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Abstract

This paper presents axiomatic systems equivalent to Bengt Hansson’s semanti-
cally defined dyadic deontic logics, DSDL1, DSDL2 and DSDL3. Each axiomatic
system is demonstrated to be sound and complete with respect to the particular
classes of models Hansson defined, and in that way to be equivalent to his logics.
I also include another similar member of the family I call DSDL2.5 and provide
an axiomatic system for it. These systems are further found to be decidable, and,
although DSDL3 is compact, the three weaker ones are shown not to be.

1 Introduction

2019 marks the 50th anniversary of the publication of Bengt Hansson’s seminal paper
“An Analysis of Some Deontic Logics” [5]. While there were precursors and other
contemporary works developing similar concepts, Hansson’s paper, perhaps more than
any other, set the stage for research into dyadic deontic logics, while it also stimu-
lated the use of semantical methods for the analysis of normative language. In that
paper Hansson proposed a way to model statements of conditional obligation, or obli-
gation under circumstances, with a pattern that, broadly speaking, has since become
quite standard, even commonplace. From those constructions he then defined three
systems of dyadic deontic logic, DSDL1, DSDL2 and DSDL3, of increasing strength.
These were defined entirely semantically. Although Hansson presented various prin-
ciples that are valid, or not, for each logic, he seemed little interested in axiomatic or
proof-theoretic treatments of them. Later, Spohn [16] offered an axiomatization for the
strongest, DSDL3. The other two have received far less attention, and the question of
their axiomatization has remained open.1

In this paper I introduce axiomatizations for all three of Hansson’s logics as he
formulated them, and demonstrate their adequacy by proving them sound and com-
plete with respect to the classes of models Hansson defined. I also include another
member of the family, which I call DSDL2.5 since it is between DSDL2 and DSDL3.
Regarding DSDL3, my version is a little different from Spohn’s, though demonstrably
equivalent to his. In the form I give, however, it is easy to see how, from an axiomatic
point of view, this system is a natural extension of the others. Moreover, I prove a

1Some efforts to reconstruct DSDL1 and DSDL2 differ significantly from Hansson’s account, e.g., in the
language of the systems, the form of model applied to the language, even the rule of interpretation for dyadic
deontic formulas; cf., e.g., Parent [10] or Åqvist [17, 18] with his systemsE andF, and Parent’s subsequent
results for those systems, [12]. As a result, those efforts fall outside the framework of this paper.
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strong completeness result for it, and thus show DSDL3 to be compact,whereas Spohn
provided only weak completeness.

The course of this paper is as follows: Section 2 presents the details of Hans-
son’s semantics for dyadic deontic logic, and defines his systems DSDL1, DSDL2 and
DSDL3, as well as DSDL2.5. This section also describes an alternative, though sim-
ilar, way of modeling dyadic deontic statements. This will be useful for establishing
later results. Section 3 defines the axiomatic systems we shall be studying; I call these
DDL-a, DDL-b, DDL-c and DDL-d.

With Section 4 the work begins. Here we prove that DDL-d is equivalent to Hans-
son’s DSDL3. The proof will be straightforward and its methods familiar. Though
this system is the strongest of the family, we put it first because it is easiest to work
with. The demonstrations for the others will, unfortunately but perhaps inevitably, be
more difficult; that for DDL-b and DSDL2 is particularly challenging. Those demon-
strations occupy Section 5, to establish the equivalence of DDL-a, DDL-b and DDL-c
with DSDL1, DSDL2 and DSDL2.5, respectively. Following that, Section 6 presents
some ancillary results that follow from those of the preceding sections, most notably
that, in contrast to DSDL3, the weaker logics DSDL1, DSDL2 and DSDL2.5 are not
compact, and then that all of these systems, including DSDL3, are decidable, subjects
that Hansson did not address. Here too we examine a variation on the form of interpre-
tation Hansson applied to dyadic deontic formulas, and find that the variation makes
little difference to the systems determined by the semantic rules. Section 7 is merely a
quick recap of what has been established.

Axiomatizing Hansson’s logics in this way helps one better to understand and ap-
preciate the commitments of these systems by identifying their fundamental principles.
Nonetheless, throughout this paper I will only be concerned with the technical prob-
lems of the equivalence of the axiomatizations to Hansson’s semantics. In particular, I
do not address philosophical questions of the adequacy of the systems for problems in
deontic logic or the analysis of normative discourse. Nor do I compare the virtues or
vices of the different systems amongst themselves. I do not survey other work in dyadic
deontic logic. Furthermore, the focus here is entirely on Hansson’s DSDL logics. I do
not discuss the various other topics and themes he raised in his paper.

2 Hansson’s DSDL systems

Here I present Hansson’s logics DSDL1, DSDL2, and DSDL3, essentially as he pre-
sented them, though in my own notation and style of doing things; I also add DSDL2.5.
I specify the language of these logics, and the particular way Hansson modeled that lan-
guage in terms of which he defined his systems. I then describe another similar form
of model for the language, a form with, however, some noteworthy contrasts, which
allow it to be more flexible than Hansson’s own, and thus useful later on.

2.1 The austere language

Hansson formulated his systems of dyadic deontic logic only for an austere language
that excludes formulas in which deontic modalities occur within the scope of other
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deontic modalities, and that also excludes mixed formulas, inwhich deontic formulas
are truth-functionally combined with non-deontic formulas. Further, it contains no
other modalities, such as for alethic necessity or possibility. This austerity is common
in studies of deontic logic, though by no means universal.

Let us make that austere language more precise. It begins with the language of
a ‘base logic’,LBL , that we take now to be a language for the classical propositional
calculus, with denumerably many atomic formulasp, q, r, . . . , etc., and the usual
connectives¬, ∧, ∨, →, with the usual formation rules.A ↔ B is defined as(A →
B) ∧ (B→ A). ⊺ is any classical tautology and� a classical contradiction inLBL . I use
‘A’, ‘ B’, ‘ C’, etc. as variables for formulas in this base language,LBL .

The austere deontic language,LDLa, based onLBL contains the primitive dyadic
deontic operatorO(−/−), such thatO(B/A) is well-formed and a member ofLDLa

whenever, and only when,A,B ∈ LBL . Informally, O(B/A) may be read to say, IfA
then it ought to be thatB, or B is obligatory, given circumstancesA, cf. [5], p. 133.
LDLa also contains the Boolean connectives¬, ∧, ∨, →, which we may take to be the
same as forLBL but now also applied to formulas inLDLa, so that ifα, β ∈ LDLa, then,
and only then,¬α ∈ LDLa, α ∧ β ∈ LDLa, α ∨ β ∈ LDLa, andα → β ∈ LDLa, all as usual.
That is the whole ofLDLa. I use ‘α’, ‘β’, ‘γ ’, etc. as variables for formulas ofLDLa.
P(B/A), for conditional permission, is defined as¬O(¬B/A).

ForLBL to contain denumerably many atomic formulas is significant. If the lan-
guage had a finite vocabulary, our results would be easier to obtain, though they would
also be somewhat different. I do not pursue that difference here, however.

2.2 Hansson’s models

To interpret formulasA ∈ LBL , Hansson drew on standard classical logic. In effect,
he identified possible worlds with familiar valuation functions. LetV be the set of all
classical valuations forLBL . I.e., for eachϕ ∈ V, ϕ is a function defined for every
atomic formulap ∈ LBL , such thatϕ(p) ∈ {1,0}, andϕ(p) = 1 iff ϕ(p) ≠ 0. I use ‘ϕ’,
with or without decoration by subscripts or superscripts, as variables overV.

The full interpretation function∣A∣ for formulasA ∈ LBL is specified in the usual
way, to give the set of valuations under whichA would be true:

∣p∣ = {ϕ ∈ V ∶ ϕ(p) = 1},
∣¬A∣ = V − ∣A∣,
∣A∧ B∣ = ∣A∣∩ ∣B∣,
∣A∨ B∣ = ∣A∣∪ ∣B∣,
∣A→ B∣ = (V − ∣A∣)∪ ∣B∣.

We may presuppose, usually without remark, familiar results from classical logic, e.g.,
that⊢ A → B iff ∣A∣ ⊆ ∣B∣ and⊢ A ↔ B iff ∣A∣ = ∣B∣, where⊢ represents derivability
within the classical propositional calculus. Often I will say a formulaA ∈ LBL is ‘BL-
consistent’, or simply ‘consistent’, and mean either that∣A∣ ≠ ∅, or that⊬ ¬A. By the
soundness and completeness of the calculus, the two come to the same thing. Similarly
for sets of formulasC ⊆ LBL , C is consistent iffthere is aϕ ∈ V such thatϕ ∈ ∣C∣ for
everyC ∈ C iff C ⊬ �.
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To interpret formulasα ∈ LDLa, Hansson identifies a model2 with a binary relation
R defined overV, so thatR ⊆ V×V. If we think of the members ofV as possible worlds,
thenR may be thought to rank such worlds according to some standard of value, or
desirability, or preference, or what have you. Hansson himself takesR to reflect the
relation ‘is at least as ideal as’, [5], p. 143. I will often call such models/relations
‘H-models’, to contrast them with other models described below.

The strict counterpart,P, of R is specified as usual, Forϕ, ϕ′ ∈ V,

• ϕPϕ′ iff ϕRϕ′ and not-(ϕ′Rϕ).

Note thatP is transitive ifR is. In general, however, unless explicitly stated other-
wise, we do not assume any particular properties for these relations, except that by its
definitionP must be asymmetric, hence irreflexive, regardless of the nature ofR.

As usual too, for such anR and forX ⊆ V, we define the ‘maximal’ members of
X, i.e., maximal with respect toR, or R-maximal, as Hansson did, [5], p. 143:3

• MaxR(X) = {ϕ ∶ ϕ ∈ X and there is noϕ′ ∈ X such thatϕ′Pϕ}.

The informal idea thatB is obligatory under circumstancesA just in caseBmust hold in
all the ‘best’A-worlds, is now realized in the concept of maximality. Hansson specifies
thatO(B/A) is true inR just in case all the maximal members of∣A∣ are within∣B∣.

• Rule H R ⊧H O(B/A) iff MaxR(∣A∣) ⊆ ∣B∣.

From that, the rest of the relation⊧H is as usual:

R ⊧H ¬α iff R ⊭H α,
R ⊧H α ∧ β iff R ⊧H α andR ⊧H β,
R ⊧H α ∨ β iff R ⊧H α or R ⊧H β,
R ⊧H α→ β iff R ⊭H α or R ⊧H β.

By the definition ofP(B/A)we also have:

R ⊧H P(B/A) iff MaxR(∣A∣)∩ ∣B∣ ≠ ∅.

Let us say, as usual:

• α ∈ LDLa is H-valid, or simply ‘valid’, with respect to a class of H-models/rela-
tions just in case, for everyR in that class,R ⊧H α.

• α is an H-consequence ofΓ ⊆ LDLa with respect to a class of H-models/relations
just in case, for everyR in that class if, for everyγ ∈ Γ, R ⊧H γ, thenR ⊧H α.

We write⊩H α to say thatα is H-valid andΓ ⊩H α to sayα is an H-consequence ofΓ,
both with respect to a class of H-models, given by the context. In a similar vein, let us
also say, as usual,

2Hansson wrote ‘valuation’, [5], pp. 142–3, but I will reserve that term for the valuations overLBL , as
above.

3In his account of DSDL3, Spohn, [16], p. 239, defines maximality somewhat differently. I discuss that
other definition in Section 6.3 below. Until then, we follow Hansson’s own specification.
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• α ∈ LDLa is satisfiable in a class of H-models/relations just in case there is anR
in that class such thatR ⊧H α.

• Γ ⊆ LDLa is satisfiable in a class of H-models/relations just in case there is anR
in that class such that for everyγ ∈ Γ, R ⊧H γ.

We can now define Hansson’s systems, as Hansson did, in terms of classes of such
models; cf. [5], p. 144.

• DSDL1 is the set ofLDLa-formulas,α, that are H-valid with respect to the class
of all reflexive relationsR ⊆ V ×V;

• DSDL2 is the set ofLDLa-formulas,α, that are H-valid with respect to the class
of all relationsR ⊆ V ×V that are reflexive and that also meet the condition that,
for all A ∈ LBL , if ∣A∣ ≠ ∅, then MaxR(∣A∣) ≠ ∅;

• DSDL3 is the set ofLDLa-formulas,α, that are H-valid with respect to the class
of all relationsR ⊆ V×V that meet the conditions for DSDL2 and for whichR is
transitive, i.e., for allϕ, ϕ′, ϕ′′ ∈ V, if ϕRϕ′ andϕ′Rϕ′′ thenϕRϕ′′, and also total
(complete, strongly connected), i.e., for allϕ, ϕ′ ∈ V eitherϕRϕ′ or ϕ′Rϕ.

For DSDL1 and DSDL2, reflexivity is nice, but not necessary; the same formulas
would be valid with or without this condition; cf. Hansson [5], p. 143. The same is true
for DSDL2.5 below. Of course, for DSDL3, totality implies reflexivity, but even that
condition could be weakened to weak connectivity, that ifϕ ≠ ϕ′ thenϕRϕ′ or ϕ′Rϕ,
without affecting the set of valid formulas, with or without reflexivity. Later, at the end
of §5, we will see that transitivity is also an optional condition for relationsR for all
the logics, except of course DSDL3 where it is explicitly required.

The condition for DSDL2 relationsR is a form of the famous, or infamous, Limit
Assumption. Here it is a sort of consistency condition, calling for there to be at least one
maximalA-world whenever there are in factA-worlds, i.e., wheneverA is consistent.
Let us say thatR is limited just in case it meets this condition for allA ∈ LBL .

• R ⊆ V ×V is limited iff, for anyA ∈ LBL , if ∣A∣ ≠ ∅, then MaxR(∣A∣) ≠ ∅.

Later we will apply that terminology to other relations for much the same condition,
and also to models containing such a relation.

While that is a form of the so-called Limit Assumption, it still allows that there
could be sequences ofA-worlds not capped or limited by any maximal members. Some
might increase in rank without end; others might form terminal loops in terms of
P so that no member comes out on top. A stronger form of the Limit Assumption
would block those possibilities. This is the condition known in the literature on non-
monotonic logic as ‘stoppering’ or ‘smoothness’ forR.4 As pertains to the present
framework,

• R ⊆ V×V is stoppered iff, for everyA ∈ LBL , if ϕ ∈ ∣A∣, then eitherϕ ∈ MaxR(∣A∣)
or there is aϕ′ ∈ MaxR(∣A∣) such thatϕ′Pϕ.

4See,for example, [7, 8, 9, 14]. In [3] I called this ‘being limited’ and described the Limit Assumption
in terms of it; this should not be confused with the present sense of limitation.
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Stoppering implies limitation, but not conversely. IfR is total and transitive, however,
as for DSDL3, then the two are equivalent; proved in Theorem 3 below.

To capture the class of stoppered relations, we add to Hansson’s framework the
system I call DSDL2.5 since it is stronger that DSDL2 and weaker than DSDL3; also
proved in Theorem 3.

• DSDL2.5 is the set ofLDLa-formulas,α, that are H-valid with respect to the class
of all relationsR ⊆ V ×V that are reflexive and stoppered.

2.3 P-models

Here is another sort of model that is often used, with variations, to interpret formulas
of dyadic deontic logic. I call these P-models since, like Hansson’s, they are based on
preference-like relations. They are more general than his, however.

A P-model is a structureM = ⟨W,⪯,v⟩ in which W is a nonempty set of points
or so-called possible worlds, andv is a function assigning to each atomp ∈ LBL a set
of such points, the worlds where it holds true inM, so thatv(p) ⊆ W. ⪯ is a binary
relation of relative value, preference, desirability, comparative ideality, or what have
you, defined overW such that⪯ ⊆ W × W. Except as explicitly stated, we assume no
particular properties for⪯. The strict counterpart,≺, of ⪯ is defined as usual:

• w ≺ w′ iff w ⪯ w′ andw′ â w.

FormulasA ∈ LBL are interpreted in the usual way, by sets of worlds in whichA
holds true according toM. GivenM = ⟨W,⪯,v⟩:

∣p∣M = v(p),
∣¬A∣M = W− ∣A∣M,
∣A∧ B∣M = ∣A∣M ∩ ∣B∣M,
∣A∨ B∣M = ∣A∣M ∪ ∣B∣M,
∣A→ B∣M = (W− ∣A∣M) ∪ ∣B∣M.

FormulasO(B/A) ∈ LDLa are interpreted in P-models very much as in Hansson’s
H-models. With Max⪯(∣A∣M) defined as was MaxR(∣A∣):

• Rule P M ⊧P O(B/A) iff Max⪯(∣A∣M) ⊆ ∣B∣M.

Extension of⊧P to Boolean constructions, negations, conjunctions, etc., of such deontic
formulas,O(B/A), is as always. As with H-models, by the definition ofP(B/A), also

M ⊧P P(B/A) iff Max⪯(∣A∣M) ∩ ∣B∣M ≠ ∅.

A formulaα is P-valid, or simply ‘valid’, for a class of P-models,⊩P α, just in case
for every P-model,M, in that class,M ⊧P α, and similarlyΓ ⊩P α just in case for every
P-model,M, in the class, ifM ⊧P γ for everyγ ∈ Γ, thenM ⊧P α.

A P-modelM = ⟨W,⪯,v⟩ is limited, or stoppered, just in case its relation⪯ is
limited, or stoppered, in the sense described above for Hanssonian relationsR. For
later reference, we note that ifW is finite and⪯ is transitive, then⪯ is necessarily
stoppered.
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Rule P is clearly much the same as Hansson’s Rule H, just as the relation⪯ in a
P-model corresponds very much to hisR. In other respects, however, this framework
differs significantly from Hansson’s. In P-models,M = ⟨W,⪯,v⟩, W can be any sort
of nonempty set, finite or infinite, and it can include members that are nothing like the
classical valuations that comprise the fields of relationsR. Moreover,W with v may
have no worlds to correspond to some valuations. In that case, there may be formulas
A ∈ LBL that are consistent yet∣A∣M = ∅; in effect,A is consistent but not possible,
according to the model. Models where that does not occur will be called ‘replete’.

• A P-modelM = ⟨W,⪯,v⟩ is repletefor LBL just in case, for allA ∈ LBL , if ∣A∣ ≠ ∅
then∣A∣M ≠ ∅.

Furthermore, P-models,M = ⟨W,⪯,v⟩, might also have distinctw,w′ ∈ W that
agree on all formulasA ∈ LBL , and so are indistinguishable duplicates of each other,
as far asM is concerned. Yet, though indistinguishable,w andw′ remain distinct and
may stand in different positions vis-à-vis⪯. Let us say, for a givenM = ⟨W,⪯,v⟩,

• w,w′ ∈ W are duplicates of each other inM just in case,w ≠ w′ and, for all
A ∈ LBL , w ∈ ∣A∣M iff w′ ∈ ∣A∣M.

P-models with duplicates are ‘redundant’; those without are ‘irredundant’.

• M = ⟨W,⪯,v⟩ is redundantjust in case there arew,w′ ∈ W that are duplicates of
each other inM.

• M = ⟨W,⪯,v⟩ is irredundantjust in case it is not redundant.

By extension, Hanssonian models/relationsR overV may also be said to be irredundant
since necessarilyV contains no duplicates.

3 Axiomatics

The preceding section presented Hansson’s semantically defined DSDL logics, as well
as DSDL2.5. Here we introduce the axiomatic systems, DDL-a, DDL-b, DDL-c and
DDL-d, that will be proved to be equivalent to those semantical systems. All contain
the classical propositional calculus overLDLa, including closure under its rules; they
then add all instances of the following schemas:

• For DDL-a:

(LLE) O(C/A) ↔O(C/B) when⊢ A↔ B,
(RW) O(B/A) →O(C/A)when⊢ B→ C,
(Reflex) O(A/A),
(AND) (O(B/A)∧O(C/A)) →O(B∧C/A),
(OR) (O(C/A)∧O(C/B)) → O(C/A∨ B).

• DDL-b = DDL-a + all instances of:

(RP) P(⊺/A)whenA is BL-consistent.
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• DDL-c = DDL-b + all instances of Cautious Monotony:

(CautMono) (O(B/A)∧O(C/A)) →O(C/A∧ B).

• DDL-d = DDL-b + all instances of Rational Monotony:

(RatMono) (P(B/A)∧O(C/A)) →O(C/A∧ B).

We note that (CautMono) is derivable in DDL-d, and thus DDL-d is an extension of
DDL-c; see the proof of Theorem 3 below.

The usual definitions of derivation, derivability, theorem, etc. apply to each of
these. In the postulates (LLE) and (RW) I write⊢ to indicate derivability within the
classical propositional calculus forLBL . I will also write ⊢ to indicate derivability
within the DDL systems. No confusion should result from this ambiguity, given the
divide betweenLBL andLDLa, and the notation we use for the formulas of each. For
each axiomatic system,L, α is consistent forL, or simply consistent whenL is given
in context, when, as usual,⊬ ¬α in L, and similarly,Γ ⊆ LDLa is consistent forL when
Γ ⊬ β ∧ ¬β in L, for anyβ ∈ LDLa.

In the following sections I will demonstrate that

• DDL-a = DSDL1,

• DDL-b = DSDL2,

• DDL-c = DSDL2.5,

• DDL-d = DSDL3.

Half of that is easy; it amounts to the soundness of the axiomatic systems.

Theorem 1 (i) DDL-a is sound with respect to the class of all reflexive H-modelsR.
(ii) DDL-b is sound with respect to the class of all H-modelsR that are reflexive and
limited. (iii) DDL-c is sound with respect to the class of all H-modelsR that are
reflexive and stoppered. (iv) DDL-d is sound with respect to the class of all H-models
R that are reflexive, transitive and total and also limited. I.e., if⊢ α in one of these
systems, then⊩H α with respect to the appropriate class of H-models.

