |φ| & Y = |φ| 

& Z = |ψ| & BAʹφψ  w & BAʹψψ  w. But given TRBAʹ, (BAʹφψ  BAʹψψ)  BAʹφψ 

 w, so BAʹφψ  w. By lemma 2b BAʹφψ  w iff |ψ|  2(w, |φ|). But |ψ| = Z and X = 

|φ|, so the consequent of constraint tr follows: Z  2(w, X).  

 

T20. Any canonical model for any MDA logic with CTBAʹ satisfies constraint ct: If Y  

2(w, X) and Z  2(w, X  Y), then Z  2(w, X). Suppose Y  2(w, X)  and Z  2(w, 

X  Y). Then ψ(Y = |ψ| & φ(|φ| = X & BAʹφψ  w)) and ψ(Z = |ψ| & φ(|φ| = X 

 Y & BAʹφψ  w)). Fixing ψ, φ, ψ, and φ, we have: Y = |ψ| & |φ| = X & BAʹφψ  w 

and Z = |ψ| & |φ| = X  Y & BAʹφψ  w. Since Y = |ψ| & |φ| = X & |φ| = X  Y, we 

have |φ| = |φ|  |ψ|, and thus |φ| = |φ  ψ|. So  φ  (φ  ψ), and then by REl
BAʹ, 

BAʹφψ  BAʹ(φψ)ψ  w. Hence we have X = |φ| & Y = |ψ| & Z = |φ  ψ| & BAʹφψ  

w & BAʹ(φ ψ)ψ  w. But given CTBAʹ, (BAʹφψ  BAʹ(φ ψ)ψ)  BAʹφψ  w, so BAʹφψ 

 w. By lemma 2b, BAʹφψ  w iff |ψ|  2(w, |φ|). But |ψ| = Z and |φ| = X, so the 

consequent of constraint ct follows: Z  2(w, X).  

 

 The following candidate dyadic formula involves embedding of a dyadic operator 

within the scope of a dyadic operator. I call this formula dyadic “stage setting.” 
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T21P. 40  Any canonical model for an MDA logic with SSBAʹ satisfies the constraint ss: 

if X P, Y  P, then if Z  2(w, U) and Z = {w: Y  2(w, X)}, then Y  2(w, U  

X). Assume (1) X  P and Y  P, (2) Z  2(w, U), and (3) Z = {wʹ: Y  2(wʹ, X)}. 

Given 2 by clause d of M, ψ(|ψ| = Z & φ(|φ| = U & BAʹφψ  w)). Fixing φ and ψ, we 

get |ψ| = Z & |φ| = U & BAʹφψ  w. From 1, there must be an χ and χʹ with |χ| = X and 

|χ| = Y. Then given |ψ| = Z, |φ| = U, |χ| = X and |χ| = Y, from 2 and 3, we get: (2) |ψ|  

2(w, |φ|) and (3) |ψ| = {wʹ: |χ|  2(wʹ, |χ|)}. But then applying lemma 2b, we get these 

equivalents: (2) BAʹφψ  w and (3) |ψ| = {wʹ: BAʹχχ  wʹ}. Then since by definition, 

|BAʹχχ| = {wʹ: BAʹχχ  wʹ}, |ψ| = |BAʹχχ|. Hence by BP,  ψ  BAʹχχ, and then by 

REr
BAʹ,  BAʹφψ  BAʹφBAʹχχ, and so BAʹφψ  w iff BAʹφBAʹχχ  w. But since SSBAʹ 

is a thesis, we then get BAʹ(φ  χ)χ  w. So by lemma 2b, |χ|  2(w, |φ  χ|). But by BP, 

|φ  χ| = |φ|  |χ|, and since |φ| = U, |χ| = X and |χ| = Y, we have Y  2(w, U  X).  

 

T22P. Any canonical model for an MDA logic with DFSBAʹ satisfies constraint fs: if X 

 P & w  X & Y  2(w, Z), then X  Y  2(w, Z). Suppose (1) X  P & (2) w  X 

& (3) Y  2(w, Z). From 1, for some φ, X = |φ|, and then fixing φ, from 2, w  |φ|, and 

so φ  w, by definition of |φ| for a canonical model. From 3, we get for some ψ and 

some χ, |ψ| = Y & |χ| = Z and BAʹχψ  w. Fixing ψ and χ, we have φ  w & BAʹχψ  w 

and so by BP, (φ  BAʹχψ)  w. But then since DFSBAʹ  w & w is an MCS, by BP we 

have BAʹχ(φ  ψ)  w. Then by lemma 2a, it follows that |φ  ψ|  2(w, |χ|), that is, |φ| 

 |ψ|  2(w, |χ|), that is, X  Y  2(w, Z). 

 

T23P. Any canonical model for an MDA logic with CMBAʹ satisfies constraint cmʹ: If 

X, Y  P and X  Y  2(w, Z), then X  2(w, Z). Suppose first that X  Y  2(w, Z). 