Proof. Proved in the usual way by showing that all axioms are valid for the re-
spective classes of models and the rules of the logics preserve validity. These are easy
enough to leave to the reader, though for illustration we present the validity of (Caut-
Mono) and (RatMono) with respect to DSDL2.5 and DSDL3 models.

For (CautMono), supposeR is stoppered, and thatR ⊧H O(B/A) andR ⊧H O(C/A),
so that MaxR(∣A∣) ⊆ ∣B∣ and MaxR(∣A∣) ⊆ ∣C∣. Supposeϕ ∈ MaxR(∣A ∧ B∣). Since
ϕ ∈ ∣A∣ andR is stoppered,ϕ ∈ MaxR(∣A∣) or there is aϕ′ ∈ MaxR(∣A∣) such thatϕ′Pϕ.
The second is not possible, for if it were thenϕ′ ∈ ∣B∣, whenceϕ′ ∈ ∣A∧ B∣, in which
caseϕ ∉ MaxR(∣A∧B∣), a contradiction. Therefore,ϕ ∈ MaxR(∣A∣) and soϕ ∈ ∣C∣. That
suffices for MaxR(∣A∧ B∣) ⊆ ∣C∣, and so forR ⊧H O(C/A∧ B).

For (RatMono), supposeR is transitive, total and limited, and thatR ⊧H P(B/A)
and R ⊧H O(C/A), so that there is someϕ ∈ MaxR(∣A∣) such thatϕ ∈ ∣B∣, and also
MaxR(∣A∣) ⊆ ∣C∣. Consider anyϕ′ ∈ MaxR(∣A∧ B∣); we showϕ′ ∈ MaxR(∣A∣). Since
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ϕ

′ ∈ ∣A∣, suppose, forreductio, there is someϕ′′ ∈ ∣A∣ such thatϕ′′Pϕ′. By totality, eith-
er ϕRϕ′′ or bothϕ′′Rϕ and not-(ϕRϕ′′), i.e.,ϕ′′Pϕ. The second case is not possible,
however, since thenϕ ∉ MaxR(∣A∣), a contradiction. Hence,ϕRϕ′′. By transitivity,
ϕPϕ′. In that case, sinceϕ ∈ ∣A ∧ B∣, ϕ′ ∉ MaxR(∣A ∧ B∣), another contradiction.
Therefore, there is no suchϕ′′ and soϕ′ ∈ MaxR(∣A∣). Thenϕ′ ∈ ∣C∣. That suffices for
MaxR(∣A∧ B∣) ⊆ ∣C∣, and so forR ⊧H O(C/A∧ B).

Corollary 2 DDL-a ⊆ DSDL1;DDL-b ⊆ DSDL2; DDL-c⊆ DSDL2.5;
DDL-d ⊆ DSDL3.

Theorem 1 is of fundamental importance, of course. It is also useful to demon-
strate that the systems are indeed separate, and each is a proper extension of its alpha-
betical or numerical predecessors.

Theorem 3 (i) DDL-a ⊂ DDL-b ⊂ DDL-c ⊂ DDL-d. (ii) DSDL1⊂ DSDL2⊂
DSDL2.5⊂ DSDL3.

Proof. That DDL-a⊆DDL-b, etc. is obvious, except, perhaps, for DDL-c⊆DDL-
d and DSDL2.5⊆ DSDL3. For the former, we now show that (CautMono) is derivable
in DDL-d. SupposeO(B/A) andO(C/A). Either P(B/A) or ¬P(B/A). If the first,
thenO(C/A ∧ B) by (RatMono). If the second, thenO(¬B/A) by definition; hence,
O(B∧ ¬B/A) by (AND). SoO(�/A). In that case, by (RP),A must be inconsistent,
and⊢ A↔ �, whence⊢ A↔ (A∧ B), from whichO(C/A∧ B) follows by (LLE).

For DSDL2.5⊆ DSDL3, it suffices that ifR is limited, transitive, and total, thenR
is stoppered. To see that, supposeϕ ∈ ∣A∣. SinceR is limited, there is aϕ′ ∈ MaxR(∣A∣).
SinceR is total, eitherϕRϕ′ or ϕ′Pϕ. In the first case,ϕ ∈ MaxR(∣A∣), for if not, then
there is aϕ′′ ∈ ∣A∣ such thatϕ′′Pϕ, in which caseϕ′′Pϕ′, sinceR is transitive, and then
ϕ

′ ∉ MaxR(∣A∣), a contradiction. Thus, in this case,ϕ ∈ MaxR(∣A∣), which suffices for
stoppering. In the second case, since alreadyϕ

′ ∈ MaxR(∣A∣), there is aϕ′ ∈ MaxR(∣A∣)
such thatϕ′Pϕ, which also suffices for stoppering.

To show the listed containments to be proper, we now give (a) an instance of
(RP) not valid for DSDL1, (b) an instance of (CautMono) not valid for DSDL2 and
(c) an instance of (RatMono) not valid for DSDL2.5. For all of these we distinguish
four valuations, which might be thought of as determining the first four rows of a
conventional truth-table forp,q,r ∈ LBL . Let S be the set of all atoms ofLBL other
thanp,q,r. Letϕ1, ϕ2, ϕ3, ϕ4 be those members ofV such that:

ϕ1(p) = 1 ϕ1(q) = 1 ϕ1(r) = 1
ϕ2(p) = 1 ϕ2(q) = 1 ϕ2(r) = 0
ϕ3(p) = 1 ϕ3(q) = 0 ϕ3(r) = 1
ϕ4(p) = 1 ϕ4(q) = 0 ϕ4(r) = 0
ϕ1(s)= ϕ2(s)= ϕ3(s)= ϕ4(s)= 1, for all other atomss ∈ S.

Let Y be the set of all valuationsϕ ∈ V other thanϕ1, ϕ2, ϕ3, ϕ4.
(a) Consider this instance of (RP):P(⊺/p), since atomp is consistent. LetR1 be

exactly such that for allϕ ∈ V, ϕR1ϕ, and alsoϕ1R1ϕ2, ϕ2R1ϕ3, ϕ3R1ϕ4, ϕ4R1ϕ1, and
ϕ4R1ϕ, for all otherϕ ∈ Y. R1 is obviously reflexive. Also, the four selected valuations
form a loop byP1 andϕ4 ranks higher than all other valuations. Because of that and
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the loop, MaxR1(∣p∣) = ∅. Hence,R1 ⊭H P(⊺/p). Therefore,P(⊺/p) ∉ DSDL1 and
P(⊺/p) ∉ DDL-a.

(b) Consider this instance of (CautMono):(O(q/p)∧O(r/p)) →O(r/p∧q). Let
R2 be exactly such that for allϕ ∈ V, ϕR2ϕ, and, for allϕ ∈ Y, ϕ1R2ϕ, while ϕ2R2ϕ4,
ϕ4R2ϕ3 andϕ3R2ϕ2. Thus,ϕ2, ϕ3, ϕ4 form a loop byP2 while ϕ1 stands alone, though
ranked higher than allϕ ∈ Y. By inspection, MaxR2(∣p∣) = {ϕ1}. Sinceϕ1 ∈ ∣q∣ and
ϕ1 ∈ ∣r ∣, MaxR2(∣p∣) ⊆ ∣q∣ and MaxR2(∣p∣) ⊆ ∣r ∣. Hence,R2 ⊧H O(q/p) andR2 ⊧H O(r/p).
On the other hand, MaxR2(∣p∧ q∣) = {ϕ1, ϕ2}, and sinceϕ2 ∉ ∣r ∣, MaxR2(∣p∧ q∣) ⊈ ∣r ∣,
so thatR2 ⊭H O(r/p∧ q). It remains to show thatR2 is limited. Consider anyA ∈ LBL

such that∣A∣ ≠ ∅. If ϕ1 ∈ ∣A∣, thenϕ1 ∈ MaxR2(∣A∣), so that MaxR2(∣A∣) ≠ ∅. Suppose
then thatϕ1 ∉ ∣A∣. It follows that, for allϕ ∈ Y, if ϕ ∈ ∣A∣ thenϕ ∈ MaxR2(∣A∣), and so
MaxR2(∣A∣) ≠ ∅. Supposeϕ2 ∈ ∣A∣. Let S(A) be the set of all atoms ofS that are inA.
Considerϕ∗ such thatϕ∗(p) = ϕ∗(q) = 1 andϕ∗(r) = 0 andϕ∗(s)= 1 for all s ∈ S(A)
andϕ∗(t) = 0 for all other atomst ∈ S − S(A). There must be one suchϕ∗ ∈ V. For it,
ϕ

∗ agrees withϕ2 on all atoms that are constituents ofA. Hence,ϕ∗ ∈ ∣A∣. Butϕ∗ ≠ ϕ2,
nor ϕ3, norϕ4, norϕ1. Hence,ϕ∗ ∈ Y, and soϕ∗ ∈ MaxR2(∣A∣) and MaxR2(∣A∣) ≠ ∅.
In caseϕ3 ∈ ∣A∣ or ϕ4 ∈ ∣A∣, argue similarly that MaxR2(∣A∣) ≠ ∅. In case none of
ϕ1–ϕ4 are in∣A∣, then there must be someϕ ∈ Y such thatϕ ∈ ∣A∣, in which case again
MaxR2(∣A∣) ≠ ∅. Hence,R2 is limited. Thus,(O(q/p) ∧ O(r/p)) → O(r/p ∧ q) ∉
DSDL2, and so(O(q/p)∧O(r/p)) →O(r/p∧ q) ∉ DDL-b.

(c) Consider this instance of (RatMono):(P(q/p)∧O(r/p)) →O(r/p∧ q). Let
R3 be exactly such that for allϕ ∈ V, ϕR3ϕ; also, for allϕ ∈ Y, ϕ1R3ϕ; andϕ1R3ϕ4 and
ϕ3R3ϕ2. Thus, MaxR3(∣p∣) = {ϕ1, ϕ3}. Since both are in∣r ∣, MaxR3(∣p∣) ⊆ ∣r ∣, so that
R3 ⊧H O(r/p). Also MaxR3(∣p∣) ∩ ∣q∣ ≠ ∅, by virtue ofϕ1. Hence,R3 ⊧H P(q/p). On
the other hand, MaxR3(∣p∧ q∣) = {ϕ1, ϕ2}, and so MaxR3(∣p∧ q∣) ⊈ ∣r ∣, by virtue ofϕ2.
Hence,R3 ⊭H O(r/p∧ q). We show thatR3 is stoppered. Suppose someA ∈ LBL and
someϕ such thatϕ ∈ ∣A∣. If ϕ = ϕ1 thenϕ ∈ MaxR3(∣A∣). Similarly if ϕ = ϕ3. If ϕ = ϕ2,
then if ϕ3 ∈ ∣A∣ thenϕ3 ∈ MaxR3(∣A∣) andϕ3P3ϕ. If ϕ3 ∉ ∣A∣, thenϕ ∈ MaxR3(∣A∣).
Similarly if ϕ = ϕ4, with ϕ1 in place ofϕ3. Likewise, if ϕ ∈ Y. Hence, for anyA and
ϕ, if ϕ ∈ ∣A∣, then eitherϕ ∈ MaxR3(∣A∣) or there is aϕ′ ∈ MaxR3(∣A∣) such thatϕ′P3ϕ,
which is to say,R3 is stoppered. Consequently,(P(q/p)∧ O(r/p)) → O(r/p∧ q) ∉
DSDL2.5, and(P(q/p)∧O(r/p)) →O(r/p∧ q) ∉ DDL-c.

4 DDL-d = DSDL3

As we establish the equivalences of the axiomatic systems with Hansson’s semantically
defined dyadic deontic logics, we begin with DDL-d and DSDL3 because that is the
most straight-forward. The demonstration will follow familiar paths, and thus perhaps
be a comfortable exercise to limber up for more arduous hikes to come.

Since we already have the soundness of DDL-d in Theorem 1, let us turn straight
away to completeness. Letw be any maximal DDL-d consistent set of formulas of
LDLa. Givenw, for anyA ∈ LBL , let

• ∆A = {B ∶ O(B/A) ∈ w}.
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Lemma 4 (i) If P(⊺/A) ∈ w then∆A is BL-consistent. (ii) If O(B/A) ∉ w, then∆A ∪
{¬B} is BL-consistent.

Proof. For (i), supposeP(⊺/A) ∈ w, but that∆A is not BL-consistent. Then there
areD1, . . . ,Dn ∈ ∆A such that⊢ (D1 ∧ ⋅ ⋅ ⋅ ∧ Dn) → �, where for eachDi , O(Di/A) ∈ w.
By application of (AND) it follows thatO(D1 ∧ ⋅ ⋅ ⋅ ∧ Dn/A) ∈ w; it also follows by
(RW) that⊢ O(D1 ∧ ⋅ ⋅ ⋅ ∧ Dn/A) → O(�/A). Hence,O(�/A) ∈ w. SinceP(⊺/A) ∈ w,
¬O(¬⊺/A) ∈ w, i.e.,¬O(�/A) ∈ w, contrary to the consistency ofw. Hence,∆A must
be consistent. The argument for (ii) is similar.

This lemma will apply as well in later arguments for the other systems.

As earlier,V is the set of classical valuations forLBL . Given w, let us say, for
ϕ ∈ V andA ∈ LBL :

• ϕ is w-normal forA iff for all B ∈ ∆A, ϕ ∈ ∣B∣.

Henceforth, we drop the prefix ‘w’ on ‘w-normal’, and just say ‘normal’.
We now define an H-model, i.e., a binary relationR ⊆ V × V, that will be shown

to verify all and only sentences inw, Lemma 8 below.

• For ϕ, ϕ′ ∈ V, ϕRϕ′ iff for all B such thatϕ′ is normal forB, there is anA such
thatϕ is normal forA andP(A/A∨ B) ∈ w.

To demonstrate thatR has the requisite properties for a DSDL3 relation and that
it does the work it is supposed to do, it is helpful to know the following principles are
derivable in DDL-d. The first, often called (S), is derivable even in DDL-a, and so in all
the DDL systems; it will figure frequently in the proofs for those other systems. (S) is,
in fact, interderivable with (OR), given the other postulates of DDL-a. Here we derive
it using (OR), and leave it as an exercise to the reader to derive (OR) from it. It is not
difficult. The second principle applies to showing thatR is transitive; it is interderivable
with (RatMono). We derive (transit) here, and leave the derivation of (RatMono) from
it as another exercise. It is harder. The third principle is less interesting; it applies to
showing thatR is total.

Lemma 5 These are derivable in DDL-d:

(1) (S) O(C/A∧ B) → O(B→ C/A),
(2) (transit) (P(A/A∨ B) ∧ P(B/B∨C)) → P(A/A∨C),
(3) (total) P(⊺/A∨ B) → (P(A/A∨ B) ∨ P(B/A∨ B)).

Proof. (1) For (S), supposeO(C/A∧ B). ThenO(B→ C/A∧ B), by (RW). Also,
O(A∧¬B/A∧¬B), by (Reflex); hence,O(B→ C/A∧¬B), also by (RW). From those,
O(B→ C/(A∧ B) ∨ (A∧ ¬B)), by (OR), and thenO(B→ C/A) follows by (LLE).

(2) For (transit), suppose (a)P(A/A∨B) and (b)P(B/B∨C), i.e.,¬O(¬A/A∨B)
and¬O(¬B/B∨C). Suppose, forreductio, (c)¬P(A/A∨C), i.e.,O(¬A/A∨C). Then
O(¬A/(A ∨ C) ∧ (A ∨ B ∨ C)) by (LLE), so O((A ∨ C) → ¬A/A ∨ B ∨ C) by (S),
i.e., (1) above. From that, (i)O(¬A/A∨ B∨C) follows by (RW). We now derive (ii)
P(A∨B/A∨B∨C), i.e.,¬O(¬(A∨B)/A∨B∨C), by anotherreductio. For that, suppose
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(d) O(¬(A∨B)/A∨B∨C). Under that supposition, we want (iii)P(B∨C/A∨B∨C), and
so suppose, for a thirdreductio, (e)O(¬(B∨C)/A∨B∨C). SinceO(A∨B∨C/A∨B∨C),
(Reflex),O((A∨ B∨C) ∧ ¬(B∨C))/A∨ B∨C) by (AND), whenceO(A/A∨ B∨C)
by (RW). With (i) that yieldsO(A∧¬A/A∨B∨C) by (AND), and soO(�/A∨B∨C).
Given (RP), it follows thatA∨B∨C is BL-inconsistent, i.e.,⊢ (A∨B∨C) ↔ �. From
that,⊢ (A∨ B∨C) ↔ (A∨ B). Then, from (i)O(¬A/A∨ B) by (LLE), contrary to (a)
above. Therefore, (e) is false; so (iii)P(B∨C/A∨ B∨C). From (d), it follows that
O(¬B/A∨ B∨C) by (RW). With (iii), O(¬B/(B∨C) ∧ (A∨ B∨C)) by (RatMono).
ThenceO(¬B/B∨C) by (LLE). That contradicts (b) above. Hence, (d) is false, and so
(ii) P(A∨B/A∨B∨C). (i) and (ii) yieldO(¬A/(A∨B)∧ (A∨B∨C)) by (RatMono).
ThenO(¬A/A∨B) by (LLE). That contradicts (a). Hence, (c) too is false, and therefore,
P(A/A∨C), as required.

(3) For (total), supposeP(⊺/A∨B), i.e.,¬O(�/A∨B), and suppose¬P(A/A∨B)
and¬P(B/A∨ B), i.e.,O(¬A/A∨ B) andO(¬B/A∨ B). ThenO(¬A∧ ¬B/A∨ B) by
(AND). SinceO(A∨B/A∨B), (Reflex),O((A∨B)∧¬A∧¬B/A∨B) by (AND) again,
and thusO(�/A∨ B) by (RW), which contradicts the first supposition. Hence, either
P(A/A∨ B) or P(B/A∨ B); so, if P(⊺/A∨ B), thenP(A/A∨ B) ∨ P(B/A∨ B).

Lemma 6 R is reflexive, transitive, and total.

Proof. Reflexivity follows from totality below. For transitivity, supposeϕRϕ′ and
ϕ

′Rϕ′′. We showϕRϕ′′. For that, consider anyC such thatϕ′′ is normal forC. Since
ϕ

′Rϕ′′, there is aB such thatϕ′ is normal forB andP(B/B∨C) ∈ w. SinceϕRϕ′, there
is anA such thatϕ is normal forA andP(A/A ∨ B) ∈ w. By (transit), Lemma 5(2),
P(A/A∨C) ∈ w. That suffices forϕRϕ′′, as required.

For totality, consider anyϕ, ϕ′ ∈ V. Suppose it is not the case thatϕRϕ′. Then
there must be someB such thatϕ′ is normal forB and for allA such thatϕ is normal
for A, P(A/A∨ B) ∉ w. To see thatϕ′Rϕ, consider anyC such thatϕ is normal forC.
ThenP(C/C ∨ B) ∉ w. Sinceϕ′ is normal forB, ϕ′ ∈ ∣B∣, and soϕ′ ∈ ∣B∨C∣. Hence,
B∨C is consistent, and so, by (RP),⊢ P(⊺/B∨C). ThusP(⊺/B∨C) ∈ w. Given that,
andP(C/B∨C) ∉ w, it follows thatP(B/B∨C) ∈ w by (total), Lemma 5(3). Hence,
for any C such thatϕ is normal forC there is aB such thatϕ′ is normal forB and
P(B/B∨C) ∈ w. That suffices forϕ′Rϕ, as required.

Lemma 7 For all ϕ ∈ V, and all A∈ LBL , ϕ is normal for A iffϕ ∈ MaxR(∣A∣).

Proof. L → R: Supposeϕ is normal forA. By (Reflex)O(A/A) ∈ w, soA ∈ ∆A.
Hence,ϕ ∈ ∣A∣. Suppose then, forreductio,ϕ ∉ MaxR(∣A∣). Then there is someϕ′ ∈ ∣A∣
such thatϕ′Pϕ. Since it is not the case thatϕRϕ′, there must be someB such that
ϕ

′ is normal forB and for allC if ϕ is normal forC thenP(C/C ∨ B) ∉ w. Hence,
P(A/A ∨ B) ∉ w, i.e., O(¬A/A ∨ B) ∈ w. Sinceϕ ∈ ∣A∣, ϕ ∈ ∣A ∨ B∣; hence,A ∨ B is
consistent. By (RP),⊢ P(⊺/A∨B), so thatP(⊺/A∨B) ∈ w. SinceP(A/A∨B) ∉ w, then,
by (total), Lemma 5(3),P(B/A∨B) ∈ w. SinceO(¬A/A∨B) ∈ w, O(¬A/(A∨B)∧B) ∈
w by (RatMono), and thenO(¬A/B) ∈ w, by (LLE). Sinceϕ′ is normal forB, ϕ′ ∈ ∣¬A∣,
hence,ϕ′ ∉ ∣A∣. But it is given thatϕ′ ∈ ∣A∣; thus a contradiction. Consequently, it must
be thatϕ ∈ MaxR(∣A∣).
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R → L: Supposeϕ ∈ MaxR(∣A∣). Since obviouslyϕ ∈ ∣A∣, A is BL-consistent.
That being so,⊢ P(⊺/A), by (RP), so thatP(⊺/A) ∈ w. By Lemma 4(i),∆A is BL-
consistent. Hence there is a valuation,ϕ′ ∈ V such that for allC ∈ ∆A, ϕ′ ∈ ∣C∣. ϕ′ is
thus normal forA; so alsoϕ′ ∈ ∣A∣. Sinceϕ ∈ MaxR(∣A∣)andR is total, Lemma 6,ϕRϕ′.
Hence, for allC such thatϕ′ is normal forC, there is someB such thatϕ is normal for
B and P(B/B ∨ C) ∈ w. Hence, there is some suchB such thatP(B/A ∨ B) ∈ w.
Now consider anyD ∈ ∆A, so thatO(D/A) ∈ w. ThenO(D/A ∧ (A ∨ B)) ∈ w, by
(LLE); hence,O(A → D/A ∨ B) ∈ w, by principle (S), Lemma 5(1). It follows that
O(A→ D/(A∨B)∧B) ∈ w, by (RatMono). Hence,O(A→ D/B) ∈ w, by (LLE). Since
ϕ is normal forB, ϕ ∈ ∣A → D∣. Since alsoϕ ∈ ∣A∣, ϕ ∈ ∣D∣. That suffices forϕ to be
normal forA, as required.