So there exists a χʹ and χ such that: |χʹ| = X  Y, |χ| = Z and BAʹχχʹ  w. By assumption, 

X and Y  P, and so there is a φ and a ψ such that |φ| = X & |ψ| = Y. So |φ|  |ψ| = |χʹ| = 

X  Y; but by BP, |φ|  |ψ| = |φ  ψ|, so we have |φ  ψ| = |χʹ|, and then by BP again, 

we have  (φ  ψ)  χʹ. Given REr
BAʹ, it follows that  BAʹχ(φ  ψ)  BAʹχχʹ, and so 

BAʹχ(φ  ψ)  w, since w is a MCS. Given CMBAʹ, by BP, BAʹχ(φ  ψ)  (BAʹχφ  

BAʹχψ)  w, and hence by BP, BAʹχφ  w. Then by Lemma 2a, we have |φ|  2(w, 

|χ|), that is, X  2(w, Z).  

 

T24P. Any canonical model for an MDA logic with CRBAʹ satisfies constraint cr: If X, 

Y  P, X  Y  2(w, Z) iff X  2(w, Z) & Y  2(w, Z). This is a corollary of T13 and 

T23P. 

 

 The following is the key thesis for combined monadic-dyadic agency logics: 

 

T25. Any canonical model for any DMA logic with S satisfies constraint s: If Y  2(w, 

X), then X  1(w) and Y  1(w). Suppose Y  2(w, X), then ψ(Y = |ψ| & φ(|φ| = X 

                                                 
40 Lou Goble notes in correspondence that T21P can be straightforwardly demonstrated without invoking the 
relativization to P, provided that we are looking at a system that also includes TBAʹ. Given supposition (2), 

you get Z = |ψ| and U = |φ| and BAʹφψ  w. Given TBAʹ, you get ψ  w, hence w  |ψ|. By 3, since Z = |ψ| = 

{w: Y  2(w, X)}, you get w  {w: Y  2(w, X)}. So Y  2(w, X). That provides the χ such that X = |χ| and 
the χʹ such that Y = |χʹ| and the rest continues as before, without invoking assumption 1. 
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& BAʹφψ  w)). Fixing ψ and φ, we have: Y = |ψ| & |φ| = X & BAʹφψ  w. But given S, 

(BAʹφψ  (BAφ  BAψ))  w, so (BAφ  BAψ)  w, and thus BAφ  w & BAψ  w. 

By lemma 2a, BAφ  w iff |φ|  1(w) and BAψ  w iff |ψ|  1(w). So we have the 

consequent of s: X  1(w) and Y  1(w). 

 

 

6  Correspondences and completeness for systems   

  summarized 
 

Below is a table summarizing the 25 correspondence theorems: 

 

Formula Schema (and label):      Constraint on Frames                                                                             

TBA:    BAφ  φ                            t)   If X  1(w), then w  X  

NOBA:   BA          no)  W  1(w) 

CBA:    (BAφ  BAψ)  BA(φ  ψ)    c)   If X  1(w)  and Y  1(w),  

                 X  Y  1(w) 

CSBA:    BA(φ  ψ)  (BAφ  BAψ)   cs)    If X  P, Y  P, if X  Y   

                 1(w) then X  1(w) or Y   

                 1(w) 

KBA:     BA(φ  ψ)  (BAφ  BAψ)    kʹ)   If Y  P, X  Y  1(w) & 

                X  1(w), then Y  1(w) 

FSBA:    (φ  BAψ)  (BA(φ  ψ)     fs)   If X  P & w  X & Y  1(w),  

                 X  Y  1(w) 

MBA:   BA(φ  ψ)  (BAφ  BAψ)    mʹ)  If X, Y  P & X  Y  1(w),  

                 X  1(w) 

RBA:   BA(φ  ψ)  (BAφ  BAψ)    r)   If X, Y  P, then X  Y  1(w) 

                 iff X  1(w) & Y  1(w) 

TBAʹ:   BAʹψφ  (φ  ψ)       t)   If Y  2(w, X), w  Y  X  

NOBAʹ:  (BAʹφ  BAʹφ)       no) X(W  2(w, X)) &  

                 2(w, W) =   

ASBAʹ:   BAʹφψ   BAʹψφ        as)   If Y  2(w, X), X  2(w, Y) 

IRBAʹ:   BAʹφφ          ir)    X  2(w, X) 

CCBAʹ:   (BAʹφψ  BAʹφχ)  BAʹφ(ψ  χ)   cc)   If Y  2(w, X) and Z   

                 2(w, X), Y  Z  2(w, X) 

DCBAʹ:   (BAʹφψ  BAʹφψ)  BAʹ(φ  φ)(ψ  ψ)   dc)   If Y  2(w, X) & Yʹ  2(w, Xʹ), 

                 Y  Yʹ  2(w, X  Xʹ) 

DCSBAʹ: BAʹχ(φ  ψ)  (BAʹχφ  BAʹχψ)  dcs) If X  P, Y  P & X  Y   

                 2(w, Z), X  2(w, Z) or  

                 Y  1(w, Z) 

CKBAʹ:   BAʹχ(φ  ψ)  (BAʹχφ  BAʹχψ)   ck)  If Y  P, X  Y  2(w, Z), & 

                 X  2(w, Z), then Y  2(w, Z) 

DABAʹ:   (BAʹψφ  BAʹχφ)  BAʹ(ψ  χ)φ    da)   If X  2(w, Y) and X  2(w,  

                 Z), X  2(w, Y  Z) 
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DDBAʹ:  (BAʹφψ  BAʹφψ)  BAʹ(φ  φ)(ψ  ψ) dd)   If Y  2(w, X) and Yʹ  2(w,  

                 Xʹ), then Y  Yʹ  2(w, X  Xʹ)  

TRBAʹ:   (BAʹφψ  BAʹψχ)  BAʹφχ     tr)    If Y  2(w, X) and Z  2(w,  

                 Y), then Z  2(w, X)  

CTBAʹ:    (BAʹφψ  BAʹ(φ  ψ)χ)  BAʹφχ    ct)   If Y  2(w, X) & Z  2(w, X  

                  Y), then Z  2(w, X)   

SSBAʹ:   BAʹχBAʹφψ  BAʹ(χ  φ)ψ        ss)   If X  P, Y  P, Z  2(w, U)  

                 & Z = {w: Y  2(w, X)}, then  

                 Y  2(w, U  X) 

DFSBAʹ: (φ  BAʹχψ)  BAʹχ(φ  ψ)    dfs)  If X  P & w  X & Y   

                 2(w, Z), then X  Y  2(w, Z) 

CMBAʹ:  BAʹχ(φ  ψ)  (BAʹχφ  BAʹχψ)   cmʹ) If X, Y  P & X  Y   

                 2(w, Z), then X  2(w, Z) 

CRBAʹ:   BAʹχ(φ  ψ)  (BAʹχφ  BAʹχψ)   cr):  If X, Y  P, X  Y  2(w, Z)  

                 iff X  2(w, Z) & Y  2(w, Z) 

S:     BAʹφψ  (BAφ  BAψ)       s)   If Y  2(w, X), X  1(w) & 

                 Y  1(w). 

 

Corollary of FT, Lemma 3, and T1-T25: All of the MDA logics are strongly complete 

with respect to their intended frames.  

Proof: In section 5, for each of the 25 formulae, we have shown that the characteristic 

semantical constraint associated with that formula must be met by the frame on the 

canonical model of any logic that contains that formula (independently of what other 

formulae of the language it contains). Also, in Lemma 3, we showed that any canonical 

model for an MDA logic is indeed an MDA model. So given the earlier Corollary of 

FT in section 4 about strong completeness, for any of the MDA logics, strong frame 

completeness follows for the frames defined by the intended constraints associated with 

the characteristic schemata for that logic.  

 

 Considering only logic specifications by combining schemas (some will be for the 

same logic, as we’ve seen)41, and some combos will be inconsistent, there are 27 (128) 

PMA logic specifications, 215 (32,768) PDA logic specifications, and 223 (8,388,608) 

DMA logic specifications. Given the fundamental theorem and twenty-five relevant 

correspondence theorems, strong completeness results follow for all of these that are 

consistent (do not contain all formulae). We turn these into determination theorems 

next. 

 

 

7  Soundness and determination theorems 
 

We now provide the ingredients needed for soundness theorems for any of the specified 

logics that are consistent; then combining these with the preceding completeness 

results, we can transform the correspondences to determination theorems for all the 

                                                 
41 But we ignore RBA and RBAʹ since equivalent to MBA combined with CBA, and to MBAʹ combined with CBAʹ, 
respectively. 
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logics specified that are consistent.42 In each case where reference to P and Lemma 1 

is made, we tag the validity proof with a preceding “P”. 

 

We first note that the base PMA logic is just the classical system E. The proofs that 

modus ponens is validity preserving is familiar and unaffected by the novelty of 

parameter P in the frames. Similarly for the PDA logics and the DMA (mixed) logics. 

So we show just that the two replacement rules are validity preserving.  

 

Validity of REBA: Suppose M  φ  ψ for every model M = W, P, 1,V on a PMA 

frame, W, P, 1. Then φM = ψM for every such model and so for any model M and 

world, w, φM 1(w) iff ψM 1(w) and then by [BA], M, w  BAφ  BAψ, for 

every such M. 

 

Validity of REr
BAʹ: Suppose M  φ  ψ for every model M = W, P, 2,V on a PDA 

frame, W, P, 2. Then φM = ψM for every such model and so by [BAʹ], φM 2(w, 

χM) iff ψM  2(w, χM) 1(w), for every w  W of M, and hence M  BAʹχφ  

BAʹχψ, for every such M. 

 

Validity of REr
BAʹ: (Similarly) 

 

Corollary: All the rules of any of the MDA logics are validity preserving. 

 

We now prove that the constraints that we associated with the 25 schemata in our 

correspondence theorems validate those schemata. 