We will see that sort of equivalence between normality and maximalityin the
proofs to come for the other systems as well.

Lemma 8 For all α ∈ LDLa, α ∈ w iff R ⊧H α.

Proof. By induction onα. I will show only the basis case whereα = O(B/A)
for someA,B ∈ LBL . The induction to Boolean combinations of such formulas is very
easy, and left to the reader.

L → R: SupposeO(B/A) ∈ w. To showR ⊧H O(B/A), i.e, MaxR(∣A∣) ⊆ ∣B∣, con-
sider anyϕ ∈ MaxR(∣A∣). By Lemma 7,ϕ is normal forA. SinceB ∈ ∆A, ϕ ∈ ∣B∣. That
suffices for MaxR(∣A∣) ⊆ ∣B∣, and soR ⊧H O(B/A).

R → L: SupposeR ⊧H O(B/A), i.e, MaxR(∣A∣) ⊆ ∣B∣. SupposeO(B/A) ∉ w. By
Lemma 4(ii),∆A ∪ {¬B} is BL-consistent, and so there is aϕ such that for allC ∈
∆A ∪ {¬B}, ϕ ∈ ∣C∣. ϕ is thus normal forA. Hence,ϕ ∈ MaxR(∣A∣), by Lemma 7. So
ϕ ∈ ∣B∣. But alsoϕ ∈ ∣¬B∣, orϕ ∉ ∣B∣, a contradiction. Hence,O(B/A) ∈ w.

Lemma 9 R is limited; i.e., for all A∈ LBL , if ∣A∣ ≠ ∅, thenMaxR(∣A∣) ≠ ∅.

Proof. Suppose∣A∣ ≠ ∅. Then A is BL-consistent. By (RP),⊢ P(⊺/A), so
P(⊺/A) ∈ w. By Lemma 4(i),∆A is BL-consistent. Hence there is aϕ ∈ V such that for
all B ∈ ∆A, ϕ ∈ ∣B∣. ϕ is thus normal forA. Hence, by Lemma 7,ϕ ∈ MaxR(∣A∣), and so
MaxR(∣A∣) ≠ ∅.

From these lemmas, the strong completeness of DDL-d easily follows.

Theorem 10 DDL-d is strongly complete with respect to the class of DSDL3 mod-
els/relationsR; i.e., if Γ ⊩H α with respect to that class, thenΓ ⊢ α in DDL-d.

Proof. SupposeΓ ⊩H α with respect to the class of DSDL3 models/relationsR,
and suppose, forreductio,Γ ⊬ α. ThenΓ∪ {¬α} is consistent for DDL-d, and so it has
a maximal consistent extensionw, by the usual arguments. Given one suchw, define
the relationR as described above. By Lemmas 6 and 9,R is reflexive, transitive and
total, and limited. Hence,R is a DSDL3 model/relation. Sincew is an extension of
Γ ∪ {¬α}, for everyγ ∈ Γ, γ ∈ w. Hence by Lemma 8, for everyγ ∈ Γ, R ⊧H γ. Also,
since¬α ∈ w, R ⊧H ¬α. Consequently,R ⊭H α, and soΓ ⊮H α with respect to this class of
models/relations, a contradiction. Therefore,Γ ⊢ α in DDL-d.
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Since strong completeness implies weak completeness, i.e., thatall valid formulas
are derivable, or, for allα ∈ LDLa, if ⊩H α then⊢ α, then

Corollary 11 DSDL3⊆ DDL-d.

Hence, with Theorem 1 and its corollary,

Corollary 12 DDL-d = DSDL3.

Moreover, since, as is well-known, strong completeness with soundness implies
compactness for a class of models, i.e., that, for anyΓ, if every finite subset ofΓ is
satisfiable in the class thenΓ is satisfiable in that class, or equivalently, ifΓ ⊩H α then
there is a finite setΓ f ⊆ Γ such thatΓ f ⊩H α,

Corollary 13 DSDL3 is compact.

Proof. Suppose every finite subset ofΓ is satisfiable in DSDL3 models, but thatΓ
is not so satisfiable. Then, vacuously,Γ ⊩H β ∧ ¬β. By strong completeness,Γ ⊢ β ∧ ¬β
in DDL-d. By definition of derivability, there is a finiteΓ f ⊆ Γ such thatΓ f ⊢ β ∧ ¬β.
By soundness,Γ f ⊩H β∧¬β. Since, by assumption,Γ f is satisfiable, there is anR apt for
DSDL3 such thatR ⊧H γ for everyγ ∈ Γ f , in which caseR ⊧H β∧¬β, which is impossible.
Hence,Γ is satisfiable in DSDL3 models.

These are the results to be established in this section. Next weconsider the weaker
systems DSDL1, DSDL2 and DSDL2.5. In passing, however, we will also return to
DDL-d and DSDL3 to prove them equivalent by a somewhat different method. That is
for application later, in §6.2, where we find all the logics to be decidable.

5 DDL-a = DSDL1, DDL-b = DSDL2, and
DDL-c = DSDL2.5

This section demonstrates that DDL-a is equivalent to DSDL1, DDL-b to DSDL2 and
DDL-c to DSDL2.5. Along the way, as alluded above, we also return to the equiva-
lence of DDL-d and DSDL3. To establish these results is tantamount to proving the
soundness and completeness of the axiomatic systems with respect to the classes of
Hanssonian models/relationsR for the corresponding semantical system. We already
have their soundness in Theorem 1.

For completeness, the demonstrations for the three weaker systems will be more
difficult than that for DDL-d in the preceding section. They will proceed in two major
stages. Stage 1 establishes the systems’ completeness in terms of P-models. There we
will find that for anyα that is not a theorem of the logic there is an appropriate P-model
that falsifiesα. Unfortunately, the models we find are redundant, and we need irredun-
dant models to match Hansson’s definitions. To get around that, we will work at first
not exactly with DDL-a, -b, and -c, but rather with their finite counterparts and finite,
though redundant, P-models for them. From those, however, in Stage 2, we can derive
Hanssonian relationsR that also falsifyα and are appropriate for DSDL1, DSDL2 and

Lou Goble

26



DSDL2.5. With that, completeness for the full systems in termsof relationsR follows.
We apply similar procedures to DDL-d and its finite counterparts.

By ‘finite counterparts’ of these systems, I mean their analogs cast in a finite
language. By ‘finite language’ I just mean a language with finitely many atoms. Section
2.1 specified the full, infinite languagesLBL andLDLa. We now wish to speak of their
finite sublanguages. For any finiten ≥ 1, letLn

BL be a standard propositional language,
just likeLBL , except thatLn

BL has exactlyn many atoms. From those, more complex
formulas are formed as usual. We may suppose that ifn ≤ m, thenLn

BL ⊆ Lm
BL ; also

Ln
BL ⊂ LBL .

Ln
DLa is simply the dyadic deontic language based onLn

BL as the fullLDLa is based
on LBL , with O(B/A) well-formed whenA,B ∈ Ln

BL . Ln
DLa ⊂ LDLa. If a formula

α ∈ Ln
DLa, butα ∉ Ln−1

DLa, let us say thatα is from leveln, and writeλ(α) = n. Plainly,
for everyα ∈ LDLa, there is a finiten ≥ 1 such thatλ(α) = n.

If L is one of the logics DDL-a, -b, -c or -d, so, for finiten ≥ 1, the finite logicLn

is a set of formulas fromLn
DLa. These are determined axiomatically by all instances of

the schemas ofL that are formulas ofLn
DLa, or that follow from those by the rules of

inference restricted to formulas ofLn
DLa. This should be clear enough. Notice we do

not presume thatLn
= L ∩ Ln

DLa. While that is true, to demonstrate it calls on results
yet to be established; see Corollary 89 in §6.2 below. For now,Ln always refers to the
axiomatic system given by the limitation of the postulates ofL toLn

DLa. DDLn-a is the
counterpart of DDL-a in finiteLn

DLa; similarly DDLn-b, DDLn-c, and DDLn-d.
A P-model defined forLn

DLa is understood to be just that, defined forLn
DLa and not

for any other, richer language. That is, ifM = ⟨W,⪯,v⟩ is defined forLn
DLa, thenv(p)

is defined for every atomp ∈ Ln
BL , and for no others.W may still be any nonempty set

and⪯ ⊆ W×W. In light of this, a P-modelM defined forLn
DLa, if replete, is understood

to be replete forLn
BL , not the whole ofLBL , i.e.,

• A P-modelM = ⟨W,⪯,v⟩ defined forLn
DLa, is replete forLn

BL just in case, for all
A ∈ Ln

BL , if ∣A∣ ≠ ∅ then∣A∣M ≠ ∅.

Similarly, a P-modelM = ⟨W,⪯,v⟩ defined forLn
DLa, is, if said to be limited or

stoppered, understood to be limited or stoppered with respect toLn
BL , i.e.,

• M = ⟨W,⪯,v⟩ defined forLn
DLa is limited forLn

BL just in case, for everyA ∈ Ln
BL ,

if ∣A∣M ≠ ∅, then Max⪯(∣A∣M) ≠ ∅;

• M = ⟨W,⪯,v⟩ defined forLn
DLa is stoppered forLn

BL just in case, for everyA ∈
Ln

BL , and everyw ∈ W, if w ∈ ∣A∣M, thenw ∈ Max⪯(∣A∣M) or there is aw′ ∈
Max⪯(∣A∣M) such thatw′ ≺ w.

We now take the first small step on our journey. This lemma applies to all of the
systemsL = DDL-a, -b, -c, and -d, and their finite counterpartsLn.

Lemma 14 For any finite n≥ 1 and anyα ∈ LDLa, if λ(α) = n, then if⊢ α in Ln, then
⊢ α in L, with Ln the finite counterpart ofL in the languageLn

DLa overLn
BL .

Proof. Obvious, since any derivation ofα in Ln will be a derivation ofα in L,
given thatLn

DLa ⊂ LDLa.

Now the work begins.
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5.1 Stage 1

This stage of the argument demonstrates the soundness and completeness of each sys-
temLn in the framework of finite P-models of the appropriate kinds. As usual, sound-
ness is routine, and so, for the most part, left to the reader to verify.

Theorem 15 For each finite n≥ 1, (i) DDLn-a is sound with respect to the class of
P-models defined forLn

DLa that are replete forLn
BL and whose relation⪯ is reflexive;

(ii) DDLn-b is sound with respect to the class of P-models defined forLn
DLa that are

replete forLn
BL and whose relation⪯ is reflexive and limited forLn

BL ; (iii) DDL n-c is
sound with respect to the class of P-models defined forLn

DLa that are replete forLn
BL

and whose relation⪯ is reflexive and stoppered forLn
BL . (iv) DDLn-d is sound with

respect to the class of P-models defined forLn
DLa that are replete forLn

BL and whose
relation⪯ is reflexive, transitive and total, as well as limited forLn

BL .

Proof. As with Theorem 1, this is proved by demonstrating that all the systems’
axioms are valid with respect to the appropriate classes of P-models and that the rules
preserve validity. The demonstrations mimic those of Theorem 1, except that we note
that, in the framework of P-models, to validate (RP) for DDLn-b, DDLn-c and DDLn-d
requires repletion as well as being limited; repletion is idle for DDLn-a. Thus, for the
validity of (RP), supposeA ∈ Ln

BL is BL-consistent, i.e.,∣A∣ ≠ ∅. Then, for anyM that
is replete forLn

BL , ∣A∣M ≠ ∅. If M is limited or stoppered forLn
BL as well as replete,

then MaxR(∣A∣M) ≠ ∅. From that,M ⊧P P(⊺/A). Hence,⊩P P(⊺/A).

For later reference, we note that adding a condition of finitenesswould not affect
the validity of any of the postulates of DDLn; hence:

Corollary 16 For each DDLn system, DDLn is sound with respect to the class of finite
P-models appropriate to DDLn.

We turn now to completeness. For this, we give one sort of demonstration for
DDLn-a and DDLn-b and another for DDLn-c, because the first construction is not
conducive to stoppered relations, while the second requires (CautMono) of DDLn-c.
For both methods, however, the arguments are chiefly technical; there is no natural
motivation or informal explanation for the various devices used along the way, except
that they accomplish the desired results. For DDLn-d the proof will echo that of §4.

5.1.1 Finite DDLn-a and DDLn-b

Assume finiten ≥ 1 is given. We now demonstrate that the finite-based DDLn-a and
DDLn-b are complete with respect to the class of P-models defined forLn

DLa that are (i)
finite and (ii) replete forLn

BL and, for DDLn-b, (iii) limited for Ln
BL .5

5This demonstration draws on methods used by Parent [12] to prove completeness for Åqvist’s systems
E andF, which are similar to DDL-a and DDL-b, though also significantly different. Parent cites Schlechta
[15] as a source of some of his ideas. I have drawn too from Schlechta’s [14], though it has been necessary
to adjust his methods to suit the present systems. Indeed, the present demonstration diverges considerably
from both Schlechta’s and from Parent’s; I need not describe those differences here, however.
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To begin, letwn be a maximal DDLn-a or DDLn-b consistent set of formulas of
Ln

DLa. Much as before, let∆A = {B ∈ Ln
BL ∶ O(B/A) ∈ wn}. Lemma 4 for DDL-d

continues to hold here, withwn in place ofw.
Let WBLn

be the set of all maximal BL-consistent sets of formulas ofLn
BL . Let Wt

be a triplication ofWBLn

; i.e., let

• W1 = {⟨x,1⟩ ∶ x ∈ WBLn

},

• W2 = {⟨x,2⟩ ∶ x ∈ WBLn

},

• W3 = {⟨x,3⟩ ∶ x ∈ WBLn

},

• Wt = W1 ∪W2 ∪W3.

This multiplication is required for Lemma 21 below, which is key to subsequent results.
Henceforth, I will use letters,x,y,z, etc., as variables for members ofWBLn

, and
lettersa,b,c, etc., as variables for members ofWt. Whena = ⟨x, i⟩, for i ∈ {1,2,3},
I will write a′ and a′′ for its two images,⟨x, j⟩ and ⟨x,k⟩ for j,k ∈ {1,2,3} where
i ≠ j ≠ k ≠ i. Generally, it will not matter which is which, only thata ≠ a′ ≠ a′′ ≠ a.

For all A ∈ Ln
BL , let

• [A] = {⟨x, i⟩ ∶ x ∈ WBLn

andi ∈ {1,2,3} andA ∈ x}.

Thus, fora = ⟨x, i⟩, a ∈ [A] just in caseA ∈ x. Given the multiplication inherent inWt,
it is apparent that each[A] contains the images of its members.

Lemma 17 For all a ∈ Wt and all A∈ Ln
BL , a ∈ [A] iff a′ ∈ [A] iff a′′ ∈ [A], a′ and a′′

being the images of a in Wt.

Proof. Obvious.

For pointsa ∈ Wt, andformulasA ∈ Ln
BL , let us say, much as before,

• a is wn-normal forA iff, for all B such thatO(B/A) ∈ wn, a ∈ [B].

Thus, fora = ⟨x, i⟩, a is wn-normal forA just in case∆A ⊆ x. Henceforth, as before, we
drop the prefix, and write simply ‘ais normal’.

Lemma 18 For all A,B ∈ Ln
BL , if [A] = [B] then (i)⊢ A↔ B, and (ii) a is normal for

A iff a is normal for B.

Proof. Suppose[A] = [B]. For (i), if ⊬ A ↔ B then¬(A ↔ B) is consistent. So
there is anx ∈ WBLn

containing eitherA and¬B or else¬A andB. Consider the first
case; the second is similar. Leta = ⟨x,1⟩. a ∈ [A]; soa ∈ [B]. ThenB ∈ x, contrary to
its consistency. Hence,⊢ A ↔ B. (ii) follows from (i), since if⊢ A ↔ B, ∆A = ∆B by
(LLE). So, fora = ⟨x, i⟩, a is normal forA iff ∆A ⊆ x iff ∆B ⊆ x iff a is normal forB.

For alla ∈ Wt, let

• Υa = {X ⊆ Wt ∶ there is anA ∈ Ln
BL such thatX = [A] anda ∈ [A] anda is not

normal forA}.
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Lemma 19 Υa is well-defined.

Proof. Obvious, by the quantification built into the definition. We also note,
however, that if[A] = [B], thena is normal forA iff a is normal forB, Lemma 18(ii);
since alsoa ∈ [A] iff a ∈ [B], then, under the definition,[A] ∈ Υa iff [B] ∈ Υa.

In general, given a set,X , of nonempty sets,X, let us say:

• χ is asampler setoverX just in case both (i) for everyX ∈ X , there is anx ∈ X
such thatx ∈ χ, and also (ii) for everyx ∈ χ, there is anX ∈ X such thatx ∈ X.

Thus, predictably, a sampler setχ overX is composed of samples from all theX ∈ X .

Lemma 20 For any set,X , of nonempty sets there is a sampler setχ overX .

Proof. GivenX , letχ = ⋃X . χ is a sampler set overX , by the definition.

In caseX is empty, then the only sampler set overX will be∅, but it still counts.
Obviously, fora ∈ Wt, Υa is a set of nonempty subsets, though it might be empty.

For all a ∈ Wt, let

• Φa = {χ ∶ χ is a sampler set overΥa anda ∉ χ}.

Lemma 21 (i) For all a ∈ Wt, Φa ≠ ∅. (ii) For every a,b ∈ Wt, there is aχ ∈ Φb such
that a∉ χ.

Proof. (i) follows directly from (ii). For that, considerχ = ⋃Υb − {a,b}. We
show thatχ is a sampler set overΥb. First, consider anyX ∈ Υb, so that there is anA
such thatX = [A] andb ∈ [A]. By Lemma 17,b′ ∈ [A] andb′′ ∈ [A], i.e.,b′ ∈ X and
b′′ ∈ X, for b′,b′′ the two images ofb. In casea = b′, thenb′′ ∈ χ; in casea ≠ b′, then
bothb′ ∈ χ andb′′ ∈ χ. In either case, (a), for anyX ∈ Υb, there is ac ∈ X such that
c ∈ χ, as required for a sampler set. Next, consider anyc ∈ χ. Thenc ∈ ⋃Υb, so that
(b), for anyc ∈ χ, there is anX ∈ Υb such thatc ∈ X, as also required for a sampler set.
By (a) and (b) together,χ is a sampler set overΥb. Sinceb ∉ χ, χ ∈ Φb. Obviously,
a ∉ χ. Hence, there is aχ ∈ Φb such thata ∉ χ.

We are now in a position to define our intended model. LetM = ⟨W,⪯,v⟩, with

• W = {⟨a, χ⟩ ∶ a ∈ Wt andχ ∈ Φa},

• for ⟨a, χ⟩, ⟨b, χ′⟩ ∈ W, ⟨a, χ⟩ ⪯ ⟨b, χ′⟩ iff either (i)⟨a, χ⟩ = ⟨b, χ′⟩ or (ii) a ∈ χ′,

• v(p) = {⟨a, χ⟩ ∈ W ∶ a ∈ [p]}, for each atomp ∈ Ln
BL .

Lemma 22 M is a P-model defined forLn
DLa, and⪯ is reflexive.

Proof. This should be obvious, or nearly so. Given Lemma 21(i), for everya ∈ Wt,
there is aχ ∈ Φa. Since there area ∈ Wt, there are thus⟨a, χ⟩ ∈ W. Hence,W ≠ ∅.
Clearly,⪯ ⊆ W×W, andv is well-defined for all and only atomsp ∈ Ln

BL . HenceM is a
P-model defined forLn

DLa. That⪯ is reflexive is given by clause (i) of its definition.

It remains to show thatM doesthe work it is supposed to do. With points⟨a, χ⟩,
⟨b, χ′⟩, etc. now in play, let us write ‘∣[A]∣’ to signify the set of points inW whose left
member belongs to[A]. I.e.,
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• ∣[A]∣ = {⟨a, χ⟩ ∈ W ∶ a ∈ [A]}.

Lemma 23 For all a ∈ Wt and all A∈ Ln
BL , a is normal for A iffthere is aχ ∈ Φa such

that ⟨a, χ⟩ ∈ Max⪯(∣[A]∣).

Proof. L →R: Supposea is normal forA. By virtue of (Reflex),a ∈ [A]. Consider
the setχ = ⋃Υa− [A]. We show first (1)χ ∈ Φa and then (2)⟨a, χ⟩ ∈ Max⪯(∣[A]∣).
For (1), we show thatχ is a sampler set overΥa. First, consider anyX ∈ Υa, so that
there is aB such thatX = [B] anda ∈ [B] anda is not normal forB. We show first
that [B] − [A] ≠ ∅. Suppose, forreductio,[B] − [A] = ∅. Then[B] ⊆ [A], whence
[A]∩[B] = [B]. It is not hard to show, and so left to the reader, that[A]∩[B] = [A∧B].
That being so,[B] = [A∧ B]. Thus,a is not normal forA∧ B, by Lemma 18(ii). On
the other hand, consider anyC such thatO(C/A∧ B) ∈ wn. By principle (S), proved
in Lemma 5(1),O(B → C/A) ∈ wn. Sincea is normal forA, a ∈ [B → C], so that, if
a = ⟨x, i⟩, B → C ∈ x. Givena ∈ [B], thenB ∈ x; it follows thatC ∈ x; hence,a ∈ [C].
That suffices fora’s being normal forA∧ B, a contradiction. Therefore,[B]− [A] ≠ ∅.
Thus, there is ac ∈ [B], i.e.,c ∈ X, such thatc ∉ [A]. Thenc ∈ ⋃Υa− [A], i.e.,c ∈ χ.
Thus (i), for anyX ∈ Υa, there is ac ∈ X such thatc ∈ χ. Next, consider anyc ∈ χ.
So,c ∈ ⋃Υa, which is to say, there is anX ∈ Υa such thatc ∈ X. Thus (ii), for any
c ∈ χ, there is anX ∈ Υa such thatc ∈ X. By (i) and (ii), χ is a sampler set overΥa.
Furthermore,a ∉ χ, for suppose, forreductio,a ∈ χ. Thena ∈ ⋃Υa− [A]; soa ∉ [A], a
contradiction. Therefore,a ∉ χ. Sinceχ is a sampler set overΥa anda ∉ χ, (1) χ ∈ Φa.