 

Constraint t validates TBA: Assume M, w  BAφ, for any M, w in any PMA model. So 

by [BA], φM 1(w). But then from t, we get w  φM, and so M, w  φ. Hence M, 

w  BAφ  φ. 

 

Constraint no validates NOBA: Suppose W  1(w) in every world in every PMA model. 

Then likewise for []  W. So by [BA], M, w  BA, and hence M, w  BA in 

every world in every PMA model. 

 

Constraint c validates CBA: Assume M, w  BAφ  BAψ, so that φM  1(w) and 

ψM  1(w) by [BA] and []. Then by constraint c, φM  ψM  1(w), that is, φ 

 ψM  1(w), and hence by [BA], M, w  BA(φ  ψ). 

 
PConstraint cs validates CSBA: Suppose M, w  BA(φ  ψ). By [BA], φ  ψM  1(w). 

So φM  ψM  1(w). By Lemma 1, we also get φM  P and ψM  P. Hence 

from cs, we get φM  1(w) or ψM  1(w). So by [BA], we get M, w  BAφ  

BAψ.43 

                                                 
42 This was what turned out to not be possible without modifying the framework in McNamara, Paul 2018. 
See the next note (on CSBA validity) for more specifics. 
43 Here is where the original sort of problem with the stalled completeness proofs reappeared. Without 

assuring that each formula expresses a proposition in P (see Lemma 1), we would have no assurance that just 

because φM  ψM  1(w), that φM and ψM were in P, and without that we could not apply cs to get  
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PConstraint kʹ validates KBA: Assume M, w  BA(φ  ψ) and M, w  BAφ. By [BA],  

(a) φ  ψM  1(w), and (b) φM  1(w). From a, we get φ  ψM  1(w), and 

so φM  ψM  1(w). By Lemma 1, we also have (c) ψM  P. So we have ψM 

 P, φM  ψM  1(w) and φM  1(w). Hence from kʹ, we get ψM  1(w), 

and so by [BA], M, w  BAψ. 

 
PConstraint fs validates FSBA: Suppose M, w  φ  BAψ. So M, w  φ and M, w  

BAψ From the former, we get (a) w  φM and from the latter by [BA], we get (b) 

ψM  1(w). By Lemma 1, φM  P. Hence from fs, we get φM  ψM  1(w), 

and so φ  ψM  1(w). Then by [BA], w  BA(φ  ψ). 

 
PConstraint mʹ validates MBA: Assume M, w  BA(φ  ψ). So by [BA], we get φ  

ψM  1(w), and so φM  ψM  1(w). By Lemma 1, φM  P and ψM  P. 

Hence from mʹ, we get φM  1(w). So by [BA], we get M, w  BAφ. Likewise, by 

commutation of intersection, we get M, w  BAψ, and so. M, w  BAφ  BAψ. 

 
PConstraint rʹ validates RBA: This follows from the preceding proof coupled with the 

one that c validates CBA. 

 

Constraint tʹ validates TBAʹ: Suppose M, w  BAʹψψ, for any M, w in any PMA model. 

So by [BAʹ], φM 2(ψM, w). Then by tʹ, w  φM  ψM and so w  φM and w 

 ψM. Hence M, w  φ  ψ. 

 

Constraint noʹ validates NOBAʹ: Given no, for every w and M, and φM, W  2(w, 

φM) & φM  2(w, W), that is M  2(w, φM) & φM  2(w, M). So by 

[BAʹ], M, w  BAʹφ & M, w  BAʹφ. Hence M, w  (BAʹφ  BAʹφ). 

 

Constraint as validates ASBAʹ: Suppose M, w  BAʹφψ. By [BAʹ], we have ψM  2(w, 

φM). From as, we get φM  2(w, ψM), and then from [BAʹ], we easily get M, w  

BAʹψφ. 

 

Constraint ir validates IRBAʹ: Take any w in any model, M. By ir, for every X, X  2(w, 

X); in particular, φM  2(w, φM), for any φ. Hence by [BAʹ], M, w,  BAʹφφ, so M, 

w,  BAʹφφ. 

 

Constraint cc validates CCBAʹ: Assume M, w  BAʹφψ  BAʹφχ. By [BAʹ], ψM  2(w, 

φM) & χM  2(w, φM). Then by constraint cc, ψM  χM  2(w, φM), that is, 

ψ  χM  2(w, φM), and hence by [BAʹ], M, w  BAʹφ(ψ  χ). 

 

Constraint dc validates DCBAʹ: Suppose w  BAʹφψ  BAʹφψ. By [BAʹ], ψM  2(w, 

φM) and  ψʹM  2(w, φʹM). By constraint dc, it follows that ψM  ψʹM  2(w, 

φM  φʹM), and so ψ  ψʹM  2(w, φ  φʹM). Hence by [BAʹ], M, w  BAʹφ  φʹ 

(ψ  ψʹ). 

                                                 
M, w  BAφ  BAψ. Similarly for validating K (next), and the other validity proofs preceded with a “P”. 
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PConstraint dcs validates DCSBAʹ: Assume M, w  BAʹχ(φ  ψ). By [BAʹ], φ  ψM   

2(w, χM), and so it follows that φM  ψM  2(w, χM). Also, by Lemma 1, φM 

 P and ψM  P. Hence from dcs, φM  2(w, χM) or ψM  2(w, χM). So by 

[BAʹ], M, w  BAʹχφ or M, w  BAʹχψ), and so M, w  (BAʹχφ  BAʹχψ). 

 
PConstraint ckʹ validates CKBAʹ: Suppose M, w  BAʹχ(φ  ψ) & M, w  BAʹχφ. By 

[BAʹ], (a) φ  ψM  2(w, χM), and (b) φM  2(w, χM). From a, we get φ  

ψM  2(w, χM), and then φM  ψM  2(w, χM). Also, by Lemma 1, (c) ψM 

 P. Hence from ckʹ, we get ψM  2(w, χM), and hence by [BAʹ], M, w  BAʹχψ. 

 

Constraint da validates DABAʹ: Assume M, w  BAʹψφ  BAʹχφ. By [BAʹ], φM  2(w, 

ψM) and φM  2(w, χM). So by constraint da, φM  2(w, ψM  χM), and so 

φM  2(w, ψ  χM), and hence by [BAʹ], M, w  BAʹ(ψ  χ)φ. 

 

Constraint dd validates DDBAʹ: Suppose M, w  BAʹφψ  BAʹφʹψʹ. By [BAʹ], ψM  

2(w, φM) & ψʹM  2(w, φʹM). So by constraint dd, ψM  ψʹM  2(w, φM  

φʹM), and so ψ  ψʹM  2(w, φ  φʹM), and hence by [BAʹ], M, w  BAʹ(φ  φ)(ψ 

 ψ). 

 

Constraint tr validates TRBAʹ: Assume M, w  BAʹφψ  BAʹψχ. By [BAʹ], ψM  2(w, 

φM) and χM  2(w, ψM). So by constraint tr, χM  2(w, φM). Hence by [BAʹ], 

M, w  BAʹφχ. 

 

Constraint ct validates CTBAʹ: Suppose M, w  BAʹφψ  BAʹ(φ  ψ)χ. By [BAʹ], ψM  

2(w, φM) & χM  2(w, φ  ψM), and so by the latter, χM  2(w, φM  ψM). 

So by constraint ct, χM  2(w, φM). Hence by [BAʹ], M, w  BAʹφχ. 

 
PConstraint ss validates SSBAʹ: Assume M, w  BAʹχBAʹφψ. By [BAʹ], it follows that  

BAʹφψM  2(w, χM). By definition, BAʹφψM = {wʹ: M, wʹ  BAʹφψ}, and then by 

[BAʹ], it follows that BAʹφψM = {wʹ: ψM  2(wʹ, φM)}. Also, by Lemma 1, φM 

 P and ψM  P. So we have φM  P, ψM  P, BAʹφψM  2(w, χM), and 

BAʹφψM = {wʹ: ψM  2(wʹ, φM)}. Hence from ss, we get ψM  2(w, χM  

φM), and thus ψM  2(w, χ  φM). Finally, by [BAʹ], we have M, w  BAʹ(χ  φ)ψ. 

 
PConstraint dfs validates DFSBAʹ: Assume M, w  φ  BAʹχψ, that is, M, w  φ & M, 

w  BAʹχψ. From the former, we get w  φM, and from the latter by [BAʹ], we get 

ψM  2(w, χM). Also, from Lemma 1, φM  P. So from dfs, φM  ψM  2(w, 

χM), and so φ  ψM  2(w, χM). Then from [BAʹ], M, w  BAʹχ(φ  ψ). 

 
PConstraint cmʹ validates CMBAʹ: Assume M, w  BAʹχ(φ  ψ). So by [BAʹ], we get  

φ  ψM  2(w, χM), and so φM  ψM  2(w, χM). Also, by Lemma 1, φM  

P and ψM  P. Hence from cmʹ, φM  2(w, χM). So by [BAʹ], we get M, w  

BAʹχφ. Likewise, by commutation of intersection, we get M, w  BAʹχψ, and so M, w 

 (BAʹχφ  BAʹχψ). 
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PConstraint cr validates CRBAʹ: This follows from the preceding proof coupled with the 

one that cc validates CCBAʹ. 

 

Constraint s validates S: Suppose M, w  BAʹφψ. By [BAʹ], we have ψM  2(w, 

φM). From s, we get φM  1(w) & ψM  1(w), and then from [BA], M, w  (BAφ 

 BAψ). 

 

 These theorems demonstrate the validity of the formulae paired with their 

constraints in our correspondence chart in the prior section. We now remind the reader 

of the following fact about validity: 

 

Fact about Validity: If φ1, ..., φn are formulae respectively valid in any classes of 

models,  

C1, ..., Cn, then the φi are jointly valid in the class of models constituting the 

intersection of the Ci.44 

 

Given that we have shown that the rules of inference in an MDA logic preserve validity, 

we have the following result: 

 

Soundness Theorem: Each of the MDA logics specified by any consistent 

combination of the 25 formulae we’ve considered is sound with respect to the class 

of MDA models jointly meeting the constraints we’ve associated with those 

formulae. 