Next we show that⟨a, χ⟩ ∈ Max⪯(∣[A]∣). Since (1)χ ∈ Φa, ⟨a, χ⟩ ∈ W, and since
a ∈ [A], ⟨a, χ⟩ ∈ ∣[A]∣. To see that it is maximal in∣[A]∣, suppose, forreductio, there
were some⟨b, χ′⟩ ∈ ∣[A]∣ such that⟨b, χ′⟩ ≺ ⟨a, χ⟩. Obviously,⟨b, χ′⟩ ≠ ⟨a, χ⟩. Hence,
by definition of⪯, and so of≺, b ∈ χ. Since⟨b, χ′⟩ ∈ ∣[A]∣, b ∈ [A]. Sinceb ∈ χ,
b ∈ ⋃Υa and b ∉ [A], a contradiction. Hence there is no such⟨b, χ′⟩, and so (2)
⟨a, χ⟩ ∈ Max⪯(∣[A]∣).

R→ L: Suppose someχ ∈ Φa such that⟨a, χ⟩ ∈ Max⪯(∣[A]∣). Since⟨a, χ⟩ ∈ ∣[A]∣,
a ∈ [A]. Suppose, forreductio,a is not normal forA. Then[A] ∈ Υa. By definition
of Φa, χ is a sampler set overΥa, and so there must be someb ∈ [A] andb ∈ χ. Since
χ ∈ Φa, a ∉ χ, and sinceb ∈ χ, a ≠ b. By Lemma 21(ii), there is aχ′ ∈ Φb such
that a ∉ χ′. ⟨b, χ′⟩ ∈ W. Also, ⟨b, χ′⟩ ∈ ∣[A]∣. Sinceb ∈ χ, ⟨b, χ′⟩ ⪯ ⟨a, χ⟩. Since
⟨a, χ⟩ ∈ Max⪯(∣[A]∣), it follows that⟨a, χ⟩ ⪯ ⟨b, χ′⟩. And sincea ≠ b, ⟨a, χ⟩ ≠ ⟨b, χ′⟩;
hence, it must be thata ∈ χ′, a contradiction. Therefore,a is normal forA.

Lemma 24 For all A ∈ Ln
BL , ∣[A]∣ = ∣A∣M.

Proof. By an easy induction onA, easy enough to leave to the reader.

These preliminaries enable our key lemma:

Lemma 25 For all α ∈ Ln
DLa, α ∈ wn iff M ⊧P α.

Proof. By induction onα. We show the basis case, whereα = O(B/A). The
induction to more complex formulas is routine, and left to the reader.

L →R: SupposeO(B/A) ∈ wn. To show thatM ⊧P O(B/A), i.e., that Max⪯(∣A∣M) ⊆
∣B∣M, suppose some⟨a, χ⟩ ∈ Max⪯(∣A∣M). By Lemma 24,⟨a, χ⟩ ∈ Max⪯(∣[A]∣). Since
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⟨a, χ⟩ ∈ W, χ ∈ Φa. Hence there is aχ such thatχ ∈ Φa and⟨a, χ⟩ ∈ Max⪯(∣[A]∣). By
Lemma 23,a is normal forA. Hence,a ∈ [B]. Then⟨a, χ⟩ ∈ ∣[B]∣, and so⟨a, χ⟩ ∈ ∣B∣M,
by Lemma 24. That suffices for Max⪯(∣A∣M) ⊆ ∣B∣M, and so forM ⊧P O(B/A).

R→ L: SupposeM ⊧P O(B/A), so that Max⪯(∣A∣M) ⊆ ∣B∣M. SinceO(B/A) ∈ Ln
DLa,

A,B ∈ Ln
BL . By Lemma 24,∣[A]∣ = ∣A∣M and ∣[B]∣ = ∣B∣M. Hence, Max⪯(∣[A]∣) ⊆

∣[B]∣. Suppose, forreductio, O(B/A) ∉ wn. Then, by Lemma 4(ii),∆A ∪ {¬B} is
BL-consistent. Hence there is anx ∈ WBLn

such that∆A ∪ {¬B} ⊆ x. Let a = ⟨x,1⟩.
Since∆A ⊆ x, a is normal forA. By Lemma 23, there is aχ ∈ Φa such that⟨a, χ⟩ ∈
Max⪯(∣[A]∣). Thus,⟨a, χ⟩ ∈ ∣[B]∣, so thata ∈ [B], which means thatB ∈ x. But also
¬B ∈ x, contrary to its consistency. Hence it must be thatO(B/A) ∈ wn.

Lemma 26 For finiteLn
BL , M is (i) finite and (ii) replete forLn

BL .

Proof. (i) That M is finite follows fromLn
BL being finite. Thus, there are only

finitely manyx ∈ WBLn

, so only finitely manya ∈ Wt. Further, for anya ∈ Wt, since
for anyχ ∈ Φa, χ ⊆ Wt, there can be only finitely many suchχ’s. As a result, there are
only finitely many points⟨a, χ⟩ ∈ W.

For (ii), for A ∈ Ln
BL , suppose∣A∣ ≠ ∅. ThusA is BL-consistent, and so there is an

x ∈ WBLn

such thatA ∈ x. Let a = ⟨x,1⟩. By Lemma 21(i), there is aχ ∈ Φa. For such
a one,⟨a, χ⟩ ∈ W. SinceA ∈ x, a ∈ [A], so⟨a, χ⟩ ∈ ∣[A]∣. By Lemma 24,⟨a, χ⟩ ∈ ∣A∣M;
hence,∣A∣M ≠ ∅, as required for repletion.

Lemma 27 If wn is an extension of DDLn-b, then M is limited forLn
BL .

Proof. This follows from (RP) being in DDLn-b. SupposeA ∈ Ln
BL such that

∣A∣M ≠ ∅. By Lemma 24,∣[A]∣ ≠ ∅. Suppose then⟨a, χ⟩ ∈ ∣[A]∣, so thata ∈ [A], and
supposea = ⟨x, i⟩ for somex ∈ WBLn

andi ∈ {1,2,3}. Sincea ∈ [A], A ∈ x. ThusA is
BL-consistent. By (RP),⊢ P(⊺/A) in DDL-b; hence,P(⊺/A) ∈ wn. By Lemma 4(i),
∆A is consistent. Hence there is ay ∈ WBLn

such that∆A ⊆ y. Let b = ⟨y,1⟩. b ∈ Wt.
Sinceb is normal forA, there is aχ′ ∈ Φb such that⟨b, χ′⟩ ∈ Max⪯(∣[A]∣), by Lemma
23. So by Lemma 24,⟨b, χ′⟩ ∈ Max⪯(∣A∣M), and thus Max⪯(∣A∣M) ≠ ∅, as required for
M to be limited forLn

BL .

From these completeness follows quickly in the usual way.

Theorem 28 For all finite n ≥ 1, (i) DDLn-a is weakly complete with respect to the
class of all P-models defined forLn

DLa that are finite and replete forLn
BL and whose

relation⪯ is reflexive, i.e., for anyα ∈ Ln
DLa, if ⊩P α for that class, then⊢ α in DDLn-a.

(ii) DDLn-b is weakly complete with respect to the class of all P-models defined
for Ln

DLa that are finite and replete forLn
BL and whose relation⪯ is reflexive and limited

for Ln
BL , i.e., for anyα ∈ Ln

DLa, if ⊩P α for that class, then⊢ α in DDLn-b.

Proof. Given n ≥ 1 andα ∈ Ln
BL , for (i) suppose⊬ α in DDLn-a. Then¬α is

consistent for DDLn-a. Letwn be a maximal DDLn-a consistent set ofLn
DLa formulas

such that¬α ∈ wn. By the usual arguments, we know there is one. LetM be defined
from wn as described above. By Lemma 22,M is a P-model defined forLn

DLa and⪯
is reflexive. By Lemma 26,M is finite and replete forLn

BL . By Lemma 25,M ⊧P ¬α;
hence,M ⊭P α. It follows that ⊮P α for the class specified. Hence, if⊩P α for that class,
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then⊢ α in DDLn-a. The argument for (ii) is the same vis-à-vis DDLn-b, with the
addition of Lemma 27 that assures that⪯ of M is limited forLn

BL .

While this theorem emphasizes completeness with respect to finitemodels, that
is only because that is what will be applied in Stage 2 of the overall argument. The
demonstration could, however, easily be adapted to establish the completeness of the
full systems, DDL-a and DDL-b in the infinite languageLDLa in terms of infinite P-
models. Moreover, while this theorem only asserts weak completeness for these sys-
tems, the argument is also readily adapted to establish the strong completeness of the
full systems, for appropriate classes of P-models.

Finitude enters the picture in another way as well. By Theorem 15 and its Corol-
lary 16 and Theorem 28, for each finiten ≥ 1, each DDLn-a and DDLn-b is character-
ized by a class of finite models, which is to say, it has the finite model property.

Corollary 29 For each finite n≥ 1, each DDLn-a and DDLn-b has the finite model
property in terms of appropriate P-models defined forLn

DLa.

Hence, importantly, by the usual arguments, because DDLn-a and DDLn-b are
finitely axiomatizable:

Corollary 30 For each finite n≥ 1, each DDLn-a and DDLn-b is decidable.6

That completes this stage for DDLn-a and DDLn-b. We turn next to DDLn-c.

5.1.2 Finite DDLn-c

For completeness for finite DDLn-c, we develop a rather different model than we saw in
the preceding.7 To construct this model, much as before, letwn be a maximal DDLn-c
consistent set ofLn

DLa formulas.WBLn

is the set of maximal BL-consistent sets ofLn
BL

formulas. For allA ∈ Ln
BL , let

• [A] = {x ∈ WBLn

∶ A ∈ x}.

• ∆A = {B ∶ O(B/A) ∈ wn}.

Also much as before,

• x ∈ WBLn

is normal forA iff ∆A ⊆ x.

Analogous to Lemma 18 for DDLn-a, here are some useful little tools.

Lemma 31 (i) If [A] = [B], then⊢ A↔ B; (ii) if [A] = [B], then for any x∈ WBLn

, x is
normal for A iffx is normal for B; (iii) if [A] = [C] and[B] = [D] then O(A/A∨B) ∈ wn

iff O(C/C ∨ D) ∈ wn.

6Ona logic’s being decidable if it has the finite model property and is finitely axiomatizable, see standard
sources on modal logic, such as Chellas [1], §2.8, Cresswell [2], §7.1.4, or Hughes and Cresswell [6], pp.
152–3.

7The demonstration here draws on the proof of the representation theorem for the logicP for preferen-
tial reasoning given by Kraus, Lehmann and Magidor, [7] §5, Theorem 5.18, though streamlined now and
adapted to suit the needs of the present framework, and my own style of doing things.
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Proof. (i) and (ii) are easy and left to the reader; apply the argument for Lemma 18
for DDLn-a. (iii) follows from (i). Thus, if[A] = [C] and[B] = [D] then⊢ A↔ C and
⊢ B↔ D, whence⊢ (A∨B)↔ (C∨D). Then,O(A/A∨B) ∈ wn iff O(C/C∨D) ∈ wn,
by (LLE) and (RW).

We now define the model,M = ⟨W,⪯,v⟩, where

• W = {⟨x,X⟩ ∶ x ∈ WBLn

and there is anA ∈ Ln
BL such thatX = [A] andx is normal

for A},

• for ⟨x,X⟩, ⟨y,Y⟩ ∈ W, ⟨x,X⟩ ⪯ ⟨y,Y⟩ iff either (i) ⟨x,X⟩ = ⟨y,Y⟩, or (ii) for all
A,B ∈ Ln

BL , if X = [A] andY = [B], thenO(A/A∨ B) ∈ wn andx ∉ [B],

• v(p) = {⟨x,X⟩ ∈ W ∶ p ∈ x}.

Lemma 32 M is a P-model defined forLn
DLa.

Proof. Since all components ofM are well-defined, we need only show that
W ≠ ∅. For that, consider that⊺ ∈ Ln

BL is consistent. Hence, by (RP)⊢ P(⊺/⊺) in
DDLn-c, and thenP(⊺/⊺) ∈ wn. By Lemma 4(i),∆⊺ is consistent, and so there is an
x ∈ WBLn

such that∆⊺ ⊆ x. Thusx is normal for⊺, and so⟨x, [⊺]⟩ ∈ W, andW ≠ ∅.

Lemma 33 ⪯ is (i) reflexive, (ii) transitive.

Proof. (i) Reflexivity is trivial by clause (i) of the definition of⪯. (ii) For transi-
tivity, suppose⟨x,X⟩ ⪯ ⟨y,Y⟩ and⟨y,Y⟩ ⪯ ⟨z,Z⟩. If either of those is by clause (i) of
the definition of⪯, it is trivial that ⟨x,X⟩ ⪯ ⟨z,Z⟩. So suppose both are by clause (ii).
Thus, for allA,B ∈ Ln

BL , if X = [A] andY = [B] thenO(A/A∨ B) ∈ wn andx ∉ [B],
and for allC,D ∈ Ln

BL , if Y = [C] andZ = [D] thenO(C/C ∨ D) ∈ wn andy ∉ [D].
Consider anyA,D ∈ Ln

BL such thatX = [A] andZ = [D]. Since⟨y,Y⟩ ∈ W, there is a
B such thatY = [B] andy is normal forB. ThenO(A/A∨ B) ∈ wn andx ∉ [B], i.e.,
B ∉ x, and alsoO(B/B∨ D) ∈ wn andy ∉ [D]. We show firstO(A/A∨ D) ∈ wn. For
that, givenO(A/A∨ B) ∈ wn andO(B/B∨ D) ∈ wn, O(A∨ B/A∨ B) ∈ w by (RW) or
(Reflex) andO(A ∨ B/B∨ D) ∈ wn by (RW), whence (a)O(A ∨ B/A ∨ B∨ D) ∈ wn

by (OR) and (LLE). SinceO(A/A ∨ B) ∈ wn, O(A/(A ∨ B) ∧ (A ∨ B∨ D)) ∈ wn by
(LLE), whence (b)O((A ∨ B) → A/A ∨ B ∨ D) ∈ wn by (S), Lemma 5(1). Then,
with (a), O((A ∨ B) ∧ ((A ∨ B) → A)/A ∨ B ∨ D) ∈ wn by (AND), so that (c)
O(A/A ∨ B ∨ D) ∈ wn by (RW), and then (d)O(A ∨ D/A ∨ B ∨ D) ∈ wn by (RW)
again. From (c) and (d), by (CautMono),O(A/(A∨D)∧ (A∨B∨D)) ∈ wn, and so, by
(LLE), (e)O(A/A∨D) ∈ wn, as desired. Next, we showx ∉ [D]. Suppose, forreductio,
x ∈ [D], i.e.,D ∈ x. Since⟨x,X⟩ ∈ W, there is anE such thatX = [E] andx is normal for
E. Since thus[E] = [A], x is normal forA, by Lemma 31(ii). SinceO(B/B∨ D) ∈ wn,
O(B/(B∨D)∧(A∨B∨D)) ∈ wn by (LLE), whenceO((B∨D)→ B/A∨B∨D) ∈ wn by
(S). SinceO(A/A∨B∨D) ∈ wn, as (c) above, thenO((B∨D)→ B/A∧(A∨B∨D)) ∈ wn

by (CautMono), whenceO((B∨ D) → B/A) ∈ wn by (LLE). Sincex is normal forA,
(B∨ D) → B ∈ x. Thus, ifD ∈ x, B∨ D ∈ x, so thatB ∈ x, a contradiction. Therefore
D ∉ x and sox ∉ [D]. That and (e)O(A/A∨ D) ∈ wn suffice for⟨x,X⟩ ⪯ ⟨z,Z⟩.

For everyA ∈ Ln
BL , let
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• ∣[A]∣ = {⟨x,X⟩ ∈ W ∶ x ∈ [A]}.

Lemma 34 For all x ∈ WBLn

and all A ∈ Ln
BL , (i) if x is normal for A then⟨x, [A]⟩ ∈

Max⪯(∣[A]∣); (ii) if, for any X ⊆ WBLn

, ⟨x,X⟩ ∈ Max⪯(∣[A]∣), then x is normal for A.

Proof. For (i), supposex is normal forA. Given (Reflex),x ∈ [A], so⟨x, [A]⟩ ∈
∣[A]∣. To show it to be maximal there, suppose, forreductio, there is some⟨y,Y⟩ ∈ ∣[A]∣
such that⟨y,Y⟩ ≺ ⟨x, [A]⟩. Obviously,⟨y,Y⟩ ≠ ⟨x, [A]⟩; so, for allB andC, if Y = [B]
and[A] = [C], thenO(B/B∨C) ∈ wn andy ∉ [C]. Hence,y ∉ [A]. But then⟨y,Y⟩ ∉
∣[A]∣, a contradiction. Hence, there is no such⟨y,Y⟩, and so⟨x, [A]⟩ ∈ Max⪯(∣[A]∣).

For (ii), suppose, for someX ⊆ WBLn

, ⟨x,X⟩ ∈ Max⪯(∣[A]∣). Since⟨x,X⟩ ∈ W,
there is aC such thatX = [C] and x is normal forC. SoC ∈ x and x ∈ [C]. Also
x ∈ [A], andA ∈ x. To find x is normal forA, we show first thatO(C/A ∨C) ∈ wn.
For that, suppose, forreductio,O(C/A∨C) ∉ wn. Then∆A∨C ∪ {¬C} is consistent, by
Lemma 4(ii). Hence, there is ay ∈ WBLn

such that∆A∨C ∪ {¬C} ⊆ y. Sincey is normal
for A∨C, ⟨y,[A∨C]⟩ ∈ W. Since¬C ∈ y,C ∉ y, andy ∉ [C]. SinceA∨C ∈ y andC ∉ y,
thenA ∈ y. Soy ∈ [A]. Then⟨y,[A∨C]⟩ ∈ ∣[A]∣. We show⟨y,[A∨C]⟩ ⪯ ⟨x,X⟩. For
that, consider anyD andE such that[A∨C] = [D] andX = [E] = [C]. By (Reflex) and
(LLE), O(A∨C/A∨C ∨C) ∈ wn. HenceO(D/D ∨ E) ∈ wn, by Lemma 31(iii). Since
y ∉ [C], y ∉ [E]. That suffices for⟨y,[A∨C]⟩ ⪯ ⟨x,X⟩. Moreover, sincex ∈ [C], x ≠ y,
so⟨x,X⟩ ≠ ⟨y,[A∨C]⟩. Consequently,⟨x,X⟩ â ⟨y,[A∨C]⟩, for, if ⟨x,X⟩ ⪯ ⟨y,[A∨C]⟩
that must be by clause (ii), so thatx ∉ [A ∨ C], whereasx ∈ [A ∨ C] sincex ∈ [C].
Since, thus,⟨x,X⟩ â ⟨y,[A∨C]⟩, ⟨y,[A∨C]⟩ ≺ ⟨x,X⟩. But then⟨x,X⟩ ∉ Max⪯(∣[A]∣),
a contradiction. Therefore,O(C/A∨C) ∈ wn. Given that, it follows thatx is normal
for A, for consider anyD ∈ ∆A, so thatO(D/A) ∈ wn. ThenO(D/A∧ (A∨C)) ∈ wn by
(LLE), and thenO(A→ D/A∨C) ∈ wn by (S), Lemma 5(1). SinceO(C/A∨C) ∈ wn,
O(A → D/C ∧ (A∨C)) ∈ wn by (CautMono). Hence,O(A → D/C) ∈ wn by (LLE).
From that,A → D ∈ x sincex is normal forC. With A ∈ x, thenD ∈ x, which suffices
for ∆A ⊆ x and so forx to be normal forA.

We can now establish our key lemmas.

Lemma 35 For all A ∈ Ln
BL , ∣[A]∣ = ∣A∣M.

Proof. By an easy induction onA, left to the reader.

Lemma 36 For all α ∈ Ln
DLa, α ∈ wn iff M ⊧P α.

Proof. Proof is by induction onα, but we consider only the basis case where
α = O(B/A), for someA,B ∈ Ln

BL . The induction to more complexα is routine, and
left to the reader.

L → R: SupposeO(B/A) ∈ wn. To show that Max⪯(∣A∣M) ⊆ ∣B∣M, consider any
⟨x,X⟩ ∈ Max⪯(∣A∣M). By Lemma 35,⟨x,X⟩ ∈ Max⪯(∣[A]∣). By Lemma 34(ii) then,x
is normal forA. Hence,x ∈ [B], and then⟨x,X⟩ ∈ ∣[B]∣. So⟨x,X⟩ ∈ ∣B∣M, Lemma 35.
That suffices for Max⪯(∣A∣M) ⊆ ∣B∣M, and so forM ⊧P O(B/A).

R → L: SupposeM ⊧P O(B/A), so that Max⪯(∣A∣M) ⊆ ∣B∣M. By Lemma 35,
Max⪯(∣[A]∣) ⊆ ∣[B]∣. To find O(B/A) ∈ wn, suppose, forreductio, O(B/A) ∉ wn.
Then∆A ∪ {¬B} is consistent, Lemma 4(ii), and so there is anx ∈ WBLn

such that
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∆A ∪ {¬B} ⊆ x. Thus,x is normal forA. By Lemma 34(i),⟨x, [A]⟩ ∈ Max⪯(∣[A]∣).
So ⟨x, [A]⟩ ∈ ∣[B]∣, and thusx ∈ [B], i.e., B ∈ x. But also¬B ∈ x, so thatB ∉ x, a
contradiction. Therefore,O(B/A) ∈ wn.

Lemma 37 For finiteLn
BL , M is (i) finite and (ii) replete forLn

BL .

Proof. For (i), sinceLn
BL is finite, WBLn

is finite. Since, for anyA ∈ Ln
BL , [A] ⊆

WBLn

, the set of all such sets[A] is also finite. Hence there are finitely many pairs
⟨x,X⟩ with x ∈ WBLn

andX = [A] for someA ∈ Ln
BL . ThusW is finite. For (ii), if,

for A ∈ Ln
BL , ∣A∣ ≠ ∅, thenA is BL-consistent. By (RP),⊢ P(⊺/A) in DDLn-c, so

P(⊺/A) ∈ wn. By Lemma 4(i),∆A is consistent, and so there is anx ∈ WBLn

such that
∆A ⊆ x. Sincex is thus normal forA, ⟨x, [A]⟩ ∈ W. SinceA ∈ x, ⟨x, [A]⟩ ∈ ∣[A]∣, and so,
by Lemma 35,⟨x, [A]⟩ ∈ ∣A∣M. Hence∣A∣M ≠ ∅, as required for repletion.

Lemma 38 ⪯ is stoppered forLn
BL .

Proof. ThatW is finite and⪯ is transitive suffices for⪯ to be stoppered. Never-
theless, to enable this result to be readily applicable to the full infinite DDL-c, we also
present a demonstration based on the structure of this modelM.

Consider anyB ∈ Ln
BL , and suppose⟨x,X⟩ ∈ ∣B∣M. Since⟨x,X⟩ ∈ W, there is an

A ∈ Ln
BL such thatX = [A] andx is normal forA. Since⟨x,X⟩ ∈ ∣B∣M, ⟨x,X⟩ ∈ ∣[B]∣, by

Lemma 35, and sox ∈ [B] and thusB ∈ x. EitherO(A/A∨B) ∈ wn or O(A/A∨B) ∉ wn.
For the first case, we show (a)⟨x,X⟩ ∈ Max⪯(∣B∣M); for the second case, we show (b)
there is a⟨y,Y⟩ ∈ Max⪯(∣B∣M) such that⟨y,Y⟩ ≺ ⟨x,X⟩. (a) and (b) together mean⪯ is
stoppered forLn

BL .
For (a), supposeO(A/A ∨ B) ∈ wn. Since⟨x,X⟩ ∈ ∣B∣M, suppose, forreductio,

there is some⟨y,Y⟩ such that⟨y,Y⟩ ∈ ∣B∣M such that⟨y,Y⟩ ≺ ⟨x,X⟩, so that also⟨y,Y⟩ ⪯
⟨x,X⟩. By Lemma 35,⟨y,Y⟩ ∈ ∣[B]∣; so y ∈ [B]. Further, since⟨y,Y⟩ ∈ W, there is
someC such thatY = [C] andy is normal forC. Obviously⟨x,X⟩ ≠ ⟨y,Y⟩. Since
⟨y,Y⟩ ⪯ ⟨x,X⟩, for all D andE such thatY = [D] andX = [E], O(D/D ∨ E) ∈ wn and
y ∉ [E]. Thus,O(C/A∨C) ∈ wn andy ∉ [A]. We now showO(B→ A/C) ∈ wn. Given
O(A/A∨ B) ∈ wn, thenO(A∨C/A∨ B) ∈ wn, by (RW); likewiseO(A∨C/A∨C) ∈ wn

by (Reflex) or (RW). Hence (i)O(A∨C/A∨ B∨C) ∈ wn by (OR) and (LLE). Further,
sinceO(A/A∨ B) ∈ wn, O(A/(A∨ B) ∧ (A∨ B∨C)) ∈ wn by (LLE). SoO((A∨ B)→
A/A ∨ B∨ C) ∈ wn by (S), Lemma 5(1), whence (ii)O(B → A/A ∨ B∨ C) ∈ wn by
(RW). (i) and (ii) yield (iii) O(B → A/(A∨C) ∧ (A∨ B∨C)) ∈ wn by (CautMono),
whenceO(B → A/A∨C) ∈ wn by (LLE). That withO(C/A∨C) ∈ wn yield O(B →
A/C∧ (A∨C)) ∈ wn by (CautMono) again. From thatO(B→ A/C) ∈ wn by (LLE), as
desired. Sincey is normal forC, B→ A ∈ y, and sinceB ∈ y, thenA ∈ y, so thaty ∈ [A],
a contradiction. Therefore, there is no such⟨y,Y⟩, and so⟨x,X⟩ ∈ Max⪯(∣B∣M).

For (b), supposeO(A/A ∨ B) ∉ wn. Then∆A∨B ∪ {¬A} is consistent, Lemma
4(ii), and so there is ay ∈ WBLn

such that∆A∨B ∪ {¬A} ⊆ y. Thusy is normal for
A ∨ B; so ⟨y,[A ∨ B]⟩ ∈ W. SinceA ∨ B ∈ y and¬A ∈ y, B ∈ y, so thaty ∈ [B].
Thus,⟨y,[A∨ B]⟩ ∈ ∣[B]∣. By Lemma 34(i),⟨y,[A∨ B]⟩ ∈ Max⪯(∣[A∨ B]∣). It follows
that⟨y,[A∨ B]⟩ ∈ Max⪯(∣[B]∣), for if there were some⟨z,Z⟩ ∈ ∣[B]∣ such that⟨z,Z⟩ ≺
⟨y,[A∨B]⟩, then since⟨z,Z⟩ ∈ ∣[A∨B]∣, ⟨y,[A∨B]⟩ ∉ Max⪯(∣[A∨B]∣), a contradiction.
Since thus⟨y,[A∨ B]⟩ ∈ Max⪯(∣[B]∣), then⟨y,[A∨ B]⟩ ∈ Max⪯(∣B∣M), by Lemma 35.
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We show next that⟨y,[A ∨ B]⟩ ≺ ⟨x,X⟩. For that, consider anyD and E such that
[A ∨ B] = [D] and X = [E] = [A]. SinceO(A ∨ B/A ∨ B ∨ A) ∈ wn, by (Reflex)
and (LLE),O(D/D ∨ E) ∈ wn by Lemma 31(iii). Further, since¬A ∈ y, y ∉ [A], so
y ∉ [E]. That suffices for⟨y,[A∨ B]⟩ ⪯ ⟨x,X⟩. Sincex ∈ [A] andy ∉ [A], x ≠ y, so that
⟨y,[A∨ B]⟩ ≠ ⟨x,X⟩. Hence,⟨x,X⟩ â ⟨y,[A∨ B]⟩, since, if⟨x,X⟩ ⪯ ⟨y,[A∨ B]⟩, then
x ∉ [A∨ B] by clause (ii), and sincex ∈ [A], x ∈ [A∨ B]. Consequently,⟨y,[A∨ B]⟩ ≺
⟨x,X⟩, as required for this case.

Completeness now follows:

Theorem 39 For all finite n ≥ 1, (i) DDLn-c is weakly complete with respect to the
class of all P-models defined forLn

DLa that are finite and replete forLn
BL and whose

relation ⪯ is reflexive and stoppered forLn
BL . I.e., for anyα ∈ Ln

DLa, if ⊩P α for this
class, then⊢ α in DDLn-c. (ii) DDLn-c is weakly complete with respect to the class of
all P-models defined forLn

DLa that are finite and replete forLn
BL and whose relation⪯

is reflexive and stoppered forLn
BL , and also transitive.

Proof. By much the same argument as for Theorem 28. Given⊬ α in DDLn-c,
Lemma 36 entails there is a modelM = ⟨W,⪯,v⟩ such thatM ⊭P α, while Lemma 37
ensures thatM is finite and replete forLn

BL , Lemma 33 ensures that⪯ is reflexive and,
for (ii), transitive, and Lemma 38 ensuresM is stoppered forLn

BL .

Part (ii), with transitivity, will be useful in the proof of Theorem57 below.

As with DDL-a and DDL-b, much the same demonstration would establish the
strong completeness of the full system DDL-c over the full infinite language for the
class of infinite stoppered P-models. Finally, as with DDLn-a and DDLn-b,

Corollary 40 For each finite n≥ 1, DDLn-c has the finite model property in terms of
P-models defined forLn

DLa.

Corollary 41 For each finite n≥ 1, DDLn-c is decidable.

That completes this stage for DDLn-c.

5.1.3 Finite DDLn-d

Although we have already established the equivalence of DDL-d with DSDL3 in §4, for
later reference, especially in §6.2, it will be convenient now to demonstrate the sound-
ness and completeness of the finite counterparts of DDL-d in terms of finite models.
Here we need only sketch the argument since, when filled in, it will merely recapitulate
that of §4. Nothing there required the infinitude ofLBL andLDLa. We do, however,
now give these results in terms of P-models, which are easier to describe for finite
constructions.

Soundness for DDLn-d was given in Theorem 15. For completeness, supposewn

to be a maximal DDLn-d consistent set of formulas fromLn
DLa. As earlier, letWBLn

be
the set of maximal consistent sets ofLn

BL formulas. As before too,∆A = {B ∶ O(B/A) ∈
wn}, and, forx ∈ WBLn

, x is normal forA iff ∆A ⊆ x. Let M = ⟨W,⪯,v⟩ be such that:
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• W = WBLn

,

• for w,w′ ∈ W, w ⪯ w′ iff, for all B such thatw′ is normal forB, there is anA such
thatw is normal forA andP(A/A∨ B) ∈ wn,

• v(p) = {w ∈ W ∶ p ∈ w}, for all atomsp ∈ Ln
BL .

With its definition of⪯, M plainly mimicsR from §4.

Lemma 42 M is a P-model (i) defined forLn
DLa, (ii) finite, and (iii) replete forLn

BL ,
and (iv) ⪯ is reflexive, transitive and total, as well as limited forLn

BL . I.e., M is a
P-model apt for DDLn-d.

Proof. (i)–(iii) are obvious. (iv) is by the arguments for Lemmas 6 and 9,mutatis
mutandis.

By the argument for Lemma 7,w is normal forA iff w ∈ Max⪯(∣A∣M), and so, by
the argument for Lemma 8,

Lemma 43 For all α ∈ Ln
DLa, α ∈ wn iff M ⊧P α.

Hence,

Theorem 44 For all finite n ≥ 1, DDLn-d is sound and complete with respect to the
class of all P-models defined forLn

DLa that are finite and replete forLn
BL with relations

⪯ that are reflexive, transitive and total, as well as limited forLn
BL .

Proof. By the standard arguments.

As with the other finite systems,

Corollary 45 For each finite n≥ 1, DDLn-d has the finite model property in terms of
P-models defined forLn

DLa.

Corollary 46 For each finite n≥ 1, DDLn-d is decidable.

This completes Stage 1 of our journey.

5.2 Stage 2

With the completion of Stage 1, we have found that, forα ∈ Ln
DLa, if ⊬ α for DDLn-a,

-b, -c, or -d, then there is a P-modelM = ⟨W,⪯,v⟩ defined forLn
DLa of the appropriate

kind such thatM ⊭P α. In this second stage, we develop a method whereby to match
the, possibly duplicative, worlds ofW in M with corresponding valuationsϕ ∈ V. That
done, we can derive a Hanssonian model/relation,R, of the appropriate kind such that
likewise R ⊭H α. From there the equivalence of the full DDL systems with the DSDL
logics follows. We apply these procedures first to demonstrate that DDL-a= DSDL1,
DDL-c = DSDL2.5 and DDL-d= DSDL3. DDL-b and DSDL2 are more difficult, and
so deserve a subsection of their own.
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5.2.1 Full DDL-a, DDL-c, and DDL-d

Given finiten ≥ 1, consider any P-modelM = ⟨W,⪯,v⟩ defined forLn
DLa overLn

BL that
is (i) finite, (ii) replete forLn

BL , and (iii) with⪯ reflexive, and perhaps (iv) transitive and
so stoppered forLn

BL , and also perhaps (v) total.M may be redundant. In short,M is
to be a model of the sort presented in Stage 1 above for DDLn-a, DDLn-c or DDLn-d.
SupposeW to contain exactlyk many members, including all duplicates. Suppose them
to be ordered as⟨w1, . . . ,wk⟩ by some enumeration. Consider a setR = {r1, . . . , rk}
of exactlyk many atomsr ∈ LBL such that eachr ∉ Ln

BL . SupposeR is ordered as
⟨r1, . . . , rk⟩ by some enumeration. These new atoms will be used as markers for the
worldswi ∈ W; that is, eachr i ∈ Rmarks, or is the marker of,wi ∈ W in their respective
orderings.V is the set of all classical valuations defined overLBL . Given that marking,
we pick out certain select members,ϕwi , of V to stand in place of the worldswi ∈ W.
For wi ∈ W andr i ∈ R its marker, letϕwi be thatϕ ∈ V such that

• ϕ(p) = 1 iff wi ∈ v(p), for all atomsp ∈ Ln
BL ,

• ϕ(r i) = 1, and

• ϕ(s)= 0 for all other atomss ∈ LBL , i.e.,s ∉ Ln
BL ands≠ r i .

Clearly there is such aϕwi , and only one, for eachwi ∈ W. We will sayϕwi is ‘marked
for’ wi , by virtue of its verifying the atomr i , the marker forwi . ϕwi corresponds to, or
is a counterpart of,wi , in the sense that the two agree on all formulas inLn

BL .

Lemma 47 For all A ∈ Ln
BL , wi ∈ ∣A∣M iff ϕwi ∈ ∣A∣.

Proof. By an easy induction onA ∈ Ln
BL , left to the reader.

While eachwi ∈ W hasits counterpartϕwi ∈ V, there will, of course, be myriad
other members ofV that correspond to no suchwi ∈ W, not because they do not agree
with somewi on allA ∈ Ln

BL , but because they are not marked for thatwi in the requisite
way. E.g., there will beϕ ∈ V such thatϕ(r1) = ϕ(r2) = 1, for r1, r2 ∈ R, orϕ(s) = 1
for somes ∉ Ln

BL ands≠ r for anyr ∈ R. LetVµ be the set of those valuations inV that
are marked counterparts for worlds inW.

• Vµ = {ϕ ∈ V ∶ there is awi ∈ W such thatϕ = ϕwi}.

Lemma 48 Vµ is finite.

Proof. Obvious, given thatW of M is finite.

Valuationsϕwi ∈ Vµ thatare marked for their counterpartswi will play the role of
those counterparts in a new irredundant H-model. GivenM = ⟨W,⪯,v⟩ as described, let
RM ⊆ V ×V be defined fromM, thus: For allϕ, ϕ′ ∈ V,

• ϕRMϕ
′ iff either

(i) ϕ ∈ Vµ andϕ′ ∈ Vµ, andwi ⪯ w j if ϕ = ϕwi andϕ′ = ϕw j , or
(ii) ϕ

′ ∉ Vµ.
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Hence, all members ofVµ are ranked among themselves as their counterparts are
ranked inM, while all members ofVµ are ranked strictly higher than non-members
of Vµ. Those non-members are ranked equally with each other.

Lemma 49 (i) RM is reflexive, and (ii) if⪯ is transitive, thenRM is transitive. (iii) If⪯
is total, thenRM is total.

Proof. (i) Reflexivity is obvious, given that⪯ is reflexive. (ii) For transitivity, if
⪯ is transitive, supposeϕRMϕ

′ andϕ′RMϕ
′′. If ϕ′′ ∉ Vµ, then immediatelyϕRMϕ

′′, by
clause (ii) of the definition ofRM. If ϕ′ ∉ Vµ, then alsoϕ′′ ∉ Vµ, and againϕRMϕ

′′. If
ϕ ∉ Vµ, thenϕ′ ∉ Vµ, by clause (ii), and soϕ′′ ∉ Vµ, andϕRMϕ

′′. Suppose then all three
are inVµ. Then there is awi ∈ W such thatϕ = ϕwi and aw j ∈ W such thatϕ′ = ϕw j and
a wl ∈ W such thatϕ′′ = ϕwl . Sinceϕwi RMϕw j andϕw j RMϕwl , then by definition ofRM,
clause (i), it follows thatwi ⪯ w j andw j ⪯ wl , whereuponwi ⪯ wl , since⪯ is transitive.
That suffices forϕwi RMϕwl , orϕRMϕ

′′, by clause (i).
(iii) For totality, suppose⪯ is total overW. If ϕ, ϕ′ ∈ Vµ then eitherϕRMϕ

′ or
ϕ

′RMϕ, by the totality of⪯. If ϕ ∉ Vµ or ϕ′ ∉ Vµ, then eitherϕ′RMϕ or ϕRMϕ
′ by

clause (ii) of the definition ofRM.

Lemma 50 For all A ∈ Ln
BL , wi ∈ Max⪯(∣A∣M) iff ϕwi ∈ MaxRM(∣A∣).

Proof. SupposeA ∈ Ln
BL . L → R: Supposewi ∈ Max⪯(∣A∣M). Sincewi ∈ ∣A∣M,

ϕwi ∈ ∣A∣, by Lemma 47. We showϕwi ∈ MaxRM(∣A∣). Suppose not; suppose, for
reductio, there is someϕ ∈ ∣A∣ such thatϕPMϕwi . Sinceϕwi ∈ Vµ, it must be thatϕ ∈ Vµ.
Hence there is aw j such thatϕ = ϕw j . By definition ofRM, w j ≺ wi . Sincew j ∈ ∣A∣M,
by Lemma 47, thenwi ∉ Max⪯(∣A∣M), a contradiction. Hence there is no suchϕ ∈ ∣A∣,
andϕwi ∈ MaxRM(∣A∣).

R→ L: Supposeϕwi ∈ MaxRM(∣A∣). Sinceϕwi ∈ ∣A∣, wi ∈ ∣A∣M, by Lemma 47. We
showwi ∈ Max⪯(∣A∣M). Suppose not; suppose, forreductio, there is somew j ∈ ∣A∣M
such thatw j ≺ wi . Considerϕw j ∈ Vµ. ϕw j ∈ ∣A∣, by Lemma 47. By definition ofRM,
ϕw j PMϕwi , but thenϕwi ∉ MaxRM(∣A∣), a contradiction. Hence,wi ∈ Max⪯(∣A∣M).

Lemma 51 For all α ∈ Ln
DLa, M ⊧P α iff RM ⊧H α.

Proof. By induction onα. We show the basis, whereα = O(B/A). The induction
to more complex cases is routine and easy, and so left to the reader. SupposeO(B/A) ∈
Ln

DLa, and thusA,B ∈ Ln
BL .

L →R: SupposeM ⊧P O(B/A), so that Max⪯(∣A∣M) ⊆ ∣B∣M. To show MaxRM(∣A∣) ⊆
∣B∣, and thusRM ⊧H O(B/A), consider anyϕ ∈ MaxRM(∣A∣). Sinceϕ ∈ ∣A∣, andM is
replete forLn

BL , there is awi ∈ W such thatwi ∈ ∣A∣M. Considerϕwi ∈ Vµ. ϕwi ∈ ∣A∣,
by Lemma 47. Forϕ, eitherϕ ∈ Vµ or ϕ ∉ Vµ. In the second case,ϕwi PMϕ, and then
ϕ ∉ MaxRM(∣A∣), a contradiction. Hence,ϕ ∈ Vµ, and so there is aw j ∈ W such that
ϕ = ϕw j . Thusϕw j ∈ MaxRM(∣A∣). By Lemma 50,w j ∈ Max⪯(∣A∣M). Hence,w j ∈ ∣B∣M.
From that,ϕw j ∈ ∣B∣, Lemma 47, i.e.,ϕ ∈ ∣B∣, which suffices for MaxRM(∣A∣) ⊆ ∣B∣, and
so forRM ⊧H O(B/A).

R→ L: SupposeRM ⊧H O(B/A), so that MaxRM(∣A∣) ⊆ ∣B∣. To showM ⊧P O(B/A),
i.e., that Max⪯(∣A∣M) ⊆ ∣B∣M, consider anywi ∈ Max⪯(∣A∣M). Considerϕwi ∈ Vµ that is

Lou Goble

40



marked forwi . By Lemma 50,ϕwi ∈ MaxRM(∣A∣). Thenϕwi ∈ ∣B∣, whencewi ∈ ∣B∣M, by
Lemma 47. That suffices for Max⪯(∣A∣M) ⊆ ∣B∣M, and so forM ⊧P O(B/A).

That lemma establishes the equivalence ofM andRM with respect to formulas in
Ln

DLa. Naturally it is silent with respect to other formulas inLDLa sinceM has nothing
to say about them. This does, however, provide what we need to establish that DDL-a
is equivalent to DSDL1.

Theorem 52 DDL-a=DSDL1; i.e., for allα ∈ LDLa (i) if ⊢ α in DDL-a, then⊩H αwith
respect to the class of all reflexive Hanssonian relationsR ⊆ V ×V, and conversely (ii)
if ⊩H α with respect to the class of all reflexive Hanssonian relationsR ⊆ V × V, then
⊢ α in DDL-a.

Proof. (i) corresponds to the soundness of DDL-a with respect to Hanssonian
H-models, see Theorem 1. (ii) is weak completeness for DDL-a. Suppose⊩H α for
reflexive relationsR, but that⊬ α in DDL-a. Obviously there is a finiten ≥ 1 such that
λ(α) = n. By Lemma 14,⊬ α in DDLn-a, and by Theorem 28(i), there is a reflexive
P-modelM = ⟨W,⪯,v⟩ such thatM ⊭P α. Let RM be defined fromM as described. By
Lemma 51,RM ⊭H α. Moreover,RM is reflexive, Lemma 49(i), and so a model apt for
DSDL1. Hence,⊮H α for the class of DSDL1 relations, a contradiction. Consequently,
if ⊩H α for that class, then⊢ α in DDL-a.

At the end of §5.2.2, with Corollary 83, we will see that DDL-a isalso sound and
complete for all relationsR that are transitive as well as reflexive.