 

Coupled with our prior correspondence theorems, we get the following determination 

result: 

 

Determination Theorem: Each of the MDA logics specified by any consistent 

combination of the 25 formulae is determined with respect to its associated class of 

MDA models. 

 

 

8  Conclusion 
 

 With the fundamental theorem for canonical models and the twenty-five 

correspondence theorems provided above, we have established completeness for a large 

number of distinct monadic, dyadic, and mixed monadic-dyadic logics, using 

combinations of the schemata covered in the twenty-five theorems.45  This is a strength 

of the framework. The semantic framework is weak in allowing for a great deal of 

independence between formulae and thus serving well to provide a characterization of 

                                                 
44 For example, since CBA is valid in all PMA models satisfying constraint c and MBA is valid in all PMA 

models satisfying constraint m, then CBA and MBA are jointly (equivalently, RBA is) valid in all PMA models 

satisfying both constraints c and m (equivalently, satisfying constraint r). 
45 Although as noted at the end of subsection 2.3, not all combinations will involve non-redundant schemata 

(schemata not derivable from the remainder), and for all we have shown, some combinations may be 

inconsistent, in which case soundness and thus determination theorems will not follow, still, the number of 
consistent such logics is surely vast. 
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the domain of agency logics, at least to a first approximation. Other stronger and more 

robust semantic frameworks (e.g. like those in the STIT tradition) will in some ways be 

more philosophically attractive and informative because they provide a more specific 

and full-bodied model of agency, but at the same time, there is a cost too in greater 

specificity since it will rule out or interlink formulae in ways that are more substantive 

and contentious. It is thus useful to have a weaker more general framework as a 

backdrop or reference point for stronger frameworks, which are of course also worth 

exploring, but doing so is beyond the scope of the current paper. The result is also a 

great deal of modularity so that, as has often been done in this agency tradition, one can 

easily extract any of the agency logics out of the set contained within, as suits one’s 

purposes, and import it into another (e.g. normative) framework where a simple 

representation of monadic or dyadic agency suffices for the work at hand. As it is, the 

current framework obviously needs to be expanded to represent monadic and dyadic 

ability and its interactions with monadic and dyadic agency. Other natural additional 

directions would be to add multi-agents, temporal operators, deontic operators, systems 

with propositional quantifiers, reductive schemes (see Appendix 2 for some 

indications), as well as exploring other aspects of the metatheory for the framework 

(e.g. distinctness of logics, decidability), and the alternative strategy of dispensing with 

P and generating auxiliary canonical models on the fly each time a completeness 

theorem for the minimal canonical model seems to fail. What we have here is 

nonetheless a first step toward systematizing a modified neighborhood semantic 

framework for monadic as well as dyadic agency logics, and in a way that facilitates 

completeness (and determination) theorems unencumbered by the need to devise 

auxiliary canonical models, seemingly without end. 

 

 

Appendix 1 on stalled proof 
 

Natural but Failed Attempt at Showing Correspondence of K with Condition (k): We 

show that in the canonical model ML for EK, if WLX  Y  NL(w) and X NL(w), then 

Y  NL(w). For any w, suppose (a) X  NL(w) and (b) WLX  Y  NL(w). So by a, X 

 {|φ|: φ  w}, and so X = |φ|, for some φ such that φ  w. Fix φ. So WLX  Y = 

WL|φ|  Y = |φ|  Y; then by b, |φ|  Y  {|ψ|: ψ  w}, that is, |φ|  Y = |ψ|, 

for some ψ such that ψ  w. [Now what?] 

The rub: What can assure that if |φ|  Y = |ψ| then χ such that |φ  χ| = |φ|  Y 

= |ψ|? How do we know that Y is expressible by some χ? We need that to use K’s 

presence in L to complete the proof. 

 

A Fix: Suppose instead the frames have an additional parameter, P  Pow(W), and then 

in the canonical model we assure that P is the subset of maximal consistent sets of 

formulae meeting this condition: X  P iff φ(|φ| = X), where |φ| is the set of maximal 

consistent sets containing φ.46  

 

                                                 
46 As we will see, for soundness, we need to tweak the frames so that P has some modest algebraic structure. 

See the definitions of the frames for MDA logics in section 3. See Cresswell, 1984, 6264 and note 6 for 
analogs for Kripke frames. 
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ML = <WL, PL, NL, VL> is a canonical model for an E logic iff: 

a) WL = the set of MCSs for L 

b)  PL = {X: φ(|φ| = X)}, where X  WL 

c) NL(w) = {X: φ(|φ| = X & φ  w)}, where X  WL 

d) V(Pn) = |Pn|. 

           

The Fundamental Theorem for Canonical Models then goes through straight forwardly. 