For the equivalence of DDL-c and DSDL2.5, we need to show thatRM is stop-
pered. For that we must go beyondM’s being stoppered sinceM would only be stop-
pered forLn

BL andRM must be stoppered for the full infinite languageLBL . To achieve
that, it would help if the field ofRM were finite, since finitude coupled with transitivity
entails stoppering, and we knowRM is transitive if⪯ is. But, of course, the field ofRM

is not finite. To get around that, we consider first a relation that is defined for a finite
field, namelyRµM, the restriction ofRM to Vµ. I.e.,

• For allϕ, ϕ′ ∈ V, ϕRµMϕ
′ iff ϕ, ϕ′ ∈ Vµ andϕRMϕ

′.

Lemma 53 If ⪯ of M is transitive, thenRµM is transitive.

Proof. By the argument for Lemma 49(ii), in the case whereϕ, ϕ′, ϕ′′ ∈ Vµ.

Lemma 54 If ⪯ of M is transitive, thenRµM is stoppered.

Proof. By Lemma 48,Vµ is finite. SinceRµM is transitive, if⪯ is, Lemma 53, then
RµM is stoppered since transitivity and finitude of field suffice for stoppering.

Lemma 55 For all A ∈ LBL and for allϕ ∈ Vµ, ϕ ∈ MaxRµM
(∣A∣) iff ϕ ∈ MaxRM(∣A∣).

Proof. Supposeϕ ∈ Vµ, and for L→ R: supposeϕ ∈ MaxRµM
(∣A∣). Hence,ϕ ∈ ∣A∣.

Suppose, forreductio,ϕ ∉ MaxRM(∣A∣). Then there is aϕ′ ∈ ∣A∣ such thatϕ′PMϕ. Since
ϕ

′RMϕ, ϕ′ ∈ Vµ, by definition ofRM. Hence,ϕ′RµMϕ, and likewise, since not-(ϕRMϕ′),
not-(ϕRµMϕ

′). Thus,ϕ′PµMϕ, in which caseϕ ∉ MaxRµM
(∣A∣), a contradiction. Therefore,

ϕ ∈ MaxRM(∣A∣). The argument R→ L is much the same.
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Lemma 56 If ⪯ of M is transitive, thenRM is stoppered.

Proof. Suppose⪯ is transitive. Consider anyϕ ∈ ∣A∣, for anyA ∈ LBL . ϕ ∈ Vµ or
ϕ ∉ Vµ. In caseϕ ∈ Vµ, then ifϕ ∉ MaxRM(∣A∣), ϕ ∉ MaxRµM

(∣A∣), by Lemma 55. Then,
sinceRµM is stoppered, Lemma 54, there is aϕ′ ∈ MaxRµM

(∣A∣) such thatϕ′PµMϕ. Since
bothϕ, ϕ′ ∈ Vµ, ϕ′PMϕ. Further, by Lemma 55,ϕ′ ∈ MaxRM(∣A∣), which suffices for
stoppering for this case. In caseϕ ∉ Vµ, then eitherVµ ∩ ∣A∣ = ∅ or Vµ ∩ ∣A∣ ≠ ∅. In
the first case, thenϕ ∈ MaxRM(∣A∣) since there is noϕ′ ∈ ∣A∣ such thatϕ′PMϕ, and that
suffices for stoppering for this case. In the second case, there is aϕ

′ ∈ Vµ andϕ′ ∈ ∣A∣.
SinceRµM is stoppered, there is aϕ′′ ∈ Vµ such thatϕ′′ ∈ MaxRµM

(∣A∣). For such aϕ′′,
ϕ

′′ ∈ MaxRM(∣A∣) by Lemma 55 and alsoϕ′′PMϕ, by the definition ofRM, and that
suffices for stoppering for this case too.

We can now conclude the equivalence of DDL-c and DSDL2.5, as wellas of
DDL-d and DSDL3 again.

Theorem 57 DDL-c = DSDL2.5; i.e., for allα ∈ LDLa (i) if ⊢ α in DDL-c, then⊩H α

with respect to the class of all Hanssonian relationsR ⊆ V × V that are reflexive and
stoppered, and conversely (ii) if⊩H α with respect to the class of all Hanssonian rela-
tionsR ⊆ V × V that are reflexive and stoppered, then⊢ α in DDL-c. (iii) Likewise for
all relationsR that are transitive as well as reflexive and stoppered.

Proof. By the argument for Theorem 52 above, with Lemma 56 to assure thatRM

is stoppered, given thatM has a transitive relation⪯, as given by Theorem 39, part (ii),
and also Lemma 49(ii) for transitivity ofRM for part (iii).

We include part (iii) to complement Theorem 82 for DDL-b and itsCorollary 83
for DDL-a with regard to transitive relationsR.

Theorem 58 DDL-d=DSDL3; i.e., for allα ∈ LDLa (i) if ⊢ α in DDL-d, then⊩H αwith
respect to the class of all Hanssonian relationsR ⊆ V × V that are reflexive, transitive
and total and also limited, and conversely (ii) if⊩H α with respect to the class of all
Hanssonian relationsR ⊆ V×V that are reflexive, transitive and total and also limited,
then⊢ α in DDL-d.

Proof. By the argument for Theorem 57, applying Lemma 49 to ensureRM is both
transitive and total when⪯ is, as given by Theorem 44. By the argument for Lemma
56,RM is stoppered. Since being stoppered entails being limited,RM is limited.

While this theorem essentially repeats Theorem 10 and its Corollary12 in §4, I
include it now for later reference, in §6.2. We may note that the relationRM applied
here is defined differently from the relationR applied for Theorem 10.

5.2.2 Full DDL-b

Before demonstrating that the full DDL-b is equivalent to DSDL2, it may be helpful to
see why the method that yielded the equivalences for DDL-a, DDL-c and DDL-d with
DSDL1, DSDL2.5 and DSDL3 in the previous subsection breaks down for this system,
and thus why we must go to extra lengths to achieve our desired result.
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Here is a simple example based onn = 2. Suppose a certainM2 = ⟨W2
,⪯2
,v2⟩,

defined forL2
DLa, that is finite and replete forL2

BL , but redundant, and whose⪯2 is
reflexive and limited forL2

BL . To be replete requiresW2 to have at least four members,
but with redundancy there will be more. SupposeW2 = {w1,w2,w3,w4,w5,w6,w7,w8},
and supposev2 is such thatw5 is a duplicate ofw1, w6 a duplicate ofw2, w7 a duplicate
of w3 andw8 a duplicate ofw4, and also, for convenience, supposew5,w6,w7,w8 suffice
for repletion, though that will not matter here. Repletion is not the issue. Suppose⪯2

is given entirely by:

w1 ⪯
2 w2 w2 ⪯

2 w3 w3 ⪯
2 w4 w4 ⪯

2 w1

w ⪯2 w, for all w ∈ W2

Thus,w1,w2,w3,w4 form a loop by≺2, andw5,w6,w7,w8 just stand by themselves.
The latter suffices forM2 to be limited forL2

BL , though that will not really matter here
either.

Now we try to apply the method developed for DDL-a, etc. to define an ap-
propriate relationRM2. Consider the eight atomsr1, . . . , r8 ∉ L2

BL , to mark each of
w1, . . . ,w8 ∈ W2. Defineϕw1, . . . , ϕw8 ∈ Vµ as before. WithRM2 also defined as before,
it follows that amongVµ, besides reflexivity, just

ϕw1RM2ϕw2 ϕw2RM2ϕw3 ϕw3RM2ϕw4 ϕw4RM2ϕw1

and so there is a loop byPM2 for ϕw1, ϕw2, ϕw3, ϕw4, while ϕw5, ϕw6, ϕw7, ϕw8 stand
alone. By the latter, the limit condition will hold for allA ∈ L2

BL , given thatM2 is
limited for L2

BL . I.e., for allA ∈ L2
BL , if ∣A∣ ≠ ∅, then MaxRM2(∣A∣) ≠ ∅. For DDL-b to

be equivalent to DSDL2, however, we needRM2 to be limited for allA ∈ LBL , and not
merelyL2

BL .
Consider then the formulaB = r1 ∨ r2 ∨ r3 ∨ r4. Thenϕw1 ∈ ∣B∣, ϕw2 ∈ ∣B∣, ϕw3 ∈ ∣B∣

andϕw4 ∈ ∣B∣, but none of those is maximal for∣B∣ by RM2, because of the loop. Each
of ϕw5 ∉ ∣B∣, ϕw6 ∉ ∣B∣, ϕw7 ∉ ∣B∣ andϕw8 ∉ ∣B∣, so of course none of those is maximal
for ∣B∣. There will be countless otherϕ ∈ ∣B∣, but they will not be maximal there either
since they are not inVµ and soϕw1PM2ϕ, for any suchϕ. In short there is noϕ ∈ V such
thatϕ ∈ MaxRM2(∣B∣), and the limit condition fails. As a result,RM2 ⊭H P(⊺/B) even
thoughP(⊺/B) is valid for DSDL2.

To rescue the limit condition, for an appropriate relationRM based on an arbitrary
finite M, we must be assured thatM contains no such terminal loops by≺. While one
might try to prove completeness for DDLn-b for finite loop-free models, it is difficult to
see how that would go. If the relation⪯ of M were transitive, then that would exclude
loops by≺. On the other hand, for finite models, a transitive relation would suffice not
only for the limit condition but also for stoppering, which would verify (CautMono),
which is not in DDL-b, cf. Theorem 3. To avoid stoppering, we now take a different
course. We will find DDLn-b to be complete for P-models with transitive relations, and
thus loop-free, but we will let go of finiteness for such models.

The demonstration takes two steps. In Step 1, we establish finite DDLn-b to be
complete with respect to P-models,Mτ, defined for finiteLn

DLa, that are limited forLn
BL

and also have a transitive relation (‘tau’ for transitive); those models themselves will
be infinite and infinitely redundant. In Step 2, through the method of marking worlds,
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we produce an irredundant, Hanssonian relationR ⊆ V × V that is limited for the full
LBL and equivalent toMτ for Ln

DLa. That done, it will follow that DDL-b= DSDL2.

Step 1: Transitive P-models

Given a P-modelM = ⟨W,⪯,v⟩, defined forLn
DLa, that is finite and replete forLn

BL
with ⪯ reflexive and limited forLn

BL , we now construct another equivalent P-model
Mτ = ⟨Wτ,⪯τ,vτ⟩, defined forLn

DLa, that is replete forLn
BL , and whose relation⪯τ is

not only reflexive and limited forLn
BL but also transitive. UnlikeM, Mτ is infinite,

though its infinitude is only denumerable.8

GivenM = ⟨W,⪯,v⟩ as described, I will now, contrary to prior practice, usea,b,c,
etc., as variables for members ofW andi, j,k as numerical variables.ω is, as usual, the
least limit ordinal, which may be identified with the set of natural numbers. FromM,
defineMτ = ⟨Wτ,⪯τ,vτ⟩:

• Wτ = {⟨a,b, i⟩ ∶ a,b ∈ W andi ∈ ω⟩.

• For ⟨a,b, i⟩, ⟨c,d, j⟩ ∈ Wτ, ⟨a,b, i⟩ ⪯τ ⟨c,d, j⟩ iff, either

[1] ⟨a,b, i⟩ = ⟨c,d, j⟩,

or

[2] both (a)b = d andi ≥ j, and (b) either

(b.1)c ≠ d anda = c,

or

(b.2)c = d anda ≺ c.

• vτ(p) = {⟨a,b, i⟩ ∈ Wτ ∶ a ∈ v(p)}, for all atomsp ∈ Ln
BL .

Henceforth, I will usex,y,z, etc. as variables for members ofWτ.

Lemma 59 Mτ is a P-model defined forLn
DLa overLn

BL .

Proof. This follows immediately fromM being such a model, i.e.,Wτ ≠ ∅ be-
causeW ≠ ∅, andvτ is clearly defined for all, and only, atomsp ∈ Ln

BL becausev is so
defined.

Lemma 60 Wτ is denumerable.

Proof. SinceM is finite, i.e.,W is finite, there are only finitely many pairs⟨a,b⟩,
for a,b ∈ W. For each such pair there are denumerably many pointsx = ⟨a,b, i⟩ in
Wτ, but the union of finitely many denumerable sets is still denumerable. Hence,Wτ

is denumerable.
8Theprocedures of this step work as well for the full DDL-b over an infinite language and also for DDLn-

a and DDL-a, to show they too are complete with respect to appropriate P-models with transitive relations.
These procedures do not requireM to be finite, or⪯ to be limited. Nevertheless, we keep our focus now
just on DDLn-b, for finite n ≥ 1. The following is a modification and generalization of a method X. Parent
used to establish the completeness of Åqvist’s systemsE and F with respect to P-models with transitive
betterness relations and applying Rule P. (Personal communication, though those results should appear in his
[13]. Parent cites Schlechta [15], esp. Prop 2.83, as a source. I have not seen that work.)
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Lemma 61 ⪯τ is (i) reflexive and (ii) transitive.

Proof. (i) is trivial. For (ii), suppose⟨a,b, i⟩ ⪯τ ⟨c,d, j⟩ and⟨c,d, j⟩ ⪯τ ⟨e, f ,k⟩.
We show⟨a,b, i⟩ ⪯τ ⟨e, f ,k⟩. If either of the supposed relations is by clause [1], then
the result is immediate. Hence suppose both are by clause [2]. Then, by [2.a],b = d = f
andi ≥ j ≥ k. Sob = f andi ≥ k, as required by clause [2.a]. From the first supposition,
by [2.b], either (1)c ≠ d anda = c or (2) c = d anda ≺ c. Consider (1). From the
second supposition, eithere ≠ f andc = e, in which casea = e, and sincee ≠ f ,
⟨a,b, i⟩ ⪯τ ⟨e, f ,k⟩ by [2.b.1], or elsee= f andc ≺ e, in which case, sincea = c, a ≺ e,
and so⟨a,b, i⟩ ⪯τ ⟨e, f ,k⟩ by [2.b.2]. Under case (2), withc = d anda ≺ c, again either
e ≠ f andc = e, ore = f andc ≺ e. In the first case, sincec = d andd = f andc = e,
thene= f , a contradiction. So this is not a possible case. In the other case, sincea ≺ c
andc = d andd = f ande = f , a ≺ e, which suffices for⟨a,b, i⟩ ⪯τ ⟨e, f ,k⟩ by clause
[2.b.2]. Hence, in all possible cases,⟨a,b, i⟩ ⪯τ ⟨e, f ,k⟩, as required.

To establish the equivalence of the models, these lemmas are useful.

Lemma 62 For all A ∈ Ln
BL and all ⟨a,b, i⟩ ∈ Wτ, (i) ⟨a,b, i⟩ ∈ ∣A∣Mτ iff a ∈ ∣A∣M, and

(ii) for all j ∈ ω, ⟨a,b, i⟩ ∈ ∣A∣Mτ iff ⟨a,b, j⟩ ∈ ∣A∣Mτ .

Proof. (i) is by an easy induction onA, left to the reader. (ii) follows immediately
from (i).

Lemma 63 For all A ∈ Ln
BL and all ⟨a,b, i⟩ ∈ Wτ, if ⟨a,b, i⟩ ∈ Max⪯τ(∣A∣Mτ), then

a = b.

Proof. Suppose that⟨a,b, i⟩ ∈ Max⪯τ(∣A∣Mτ), but a ≠ b. Since⟨a,b, i⟩ ∈ ∣A∣Mτ ,
⟨a,b, i + 1⟩ ∈ ∣A∣Mτ , by Lemma 62(ii). Trivially,b = b andi + 1 ≥ i, alsoa = a. Hence,
clauses [2.a] and [2.b.1] of the definition of⪯τ are met, so⟨a,b, i +1⟩ ⪯τ ⟨a,b, i⟩. Since
⟨a,b, i⟩ ∈ Max⪯τ(∣A∣Mτ), it follows that⟨a,b, i⟩ ⪯τ ⟨a,b, i + 1⟩. Hence, by clause [2.a],
i ≥ i + 1, which is absurd, of course. Therefore, it must be thata = b.

Lemma 64 For all A ∈ Ln
BL and all a∈ W and all i∈ ω, a ∈ Max⪯(∣A∣M) iff ⟨a,a, i⟩ ∈

Max⪯τ(∣A∣Mτ).

Proof. L → R: Supposea ∈ Max⪯(∣A∣M). Soa ∈ ∣A∣M, and thus⟨a,a, i⟩ ∈ ∣A∣Mτ , by
Lemma 62(i). We show⟨a,a, i⟩ ∈ Max⪯τ(∣A∣Mτ). Suppose not, i.e., suppose forreductio
there is some⟨b,c, j⟩ ∈ ∣A∣Mτ such that⟨b,c, j⟩ ≺τ ⟨a,a, i⟩. Since⟨b,c, j⟩ ∈ ∣A∣Mτ , b ∈
∣A∣M. Obviously,⟨b,c, j⟩ ≠ ⟨a,a, i⟩. Since⟨b,c, j⟩ ⪯τ ⟨a,a, i⟩, c = a and j ≥ i, by clause
[2.a]. Sincea = a, b ≺ a by clause [2.b.2]. But that is impossible sincea ∈ Max⪯(∣A∣M).
Hence, there is no such⟨b,c, j⟩ ∈ ∣A∣Mτ , and so⟨a,a, i⟩ ∈ Max⪯τ(∣A∣Mτ).

R → L: Suppose⟨a,a, i⟩ ∈ Max⪯τ(∣A∣Mτ). Since⟨a,a, i⟩ ∈ ∣A∣Mτ , a ∈ ∣A∣M by
Lemma 62. We showa ∈ Max⪯(∣A∣M). Suppose not, i.e., suppose forreductio there
is someb ∈ ∣A∣M such thatb ≺ a. Obviouslyb ≠ a. Consider⟨b,a, i⟩. ⟨b,a, i⟩ ∈ Wτ.
Also, ⟨b,a, i⟩ ∈ ∣A∣Mτ . Trivially, a = a andi ≥ i, so clause [2.a] of the definition of⪯τ is
met. Sinceb ≺ a, ⟨b,a, i⟩ ⪯τ ⟨a,a, i⟩ by clause [2.b.2]. Since⟨a,a, i⟩ ∈ Max⪯τ(∣A∣Mτ),
⟨a,a, i⟩ ⪯τ ⟨b,a, i⟩. Sinceb ≠ a, then, by clause [2.b.1],a = b, a direct contradiction.
Hence, there is no suchb ∈ ∣A∣M, and soa ∈ Max⪯(∣A∣M).

It is now easy to verify thatM andMτ areequivalent forLn
DLa.
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Lemma 65 For all formulasα ∈ Ln
DLa, M ⊧P α iff Mτ ⊧P α.

Proof. By induction onα. We show only the case whereα = O(B/A) since the
others are easily done, and may be left to the reader.

L →R: SupposeM ⊧P O(B/A), so that Max⪯(∣A∣M) ⊆ ∣B∣M. To showMτ ⊧P O(B/A),
i.e., that Max⪯τ(∣A∣Mτ) ⊆ ∣B∣Mτ , suppose some⟨a,b, i⟩ ∈ Max⪯τ(∣A∣Mτ). By Lemma 63,
a = b. Hence,⟨a,a, i⟩ ∈ Max⪯τ(∣A∣Mτ). By Lemma 64,a ∈ Max⪯(∣A∣M). Hence,a ∈
∣B∣M, and then, by Lemma 62,⟨a,b, i⟩ ∈ ∣B∣Mτ , which suffices for Max⪯τ(∣A∣Mτ) ⊆ ∣B∣Mτ
and so forMτ ⊧P O(B/A).

R → L: SupposeMτ ⊧P O(B/A), so that Max⪯τ(∣A∣Mτ) ⊆ ∣B∣Mτ . Consider any
a ∈ Max⪯(∣A∣M). By Lemma 64,⟨a,a, i⟩ ∈ Max⪯τ(∣A∣Mτ), for anyi ∈ ω. Thus,⟨a,a, i⟩ ∈
∣B∣Mτ , whereupona ∈ ∣B∣M, by Lemma 62. That suffices for Max⪯(∣A∣M) ⊆ ∣B∣M, and so
for M ⊧P O(B/A).

For DDLn-b, it remains to show thatMτ is replete forLn
BL and limited forLn

BL .

Lemma 66 Mτ is (i) replete forLn
BL and (ii) limited for Ln

BL , if M is; i.e., for all
A ∈ Ln

BL , if ∣A∣Mτ ≠ ∅ thenMax⪯τ(∣A∣Mτ) ≠ ∅.

Proof. (i) follows directly from M being replete forLn
BL and Lemma 62. For

(ii), supposeA ∈ Ln
BL and ∣A∣Mτ ≠ ∅. Suppose⟨a,b, i⟩ ∈ ∣A∣Mτ . By Lemma 62,a ∈

∣A∣M; hence,∣A∣M ≠ ∅. Given thatM is limited forLn
BL , Max⪯(∣A∣M) ≠ ∅. Suppose

b ∈ Max⪯(∣A∣M). Consider⟨b,b, i⟩ ∈ Wτ, for any i ∈ ω. By Lemma 64,⟨b,b, i⟩ ∈
Max⪯τ(∣A∣Mτ). Hence, Max⪯τ(∣A∣Mτ) ≠ ∅, as required.

These results sufficefor completeness.

Theorem 67 For any finite n≥ 1, DDLn-b is sound and weakly complete for all P-
models, M= ⟨W,⪯,v⟩, defined forLn

DLa that are replete forLn
BL and whose relation,⪯,

is reflexive, transitive, and limited forLn
BL .

Proof. Soundness has been done, Theorem 15. For weak completeness, we argue
as usual. Suppose⊬ α in DDLn-b. By Theorem 28(ii), there is a modelM = ⟨W,⪯,v⟩
that is finite and replete forLn

BL , with ⪯ both reflexive and limited forLn
BL , and is

such thatM ⊭P α. ConstructMτ from M as described. By Lemmas 59, 61 and 66,
Mτ is defined forLn

DLa and is replete forLn
BL and its⪯τ is reflexive and transitive and

limited for Ln
BL , and by Lemma 65,Mτ ⊭P α. Hence,⊮P α for that class of P-models.