If we then recast the frame condition for formulae K as follows, 

 

(kʹ)  If Y  P, then if WX  Y  N(w) and X  N(w), then Y  N(w), 

 

the correspondence proof for EK then goes through smoothly.47  

 

 

Appendix 2 on reductive schemes. 
 

RD: BAφ  BAʹφφ. 

 

Here is how the monadic formulae we consider above look when recast via RD: 

  

Monadic Formula:        Recast via RD: 

TBA:  BAφ  φ         BAʹφφ  φ 

NOBA: BA          BAʹ 

CBA:  (BAφ  BAψ)  BA(φ  ψ)     (BAʹφφ  BAʹψψ)  BAʹφ  ψ(φ  ψ)   

CSBA:  BA(φ  ψ)  (BAφ  BAψ)    BAʹ(φ  ψ)(φ  ψ)  (BAʹφφ  BAʹψψ) 

KBA: BA(φ  ψ)  (BAφ  BAψ)   BAʹ(φ  ψ)(φ  ψ)  (BAʹφφ  BAʹψψ) 

FSBA: (φ  BAψ)  (BA(φ  ψ)    (φ  BAʹψψ)  (BAʹ(φ  ψ)(φ  ψ) 

MBA: BA(φ  ψ)  (BAφ  BAψ)    BAʹ(φ  ψ)(φ  ψ)  (BAʹφφ  BAʹψψ) 

RBA: BA(φ  ψ)  (BAφ  BAψ)   BAʹ(φ  ψ)(φ  ψ)  (BAʹφφ  BAʹψψ). 

 

Of course, there is potential for deriving monadic formulae via RD and various dyadic 

formulae. I illustrate a few such derivations here:  

 

TBAʹ and RD  TBA 

Proof: Assume  BAʹψφ  (φ  ψ). So  BAʹφφ  (φ  φ), hence  BAʹφφ  φ, and 

then by RD,  BAφ  φ. 

  

NOBAʹ and RD  NOBA 

Proof: Assume  (BAʹφ  BAʹφ). So  (BAʹ  BAʹ); that is, BAʹ. Hence 

by RD,  BA. 

 

DCBAʹ & RD  CBA   

Proof: Assume  (BAʹφψ  BAʹφψ)  BAʹ(φ  φ)(ψ  ψ). So  (BAʹφφ  BAʹψψ)   

                                                 
47 See section 5, theorem T5P. 

Toward a Systematization of Logics for Monadic and Dyadic Agency & Ability, Revisited

185



BAʹ(φ  ψ)(φ  ψ). Hence by RD,  (BAφ  BAψ)  BA(φ  ψ). 

 

There is also potential for mixed cases: 

 

CCBAʹ & RD  (BAφ  BAʹφψ)  BAʹφ(φ  ψ) 

Proof: Assume  (BAʹφψ  BAʹφχ)  BAʹφ(ψ  χ). So in particular,  (BAʹφφ  BAʹφψ) 

  

BAʹφ(φ  ψ), and then by RD, (BAφ  BAʹφψ)  BAʹφ(φ  ψ). 

 

DCSBAʹ & RD  BA(φ  ψ)  (BAʹ(φ  ψ)φ  BAʹ(φ  ψ)ψ)    

Proof: Assume  BAʹχ(φ  ψ)  (BAʹχφ  BAʹχψ). So  BAʹ(φ  ψ)(φ  ψ)  (BAʹ(φ 

 ψ)φ  BAʹ(φ  ψ)ψ). So by RD and sentential logic, BA(φ  ψ)  (BAʹ(φ  ψ)φ   

BAʹ(φ  ψ)ψ).  

 

The former derived mixed formula is plausible in its own right. The derivability of the 

latter mixed formula simply reinforces my skepticism about the plausibility of the 

reduction on the intended interpretation (i.e. it should not follow from DCSBAʹ). 

However, using RD to explore (especially failed) attempts to prove the monadic 

formulae we explored via the dyadic analogs we explored does have the benefit of 

naturally uncovering plausible sounding mixed formulae like that derived in the former 

proof, which we did not explore in the current paper.  

  Although beyond the scope of this paper, I believe a reduction of a different sort 

is more plausible, but it involves propositional quantification:   

 

  RDʹ:   BAφ  ψ(BAʹψφ  BAʹφψ).  

 

That is, what is brought about by Jane is a consequence of an exercise of her agency or 

generates a consequence. It is easy to use this reductive scheme along with some 

independently plausible principles for dyadic agency, and thereby derive various 

plausible schemes for monadic agency so reduced. It also allows for an easy and 

plausible characterization of a basic exercise of agency: BAφ  ψBAʹψφ, that is, 

ψBAʹφψ  ψBAʹψφ, per the above reduction (as well as that of the maximal product 

of an exercise of one’s agency, given the addition of a necessity operator as well as 

propositional quantifiers). 

 

 

References 
 

[1] Arlo-Costa, H. and E. Pacuit (2007). First-Order Classical Modal Logic: 

Applications in Logics of Knowledge and Probability. TARK '05: 10th 

Conference on Theoretical Aspects of Rationality and Knowledge. National 

University of Singapore, 262278.  