Accordingly, if⊩P α for that class, then⊢ α in DDLn-b.

That is what was primarily to be proved for this step of the argumentregarding
DDL-b. While the result has intrinsic interest, perhaps, its purpose is to be applied
in the next step, where we will see thatMτ based onM is more nuanced than merely
having a transitive relation and being limited forLn

BL .

Step 2: Transitive H-models

We now seek a Hanssonian relationR that is equivalent toMτ for Ln
DLa and is limited

for the full, infinite languageLBL ; in passing, it is also transitive. To this end, we adapt
the method of marking worlds that was applied earlier for DDL-a, DDL-c and DDL-d.
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GivenM = ⟨W,⪯,v⟩, definedfor Ln
DLa, that is finite and replete forLn

BL and whose
relation⪯ is reflexive and limited forLn

BL , let Mτ = ⟨Wτ,⪯τ,vτ⟩ be derived fromM as
described above in Step 1. As we have seen,Mτ is defined forLn

DLa and replete forLn
BL

and its relation⪯τ is not only reflexive and limited forLn
BL but also transitive. Also, for

all α ∈ Ln
DLa, Mτ ⊧P α iff M ⊧P α. FurtherWτ is denumerable.

BecauseWτ is only denumerable, there are enough atoms in the denumerably
infinite languageLBL to mark each of the pointsx ∈ Wτ in much the same manner as
before. LetR= {r ∶ r is an atom ofLBL andr ∉ Ln

BL}. SinceLn
BL is finite, there is such

anR, and it is denumerable. LetR be ordered as⟨r1, . . . , r i , . . .⟩ by some enumeration,
and letWτ likewise be ordered as⟨x1, . . . , xi , . . .⟩ by an enumeration. This establishes a
one-one mapping betweenRandWτ. We will say that eachr i in its ordering marks, or
is the marker for,xi in its, where the subscript indicates the position ofr i or xi in their
enumerations. Thus the subscriptsi, j, etc. onxi , x j , etc. are quite independent of the
internal numerical indexes of these points, i.e., whenxi = ⟨a,b,k⟩, i has nothing to do
with k, except arithmetic, of course. Clearly, every atomr ∈ Rmarks somex ∈ Wτ, and
everyx ∈ Wτ is marked by somer ∈ R, and these are unique. Whenx = xi is given in
context, I may write ‘rx’ for r i , the marker forx.

As in §5.2.1, marking worlds this way enables a correspondence between certain
valuationsϕ ∈ V and pointsxi ∈ Wτ. For eachxi ∈ Wτ, letϕxi be thatϕ ∈ V such that

• ϕ(p) = 1 iff xi ∈ vτ(p), for all atomsp ∈ Ln
BL ,

• ϕ(r i) = 1, and

• ϕ(r j) = 0 for all other atomsr j ∈ Rsuch thatr j ≠ r i .

As before, there is clearly such aϕxi , and only one, for eachxi ∈ Wτ. We say thatϕxi is
marked forxi , or is the marked counterpart ofxi , by virtue of its verifyingr i , and only
r i , from R, while agreeing withxi on all formulasA ∈ Ln

BL .

Lemma 68 For all r ∈ R, ifϕxi ∈ ∣r ∣ andϕx j ∈ ∣r ∣, then xi = x j .

Proof. Supposeϕxi ∈ ∣r ∣ andϕx j ∈ ∣r ∣, but xi ≠ x j . By the latter,i ≠ j in the
enumeration ofWτ. Hence,r i ≠ r j in the ordering ofR. Sinceϕxi ∈ ∣r ∣, r = r i , and since
ϕx j ∈ ∣r ∣, r = r j , and thusr i = r j , a contradiction. Hence,xi = x j .

Lemma 69 For all A ∈ Ln
BL , xi ∈ ∣A∣Mτ iff ϕxi ∈ ∣A∣.

Proof. By an easy induction onA ∈ Ln
BL , given the specification ofϕxi from xi .

Likewise, as before, let

• Vµ = {ϕ ∈ V ∶ thereis anx ∈ Wτ andϕ = ϕx}.

Lemma 70 Vµ is denumerable.

Proof. Immediate from Lemma 60.

We now defineRMτ muchas previously. Forϕ, ϕ′ ∈ V, let
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• ϕRMτϕ
′ iff either

(i) bothϕ ∈ Vµ andϕ′ ∈ Vµ, andxi ⪯
τ x j whenϕ = ϕxi andϕ′ = ϕx j , or

(ii) ϕ

′ ∉ Vµ.

Lemma 71 RMτ is reflexive and transitive.

Proof. Reflexivity is immediate from⪯τ being reflexive. Transitivity follows,
mutatis mutandis, by the argument for Lemma 49, given that⪯τ is transitive.

Lemma 72 For all A ∈ Ln
BL , xi ∈ Max⪯τ(∣A∣Mτ) iff ϕxi ∈ MaxRMτ

(∣A∣).

Proof. By the argument for Lemma 50.

RMτ andMτ areequivalent with regard toLn
DLa, in the sense that:

Lemma 73 For all α ∈ Ln
DLa, Mτ ⊧P α iff RMτ ⊧H α.

Proof. By the argument for Lemma 51.

We now need to establish thatRMτ is limited for all ofLBL , that if A ∈ LBL , then if
∣A∣ ≠ ∅ then MaxRMτ

(∣A∣) ≠ ∅. We distinguish cases depending onA. Case 1,A ∈ Ln
BL ;

Case 2,A ∉ Ln
BL .

Lemma 74 (Case 1) If A ∈ Ln
BL then if ∣A∣ ≠ ∅ thenMaxRMτ

(∣A∣) ≠ ∅.

Proof. Given A ∈ Ln
BL and ∣A∣ ≠ ∅, then∣A∣Mτ ≠ ∅, sinceMτ is replete forLn

BL .
SinceMτ is limited for Ln

BL , Max⪯τ(∣A∣Mτ) ≠ ∅. Supposexi ∈ Max⪯τ(∣A∣Mτ), then
ϕxi ∈ MaxRMτ

(∣A∣), by Lemma 72. Hence, MaxRMτ
(∣A∣) ≠ ∅.

We now consider Case 2 whereA ∉ Ln
BL , and so there are atomsr ∈ R that are

subformulas ofA. Let

• R(A) = {r ∈ R ∶ r is a subformula ofA}.

ObviouslyR(A) is finite and, for this case, nonempty.
Given ∣A∣ ≠ ∅, A is consistent. By classical logic,A is equivalent to a formulaA′

in disjunctive normal form (DNF), so thatA′ = B1∨⋅ ⋅ ⋅∨Bm, where each disjunct,Bi , is
a consistent conjunction of literals, i.e., atoms or their negations, fromLBL . Moreover,
we now require of each suchBi , (i) for every atomp ∈ Ln

BL , eitherp or¬p is a conjunct
of Bi , and not both, of course. This is possible sinceLn

BL is finite, containing exactlyn
many atoms. We also require (ii) for every atomr ∈ R(A), eitherr or ¬r is a conjunct
of Bi , and not both. This too is possible sinceR(A) is finite. Thus, each suchBi

is equivalent to a formulaPi ∧ Ri , wherePi is a complete conjunction of literals from
Ln

BL , one for every atom ofLn
BL , andRi is a complete conjunction of literals fromR(A),

one for every atom inR(A). Let

• δ(A) = {Bi ∶ Bi is a disjunct ofA′}.

Like Gaul,δ(A) is divided into three parts. Let
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• δ0(A) = {Bi ∈ δ(A) ∶ Bi is equivalent toPi ∧ Ri and all the conjuncts inRi are
negative, i.e., for allℓ that are conjuncts ofRi , ℓ = ¬r for somer ∈ R(A)}.

• δ1(A) = {Bi ∈ δ(A) ∶ Bi is equivalent toPi ∧Ri and exactly one of the conjuncts
of Ri is positive, i.e., there is oneℓ that is a conjunct ofRi such thatℓ = r for
somer ∈ R(A), and all the rest are negative}.

• δ2(A) = {Bi ∈ δ(A) ∶ Bi is equivalent toPi∧Ri and more than one of the conjuncts
of Ri is positive, i.e., there areℓ andℓ′, both conjuncts ofRi , andℓ = r for some
r ∈ R(A) andℓ′ = r ′ for somer ′ ∈ R(A) andr ≠ r ′}.

Clearly, eachδi(A), for i ∈ {0,1,2}, is finite, sinceA′ has finitely many disjuncts. Of
course, any of these might be empty, though not all, given thatA is consistent.

Givenδi(A) for i ∈ {0,1,2}, let Ai = ⋁ δi(A), except in caseδi(A) = ∅, then let
Ai = p∧ ¬p, for some atomp ∈ Ln

BL . Thus,A is equivalent toA0 ∨ A1 ∨ A2.
By the nature of the members ofδ2(A), we know this:

Lemma 75 If ϕ ∈ ∣A2∣ thenϕ ∉ Vµ.

Proof. Obvious.

We know less about thoseϕ ∈ ∣A0∣ or ϕ ∈ ∣A1∣; these might, or might not, be inVµ. We
can, however, focus attention on those that are. For the givenA, let

• Vµ0(A) = Vµ ∩ ∣A0∣;

• Vµ1(A) = Vµ ∩ ∣A1∣.

In light of Lemma 75, these exhaustVµ ∩ ∣A∣, and they are exclusive.

Lemma 76 (i) Vµ ∩ ∣A∣ = Vµ0(A)∪Vµ1(A), and (ii) Vµ0(A)∩Vµ1(A) = ∅.

We note further that, given thatR(A) is finite,

Lemma 77 Vµ1(A) is finite.

That is not so forVµ0(A).
With those in place, we now distinguish two further cases. In Case 2.a,Vµ ∩ ∣A∣ =

∅; in Case 2.b,Vµ ∩ ∣A∣ ≠ ∅.

Lemma 78 (Case 2.a) If A ∉ Ln
BL and Vµ ∩ ∣A∣ = ∅, then if∣A∣ ≠ ∅ thenMaxRMτ

(∣A∣) ≠
∅.

Proof. SupposeA ∉ Ln
BL andVµ∩∣A∣ = ∅ and∣A∣ ≠ ∅. Considerϕ ∈ ∣A∣. Soϕ ∉ Vµ.

Suppose, forreductio,ϕ ∉ MaxRMτ
(∣A∣). Then there is aϕ′ ∈ ∣A∣ such thatϕ′PMτϕ. By

the definition ofRMτ , that requiresϕ′ ∈ Vµ; so ϕ′ ∈ Vµ ∩ ∣A∣ and Vµ ∩ ∣A∣ ≠ ∅, a
contradiction. Hence,ϕ ∈ MaxRMτ

(∣A∣) and MaxRMτ
(∣A∣) ≠ ∅.

For Case 2.b, withVµ ∩ ∣A∣ ≠ ∅, we again distinguish two cases: Case 2.b.1,
Vµ0(A) ≠ ∅, and Case 2.b.2,Vµ0(A) = ∅.
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Lemma 79 (Case 2.b.1) If A ∉ Ln
BL and Vµ ∩ ∣A∣ ≠ ∅, then if Vµ0(A) ≠ ∅, then

MaxRMτ
(∣A∣) ≠ ∅.

Proof. SupposeA ∉ Ln
BL andVµ∩∣A∣ ≠ ∅, and supposeVµ0(A) ≠ ∅. Letϕ ∈ Vµ0(A).

Thusϕ ∈ Vµ andϕ ∈ ∣A0∣, whereA0 = P1 ∧ R1 ∨ ⋅ ⋅ ⋅ ∨ Pk ∧ Rk, in which eachPi is a
complete conjunction of literals fromLn

BL andRi is a complete conjunction of negated
atoms fromR(A). Thus, all theRi ’s must be the same. Call thatR0. Hence,A0 is
equivalent to(P1 ∨ ⋅ ⋅ ⋅ ∨ Pk) ∧ R0. Let P0 = P1 ∨ ⋅ ⋅ ⋅ ∨ Pk. P0 ∈ L

n
BL . Sinceϕ ∈ ∣A0∣,

ϕ ∈ ∣P0∣, so that∣P0∣ ≠ ∅. SinceMτ is replete forLn
BL , ∣P0∣Mτ ≠ ∅, and sinceMτ is

limited for Ln
BL , Max⪯τ(∣P0∣Mτ) ≠ ∅. Supposex ∈ Max⪯τ(∣P0∣Mτ). By Lemma 63, we

know x = ⟨a,a, i⟩, for somea ∈ W andi ∈ ω. By Lemma 64,⟨a,a, j⟩ ∈ Max⪯τ(∣P0∣Mτ)
for every j ∈ ω.

Let j∗ ∈ ω be the least number such that for everyr ∈ R(A), if r = r i in the
enumeration ofR, andr i marksxi = ⟨c,d,k⟩ in the enumeration ofWτ, then j∗ > k.
SinceR(A) is finite, and everyr ∈ R(A)marks a uniquexi ∈ Wτ, there must be such a
j∗. As noted,⟨a,a, j∗⟩ ∈ Max⪯τ(∣P0∣Mτ). Let y∗ = ⟨a,a, j∗⟩, and considerϕy∗ ∈ Vµ. By
Lemma 69,ϕy∗ ∈ ∣P0∣. Further,ϕy∗ ∈ ∣R0∣, for suppose not, i.e., suppose, forreductio,
ϕy∗ ∉ ∣R0∣. Thusϕy∗ ∈ ∣¬R0∣. SinceR0 is a conjunction¬ra ∧ . . . ∧ ¬rb, one conjunct
for each atom inR(A), ¬R0 is equivalent tora ∨ ⋅ ⋅ ⋅ ∨ rb, one disjunct for each atom in
R(A). Hence, there is anr ∈ R(A) such thatϕy∗ ∈ ∣r ∣. Sinceϕy∗ ∈ Vµ, there could be
only one. Suppose thatr marks pointz ∈ Wτ, wherez= ⟨c,d,k⟩ for somec,d ∈ W and
k ∈ ω. Thusr = rz, so thatϕy∗ ∈ ∣rz∣. Givenz, considerϕz marked forzby rz. Obviously
ϕz ∈ ∣rz∣. Hence, by Lemma 68,y∗ = z, i.e.,⟨a,a, j∗⟩ = ⟨c,d,k⟩. Thus j∗ = k. On the
other hand, given the specification ofj∗, sincerz ∈ R(A) andz = ⟨c,d,k⟩, j∗ > k, a
contradiction. Hence,ϕy∗ ∈ ∣R0∣. Thusϕy∗ ∈ ∣P0 ∧ R0∣, and soϕy∗ ∈ A0, which entails
ϕy∗ ∈ ∣A∣. We show it to be maximal in∣A∣ by RMτ .

Suppose, forreductio,ϕy∗ ∉ MaxRMτ
(∣A∣), so that there is someϕ ∈ ∣A∣ such that

ϕPMτϕy∗ . Sinceϕy∗ ∈ Vµ, ϕ ∈ Vµ, by the definition ofRMτ . Hence, there is az ∈ Wτ

such thatϕ = ϕz, wherez = ⟨c,d,k⟩ for somec,d ∈ W andk ∈ ω. Sinceϕy∗ , ϕz ∈ Vµ

andϕzPMτϕy∗ , z ≺τ y∗. ϕz ∈ Vµ1(A) or ϕz ∉ Vµ1(A). In the first case, withϕz ∈ Vµ1(A),
and soϕz ∈ ∣A1∣, there must be aBl ∈ δ1(A) such thatϕz ∈ ∣Bl ∣. Bl is equivalent to a
conjunctionPl ∧ Rl , in which Rl is a conjunction of literals from the atoms ofR(A)
and exactly one of those is positive. Sinceϕz ∈ ∣rz∣ andϕz ∈ Rl , it must be thatrz is
that conjunct, and sorz ∈ R(A). Given z ≺τ y∗, z ⪯τ y∗, i.e., ⟨c,d,k⟩ ⪯τ ⟨a,a, j∗⟩.
Hence,k ≥ j∗, by part [2.a] of the definition of⪯τ. By the specification ofj∗, however,
j∗ > k, a contradiction. In the second case, withϕz ∉ Vµ1(A), thenϕz ∈ Vµ0(A), by
Lemma 76. Thenϕz ∈ ∣A0∣ and soϕz ∈ ∣P0∣, in which casez ∈ ∣P0∣Mτ , by Lemma 69.
But theny∗ ∉ Max⪯τ(∣P0∣Mτ), another contradiction. Hence, there is no suchϕ, and so
ϕy∗ ∈ MaxRMτ

(∣A∣). Consequently, MaxRMτ
(∣A∣) ≠ ∅.

Lemma 80 (Case 2.b.2) If A ∉ Ln
BL and Vµ ∩ ∣A∣ ≠ ∅, then if Vµ0(A) = ∅, then

MaxRMτ
(∣A∣) ≠ ∅.

Proof. SupposeA ∉ Ln
BL andVµ ∩ ∣A∣ ≠ ∅, but Vµ0(A) = ∅. ThenVµ1(A) ≠ ∅,

by Lemma 76. By Lemma 77,Vµ1(A) is finite. Since, by Lemma 71,RMτ is transitive,
MaxRMτ

(Vµ1(A)) ≠ ∅, for transitivity over a nonempty finite set guarantees a maximal
member of the set. Supposeϕ∗ ∈ MaxRMτ

(Vµ1(A)). Sinceϕ∗ ∈ Vµ1(A), ϕ
∗ ∈ ∣A1∣, and
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soϕ∗ ∈ ∣A∣. We show it to be maximal in∣A∣. Suppose, forreductio,ϕ∗ ∉ MaxRMτ
(∣A∣),

so that there is someϕ ∈ ∣A∣ such thatϕPMτϕ
∗. Sinceϕ∗ ∈ Vµ, ϕ ∈ Vµ, by the definition

of RMτ . Hence,ϕ ∈ Vµ ∩ ∣A∣. Since, by the opening supposition,ϕ ∉ Vµ0(A), then
ϕ ∈ Vµ1(A), by Lemma 76. But thenϕ∗ ∉ MaxRMτ

(Vµ1(A)), a contradiction. Hence
there is no suchϕ, and soϕ∗ ∈ MaxRMτ

(∣A∣). Thus again, MaxRMτ
(∣A∣) ≠ ∅.

These cases ensure thatRMτ is limited.

Lemma 81 RMτ is limited; i.e., for all A∈ LBL , if ∣A∣ ≠ ∅, thenMaxRMτ
(∣A∣) ≠ ∅.

Proof. SupposeA ∈ LBL and ∣A∣ ≠ ∅. (i) If A ∈ Ln
BL , then MaxRMτ

(∣A∣) ≠ ∅, by
Case 1, Lemma 74. (ii) IfA ∉ Ln

BL , then (a) ifVµ ∩ ∣A∣ = ∅, then MaxRMτ
(∣A∣) ≠ ∅, by

Case 2.a, Lemma 78. On the other hand, (b) ifVµ∩ ∣A∣ ≠ ∅, then (1) ifVµ0(A) ≠ ∅, then
MaxRMτ

(∣A∣) ≠ ∅, by Case 2.b.1, Lemma 79. But (2) ifVµ0(A) = ∅, then MaxRMτ
(∣A∣) ≠

∅, by Case 2.b.2, Lemma 80. Since those are all the possible cases, if∣A∣ ≠ ∅, then
MaxRMτ

(∣A∣) ≠ ∅, as required.

This completes what was needed in Step 2.

Theorem 82 DDL-b = DSDL2; i.e., for allα ∈ LDLa, (i) if ⊢ α in DDL-b, then⊩H α

with respect to the class of all Hanssonian relationsR ⊆ V × V that are reflexive and
limited, and conversely (ii) if⊩H α with respect to the class of all Hanssonian relations
R ⊆ V × V that are reflexive and limited, then⊢ α in DDL-b. Likewise for all relations
R that are transitive as well as reflexive and limited.

Proof. (i) is the soundness of DDL-b, Theorem 1. (ii) is the weak completeness of
DDL-b. We argue as previously, though with an extra step. Suppose⊩H α for the class
of relationsR that are reflexive and limited, but that⊬ α in DDL-b. There must be some
finite n such thatλ(α) = n. By Lemma 14,⊬ α in DDLn-b. By Theorem 28(ii), there is
a P-modelM = ⟨W,⪯,v⟩, defined forLn

DLa, that is finite and replete forLn
BL and whose

relation⪯ is reflexive and limited forLn
BL , and is such thatM ⊭P α. From M, define

Mτ = ⟨Wτ,⪯τ,vτ⟩ as described in Step 1.Mτ is defined forLn
DLa and is replete forLn

BL ,
Lemma 59. By Lemma 65,Mτ ⊭P α. Moreover,⪯τ is reflexive and transitive, Lemma
61, as well as limited forLn

BL , Lemma 66. FromMτ defineRMτ as described in this
Step 2. By Lemma 73,RMτ ⊭H α. Further, by Lemma 71,RMτ is reflexive and transitive,
and by Lemma 81,RMτ is limited. Hence,RMτ is apt for DSDL2. Consequently,⊮H α

for this class of relations, a contradiction. Hence, if⊩H α for this class, then⊢ α in
DDL-b. Given thatRMτ is transitive, the same can be said with respect to the class of
relations that are not only reflexive and limited, but also transitive.

Furthermore, for those particularly interested in transitive relationsR, since the
arguments of Step 1 and Step 2 apply equally well to DDL-a, without the need for the
complexity of Lemma 81,

Corollary 83 DDL-a = DSDL1 is sound and complete for the class of all relationsR
that are reflexive and transitive.

We have already seen in Theorem 57 that DDL-c= DSDL2.5 is sound and complete
for the class of relationsR that are reflexive and transitive as well as stoppered. As a re-
sult, there is no principle, or set of principles, in the present framework that demarcates
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transitivity of relationsR, or transitivity with reflexivity, with or without limitation or
stoppering. Of course, the combination of transitivity with totality does yield (Rat-
Mono) of DDL-d= DSDL3.