 

[2] Chellas, B. F. (1980). Modal Logic: An Introduction. Cambridge, Cambridge 

University Press. 

 

Paul McNamara

186



[3] Cresswell, M. J. (1984). A Companion to Modal Logic. London, Methuen and 

Co. Ltd. 

 

[4] Elgesem, D. (1993). Action Theory and Modal Logic. University of Oslo. 

 

[5] Elgesem, D. (1997). The Modal Logic of Agency. Nordic Journal of 

Philosophical Logic, 2, 146. 

 

[6] Goble, L. (2004). A Proposal for Dealing with Deontic Dilemmas, LNAI 

3065. DEON 2004: 7th International Workshop on Deontic Logic in 

Computer Science. A. L. D. Nute. Madeira, Portugal, Spinger, 74113. 

 

[7] Governatori, G. and A. Rotolo (2005). On the Axiomatisation of Elgesem's 

Logic of Agency and Ability. Journal of Philosophical Logic, 34, 403431. 

 

[8] Humberstone, I. L. (2016). Philosophical Applications of Modal Logic. 

London, College Publications. 

 

[9] Jones, A. and X. Parent (2007). A Convention-Based Approach to Agent 

Communication Languages. Group Decision and Negotiation, 16, 101–141.  

 

[10] Jones, A. and M. Sergot (1993). On the Characterization of Law and Computer 

Systems: The Normative Systems Perspective. In J.-J. C. Meyer and R. J. 

Wieringa, editors, Deontic Logic in Computer Science, 275307. Chichester, 

John Wiley and Sons. 

 

[11] Jones, A. and M. Sergot (1996). A Formal Characterization of Institutionalized 

Power. Logic Journal of the IGPL, 4, 429445. 

 

[12] Kanger, S. (1972). Law and Logic. Theoria, 38, 105132. 

 

[13] Lindahl, L. (1977). Position and Change. Dordrecht, D. Reidel Publishing Co. 

 

[14] McNamara, P. (2004). Agential Obligation as Non-Agential Personal 

Obligation Plus Agency. Journal of Applied Logic, 2, 117152. 

 

[15] McNamara, P. (2017). Acting Beyond the Call and Kindred Notions: Some 

Reflections on Their Representation.  (Keynote Address). Trends in Logic, 

XVII. John Paul II Catholic University of Lublin. 

 

[16] McNamara, P. (2018). Toward a Systematization of Logics for Monadic and 

Dyadic Agency & Ability (Preliminary Version).  Proceedings for Deontic 

Logic and Normative Systems (Deon 2018), 36 July 2018, Utrecht, the 

Netherlands. London College Publications. 

 

[17] Pacuit, E. (2017). Neighborhood Semantics for Modal Logic. Berlin, Spinger. 

 

Toward a Systematization of Logics for Monadic and Dyadic Agency & Ability, Revisited

187



[18] Pörn, I. (1970). The Logic of Power. Oxford, Blackwell. 

 

[19] Pörn, I. (1977). Action Theory and Social Science: Some Formal Models. 

Dordrecht, D. Reidel. 

 

[20] Pörn, I. (1989). On the Nature of a Social Order. In J. E. Fenstad, T. Frolov 

and R. Hilpinen, editors, Logic, Methodology and Philosophy of Science, Viii, 

553567. New York, Elsevier Science. 

 

[21] Santos, F. and J. Carmo (1996). Indirect Action, Influence and Responsibility. 

In M. A. Brown and J. Carmo, editors, Deontic Logic, Agency and Normative 

Systems, 194215. New York, Springer Verlag. 

 

[22] Santos, F., A. Jones, et al. (1997). Responsibility for Action in Organizations: 

A Formal Model. In G. Holmström-Hintikka and R. Tuomela, editors, 

Contemporary Action Theory, Vol II (Social Action), 333350. Dordrecht, 

Kluwer Academic Publishers. 

 

[23] Sergot, M. (1999). Normative Positions. In P. a. H. P. McNamara, editor, 

Norms, Logics and Information Systems: New Studies in Deontic Logic and 

Computer Science, 289308. Amsterdam, IOS Press. 

 

[24] Sergot, M. (2013). Normative Positions. In D. Gabbay, J. Horty, X. Parent, R. 

van der Meyden, L. van der Torre, editor, Handbook of Deontic Logic and 

Normative Systems, Volume 1, 353406. London, College Publications. 

 

[25] Van de Putte, F., P. McNamara, et al. (2019). EK and EKC: An Exercise in 

Modal Logic. (Under Review.) 

 

[26] Walton, D. (1975). Modal Logic and Agency. Logique et Analyse, 18, 

103111. 

 

 

Acknowledgment I am grateful to an anonymous reviewer for helpful comments that 

improved the paper, and I thank the editor for helpful guidance. 

 

Paul McNamara 

Philosophy Department 

University of New Hampshire, USA 

paulm@unh.edu 

Paul McNamara

188