6 Ancillary results

With the completion of Step 2 in the argument for DDL-b, and so of all of Stage 2,
we have accomplished our primary purpose, proving that DDL-a= DSDL1 (Theorem
52), DDL-b= DSDL2 (Theorem 82), DDL-c= DSDL2.5 (Theorem 57), and DDL-d=
DSDL3 (Theorem 10 and its Corollary 12, not to mention Theorem 58). This section
presents some further results that follow from those, or the methods that proved them.
In particular, in §6.1 we find that DSDL1, DSDL2 and DSDL2.5 are not compact, from
which it follows that DDL-a, DDL-b and DDL-c are not strongly complete, and indeed
there are no strongly complete axiomatizations for DSDL1, -2 and -2.5. In §6.2 we
establish that DDL-a, DDL-b, DDL-c, and DDL-d, are decidable; hence so too are
DSDL1, DSDL2, DSDL2.5 and DSDL3. Finally, to end on an optimal note, in §6.3 we
examine a variation on the rule Hansson used to interpret formulasO(B/A), a variation
that is frequently applied for dyadic deontic logic. This alternative relies on a notion of
optimality rather than maximality, such as we have assumed throughout the preceding
discussion. Applying our completeness results, however, we discover that, other things
being equal, the difference of the interpretive rules makes no difference to the logics
themselves.

6.1 Compactness

In Section 4 we proved DDL-d to be strongly complete for the class of DSDL3 models,
and hence that DSDL3 is compact, Theorem 10 and its Corollary 13. By contrast,
Theorems 52, 82, and 57 establish only weak completeness for DDL-a, DDL-b and
DDL-c for their respective classes of H-models. While it may be disappointing not
to have the stronger result for the weaker systems, that is too much to ask for. These
systems are not strongly complete for those models.

That they are not strongly complete follows from the fact that DSDL1, DSDL2
and DSDL2.5 are not compact. That is to say, there are sets of formulasΓ ⊆ LDLa such
that every finite subset ofΓ is satisfiable by an appropriate model for the system, butΓ

itself is not so satisfiable. Here is an example:9 Let p,q,r1, . . . , r i , . . . be an enumeration
of all the atoms ofLBL . Let

• Γ0 = {O(q/p∨ q),P(¬p∨ ¬q/p),P(p∨ ¬q/¬(p↔ q))},

• Γp = {O(r i/p) ∶ r i ≠ p andr i ≠ q},

• Γ¬(p↔q) = {O(r i/¬(p↔ q)) ∶ r i ≠ p andr i ≠ q},

• Γ
⋆ = Γ0 ∪ Γp ∪ Γ¬(p↔q).

9This is similar to an example Jörg Hansen used to show that his systemDDLF,S is not compact with
respect to his semantics; cf. [4] p. 496.
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Lemma 84 There is no relationR ⊆ V ×V that satisfies all ofΓ⋆.

Proof. Suppose, forreductio, there were a relationR that satisfied every member
of Γ⋆. Since that includesP(¬p∨ ¬q/p), there must be someϕ ∈ MaxR(∣p∣) such that
ϕ ∈ ∣¬p∨ ¬q∣. Sinceϕ ∈ ∣p∣, ϕ ∈ ∣¬q∣, so thatϕ ∉ ∣q∣. Furthermore, sinceO(r i/p) ∈ Γ⋆,
for every atomr i other thanp or q, R ⊧ O(r i/p); hence, MaxR(∣p∣) ⊆ ∣r i ∣, and so
ϕ ∈ ∣r i ∣ for all such atomsr i . Likewise, sinceP(p∨ ¬q/¬(p ↔ q)) ∈ Γ⋆, there must
be someϕ′ ∈ MaxR(∣¬(p ↔ q)∣) such thatϕ′ ∈ ∣p ∨ ¬q∣. Sinceϕ′ ∈ ∣¬(p ↔ q)∣,
ϕ

′ ∈ ∣¬p∧ q∣ or ϕ′ ∈ ∣p∧ ¬q∣. The first is ruled out sinceϕ′ ∈ ∣p∨ ¬q∣. Hence,ϕ′ ∈ ∣p∣
andϕ′ ∉ ∣q∣. Also, sinceO(r i/¬(p ↔ q)) ∈ Γ⋆, for every atomr i other thanp or
q, R ⊧ O(r i/¬(p ↔ q)), and so MaxR(∣¬(p ↔ q)∣) ⊆ ∣r i ∣. Hence,ϕ′ ∈ ∣r i ∣ for all
such atoms,r i . Thus we seeϕ andϕ′ agree on all atoms inLBL , which means that
ϕ = ϕ′. Further, althoughϕ ∈ ∣p∨ q∣, ϕ ∉ MaxR(∣p∨ q∣). For, sinceO(q/p∨ q) ∈ Γ∗,
R ⊧H O(q/p∨ q), so that MaxR(∣p∨ q∣) ⊆ ∣q∣. Hence, ifϕ ∈ MaxR(∣p∨ q∣), thenϕ ∈ ∣q∣,
whereas alreadyϕ ∉ ∣q∣. Since thusϕ ∉ MaxR(∣p∨q∣), there must be aϕ′′ ∈ ∣p∨q∣ such
thatϕ′′Pϕ. ϕ′′ ∉ ∣p∣, for otherwiseϕ ∉ MaxR(∣p∣). Hence,ϕ′′ ∈ ∣q∣, andϕ′′ ∈ ∣¬p∧ q∣.
In that case,ϕ′′ ∈ ∣¬(p↔ q)∣. Sinceϕ = ϕ′, ϕ′′Pϕ′. But thenϕ′ ∉ MaxR(∣¬(p↔ q)∣),
a contradiction. Hence there is no suchϕ′′. But there must be; we are left with a
contradiction. Therefore, there is no such relationR that satisfies all ofΓ⋆.

Notice this requires no reference to the supposedR beinglimited or stoppered, or
having any other typical traits. It applies to all of the DSDL systems.

Lemma 85 Every finite subset ofΓ⋆ is satisfiable by a relationR ⊆ V × V that is
reflexive or limited or stoppered.

Proof. Consider an arbitrary finite subsetΓ⋆f of Γ⋆. Given the enumeration
r1, . . . , r i , . . . of all atoms other thanp andq, supposen to be the greatest index oc-
curring on such an atom occurring in a formula inΓ⋆f , so thatrn+1 does not occur in any
such formula. Letϕ1, ϕ2, ϕ3, ϕ4 be those members ofV such that

• ϕ1(p) = ϕ1(q) = 1, andϕ1(r i) = 1, for all atomsr i other thanp or q,

• ϕ2(p) = 0 andϕ2(q) = 1, andϕ2(r i) = 1, for all atomsr i other thanp or q,

• ϕ3(p) = 1 andϕ3(q) = 0, andϕ3(r i) = 1, for all atomsr i other thanp or q,
includingrn+1,

• ϕ4(p) = 1 andϕ4(q) = 0, andϕ4(r i) = 1, for all atomsr i other thanp or q, not
includingrn+1; for it, ϕ4(rn+1) = 0.

Thus,ϕ3 andϕ4 agree on all atoms other thanrn+1; there they differ. Nonetheless, for
all A that might be a component of a member ofΓ⋆f , ϕ3 ∈ ∣A∣ iff ϕ4 ∈ ∣A∣.

Consider the relationR ⊆ V ×V given entirely by:

• ϕ1Rϕ3,

• ϕ2Rϕ4, and

• for all otherϕ ∈ V, ϕ3Rϕ andϕ4Rϕ,
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• for all ϕ ∈ V, ϕRϕ.

It is not hard to see thatR is reflexive, but more importantly it is stoppered, hence
limited. By inspection it is apparent that

• MaxR(∣p∣) = {ϕ1, ϕ4},

• MaxR(∣¬(p↔ q)∣) = {ϕ2, ϕ3},

• MaxR(∣p∨ q∣) = {ϕ1, ϕ2}.

That is sufficient to verify that for allα ∈ Γ⋆f , R ⊧H α. ThusR ⊧H P(¬p∨¬q/p), by virtue
of ϕ4, alsoR ⊧H P(p∨ ¬q/¬(p↔ q)), by virtue ofϕ3, andR ⊧H O(q/p∨ q) since both
ϕ1 ∈ ∣q∣ andϕ2 ∈ ∣q∣. Hence, ifα ∈ Γ0, R ⊧H α. If α ∈ Γp, so thatα = O(r i/p) for somer i

other thanp or q, then sinceϕ1 ∈ ∣r i ∣ for all atomsr i andϕ4 ∈ ∣r i ∣ for all atomsr i except
rn+1, andrn+1 could not occur inα, thenR ⊧H α. Similarly in caseα ∈ Γ¬(p↔q) with ϕ2

andϕ3. Hence,R satisfies every member ofΓ⋆f .

From these two lemmas it follows that

Theorem 86 DSDL1, DSDL2, and DSDL2.5 are not compact with respect to appro-
priate classes of H-models/relations.

From that it follows that,

Corollary 87 DDL-a, DDL-b and DDL-c are not strongly complete with respect to the
classes of H-models/relations appropriate for each system. Indeed, no axiomatization
of DSDL1, DSDL2, DSDL2.5 is both sound and strongly complete with respect to the
classes of H-models/relations appropriate for each system.

Proof. By the argument for Corollary 13, if there were an axiomatic systemL,
not necessarily DDL-a, -b or -c, that is sound and strongly complete for these models,
then DSDL1, -2, or -2.5 would be compact. Since they’re not, there is no suchL.

That being so, we will not regret that we have only established theweak completeness
of these three systems for their models.

In passing we might note that the relationR defined for Lemma 85 is not total.
That is how DSDL3 escapes Theorem 86 and its corollary. As we have seen, DSDL3
is compact, and DDL-d is strongly complete.

The failure of compactness and strong completeness for DSDL1, DSDL2 and
DSDL2.5 and their axiomatic equivalents is due to the irredundancy inherent in the
framework of H-models; the same would hold for analogous classes of irredundant and
replete P-models. By contrast, DDL-a, DDL-b and DDL-c are strongly complete for
the appropriate classes of P-models whenW may include duplicate members. That can
be shown with arguments very like those of Stage 1 in §5.1. Given strong completeness,
compactness follows, when redundancy is allowed. Not surprisingly then, there are
redundant P-models that satisfyΓ⋆. I leave it as an exercise to find such a model.
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6.2 Decidability

Herewe show that DDL-a, DDL-b, DDL-c and DDL-d, and their semantical equiva-
lents DSDL1, DSDL2, DSDL2.5 and DSDL3, are decidable. The method to be used is
somewhat novel. Other, more familiar procedures, like taking filters through appropri-
ate models, or other similar strategies, that establish systems to have the finite model
property, from which decidability would follow, given the systems’ finite axiomatiz-
ability, do not apply to these logics. At least, DDL-b, DDL-c and DDL-d do not have
the finite model property.

Indeed, these systems have what might be called the ‘infinite model property’.
Due to (RP), they are sound for no class of models that contains even one finite member.
I leave it as an exercise to verify that there is no finite P-model that satisfies all the
theorems of DDL-b, DDL-c or DDL-d, where I refer to P-models simply because H-
models must be understood as relationsR over the infinite set of valuationsV. If one
allows relations over finite subsets ofV, then the same would obtain; there is no relation
over a finite subset ofV that satisfies all of DDL-b, DDL-c or DDL-d.

Given the failure of the finite model property for these systems, we now draw
their decidability instead from the fact that they are conservative extensions of their
finite counterparts DDLn-a, -b, -c, -d, which, as we have seen, do possess the finite
model property and are decidable.

In general, a logical systemL1 is said to be a conservative extension of another,
L2, just in caseL2 ⊆ L1 (extension) and also for everyφ ∈ L1 that is in the vocabulary of
L2, φ ∈ L2 (conservation). Here we find that, for any finiten ≥ 1, the full axiomatically
defined DDL systems are conservative extensions of their finite DDLn counterparts.

If L is any of the systems DDL-a, DDL-b, DDL-c, or DDL-d, andLn is its finite
counterpart inLn

DLa, for finite n ≥ 1:

Theorem 88 L is a conservative extension ofLn.

Proof. Lemma 14 provides thatL is an extension ofLn. For conservation, suppose
α ∈ Ln

DLa, and suppose⊢ α for any of these full systems,L. Suppose, however, for
reductio,⊬ α for Ln, the finite counterpart ofL in Ln

DLa. By the completeness results
of Stage 1, §5.1, there is a P-model,M, of the appropriate kind such thatM ⊭P α. From
such anM, through the procedures of Stage 2, §5.2, we find a relationR = RM, or R =
RMτ in the case of DDL-b, of the kind appropriate forL such thatR ⊭H α. Hence,⊮H α

for that class of models. By the soundness ofL, however,⊩H α, a contradiction. Hence,
⊢ α for Ln.

As an immediate consequence, we have

Corollary 89 Ln = L ∩ Ln
DLa.

which was briefly mentioned early in §5.
Related to this, we can see that each of the full systemsL is nothing but the sum

of its finite subsystems. That is,

Corollary 90 L = ⋃∞n=1Ln
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Proof. That⋃∞n=1Ln ⊆ L, follows from Lemma 14. For the converse, consider any
α such that⊢ α in L. Since there is a finiten ≥ 1 such thatλ(α) = n, so thatα ∈ Ln

DLa,
then⊢ α in Ln, sinceL is a conservative extension ofLn. Hence,α ∈ ⋃∞n=1Ln, which
suffices forL ⊆ ⋃∞n=1Ln.

Importantly, Theorem 88 also provides for the decidability ofthese systems.10

Theorem 91 (i) DDL-a, DDL-b, DDL-c, and DDL-d are decidable. (ii) DSDL1,
DSDL2, DSDL2.5 and DSDL3 are decidable.

Proof. For (i), let L be any of DDL-a, -b, -c or -d, and consider an arbitrary
α ∈ LDLa. There is some finiten ≥ 1 such thatλ(α) = n, and that is decidable. Whether
⊢ α in Ln or ⊬ α in Ln, is decidable, Corollaries 30, 41, and 46. If⊢ α in Ln, then⊢ α
in L, Lemma 14, and if⊬ α in Ln then⊬ α in L, sinceL is a conservative extension of
Ln, Theorem 88. Hence the decision for the finite subsystem extends to the full system.
For (ii), apply the equivalences of the systems.

6.3 Maximality and optimality

In Footnote 3, I observed that in his treatment of DSDL3, Spohn, [16], p. 239, applied
a definition of maximality different from Hansson’s own. Others too use this other
definition, e.g., Åqvist [17, 18], and Parent [10, 12], although they apply it more in
the framework of P-models than Hanssonian H-models. I present that other definition
here, and show that, even though the concepts are not equivalent, the difference makes
no difference for the sets of valid formulas generated, other things being equal. To ease
discussion I now reserve the term ‘maximality’ for Hansson’s original stipulation and
call the other concept ‘optimality’.11

For any relationR ⊆ V × V, and anyX ⊆ V, let us sayϕ is optimal inX by R, or
R-optimal, just in caseϕ is ranked at least as highly as any otherϕ′ ∈ X, i.e.,

• OptR(X) = {ϕ ∶ ϕ ∈ X and for allϕ′ ∈ X, ϕRϕ′},

which we may contrast with the original:

• MaxR(X) = {ϕ ∶ ϕ ∈ X and there is noϕ′ ∈ X such thatϕ′Pϕ}, or equivalently,

MaxR(X) = {ϕ ∶ ϕ ∈ X and for allϕ′ ∈ X, if ϕ′Rϕ, thenϕRϕ′}.

In general, for anyX ⊆ V, OptR(X) ⊆ MaxR(X), but not conversely. If, however,R is
total, then OptR(X) = MaxR(X).

With this alternative idea of what it means to be ‘best’, one can interpret formulas
O(B/A) by an optimality rule:

• Rule O R ⊧O O(B/A) iff OptR(∣A∣) ⊆ ∣B∣.

10Spohn,[16], p. 251, also demonstrated that DSDL3 is decidable, applying a different method.
11Parent [11, 12, 13] also discusses the contrast between maximality and optimality in a similar vein.
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We define O-validity as with H-validity but with Rule O applied inplace of Rule
H. Thus,α ∈ LDLa is O-valid with respect to a class of relationsR just in case, for every
R in that classR ⊧O α, and so on for related concepts.

Likewise one can specify when relations are limited or stoppered in terms of this
notion.

• R is O-limited iff, for allA ∈ LBL , if ∣A∣ ≠ ∅, then OptR(∣A∣) ≠ ∅.

• R is O-stoppered iff, for allA ∈ LBL , if ϕ ∈ ∣A∣ then eitherϕ ∈ OptR(∣A∣) or there
is aϕ′ ∈ OptR(∣A∣) such thatϕ′Pϕ.

On the basis of those, we define variations on Hansson’s DSDL systems.

• DSDLo1 is the set ofα ∈ LDLa, that are O-valid with respect to the class of all
reflexive relationsR ⊆ V ×V;

• DSDLo2 is the set ofα ∈ LDLa, that are O-valid with respect to the class of all
relationsR ⊆ V ×V that are reflexive and O-limited;

• DSDLo2.5 is the set ofα ∈ LDLa, that are O-valid with respect to the class of all
relationsR ⊆ V ×V that are reflexive and O-stoppered;

• DSDLo3 is the set ofα ∈ LDLa, that are O-valid with respect to the class of all
relationsR ⊆ V ×V that are O-limited and also transitive and total.

Given the difference between optimality and maximality, one might expect the DSDLo

systems to differ from Hansson’s own DSDL systems. That is not the case, however.
Although, in general, OptR(X) ≠ MaxR(X), whenR is not total, nevertheless, for

anyR, there is another relation,Ro, close by such that MaxR(X) = OptRo(X). Given
R, define a relation,I, of incomparability byR, and then defineRo, thus:

• ϕIϕ′ iff not-(ϕRϕ′) and not-(ϕ′Rϕ);

• ϕRo
ϕ

′ iff eitherϕRϕ′ or ϕIϕ′.

It is easy to see thatRo is total. More to the point,

Lemma 92 For any X⊆ V, MaxR(X) = OptRo(X).

Proof. Supposeϕ ∈ MaxR(X), so thatϕ ∈ X and there is noϕ′ ∈ X such thatϕ′Pϕ.
To show thatϕ ∈ OptRo(X), we need to show that for allϕ′ ∈ X, ϕRo

ϕ

′. To that end,
supposeϕ′ ∈ X, but, forreductio, not-(ϕRo

ϕ

′). Then it is not the case that eitherϕRϕ′

or ϕIϕ′, i.e., not-(ϕRϕ′) and also not-(ϕIϕ′). By the latter,ϕRϕ′ or ϕ′Rϕ. Since not
the first,ϕ′Rϕ. Since thusϕ′Rϕ and not-(ϕRϕ′), ϕ′Pϕ, in which caseϕ ∉ MaxR(X), a
contradiction. Hence,ϕRo

ϕ

′, which suffices forϕ ∈ OptRo(X).
For the converse, supposeϕ ∈ OptRo(X), so thatϕ ∈ X and for allϕ′ ∈ X, ϕRo

ϕ

′.
To showϕ ∈ MaxR(X), suppose, forreductio, there is aϕ′ ∈ X such thatϕ′Pϕ. Since
ϕ

′ ∈ X, ϕRo
ϕ

′. Hence, eitherϕRϕ′, or ϕIϕ′. Not the first, sinceϕ′Pϕ, but also not the
second, sinceϕ′Rϕ. Hence, there is no suchϕ′, and soϕ ∈ MaxR(X).
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Lemma 93 (i) If R is limited, thenRo is O-limited; (ii) if R is stoppered, thenRo is
O-stoppered. (iii) IfR is both transitive and total, thenRo is both transitive and total.

Proof. (i) and (ii) are immediate from Lemma 92. For (iii), ifR is transitive and
total, thenR = Ro, so of courseRo is transitive and total.

From this we find thatR andRo areequivalent, by their respective modellings, in
the sense that:

Lemma 94 For all α ∈ LDLa, R ⊧H α iff Ro ⊧O α.

Proof. Proof is by induction onα. We show only the basis case, whereα =
O(B/A), for someA,B ∈ LBL , since the induction to more complexα is routine
and easy. Given Lemma 92,R ⊧H O(B/A) iff MaxR(∣A∣) ⊆ ∣B∣ iff OptRo(∣A∣) ⊆ ∣B∣
iff Ro ⊧O O(B/A).

Let L be any of the systems DDL-a, DDL-b, DDL-c or DDL-d, thenL is sound
with respect to the classes of relations apt forL when validity is understood as O-
validity, and formulas are interpreted by way of Rule O. I.e.,

Lemma 95 For all α ∈ LDLa, if ⊢ α in L, thenα is O-valid with respect to the classes of
models,R, apt forL, i.e., those that are O-limited for DDL-b, O-stoppered for DDL-c,
and O-limited, transitive and total for DDL-d.

Proof. Easily shown, in the usual way, and so left to the reader.

With our earlier completeness results, it is now not difficultto establish that the
DSDLo systems, defined in terms of Rule O, are equivalent to the original DSDL sys-
tems, defined in terms of Rule H.

Theorem 96 (i) DSDLo1 = DSDL1; (ii) DSDLo2 = DSDL2;
(iii) DSDLo2.5= DSDL2.5; (iv) DSDLo3 = DSDL3.

Proof. For (i) supposeα ∈ DSDLo1, but, forreductio,α ∉ DSDL1. Then there
is a reflexiveR such thatR ⊭H α. From R defineRo, as described. By Lemma 94,
Ro ⊭O α, in which caseα ∉ DSDLo1, a contradiction. Hence,α ∈ DSDL1, and thus
DSDLo1 ⊆ DSDL1. For the converse, supposeα ∈ DSDL1. Then⊢ α in DDL-a, by
the completeness of that system, Theorem 52. Hence,α is O-valid for the class of
all relationsR, by the O-soundness of DDL-a, Lemma 95. I.e.,α ∈ DSDLo1, which
suffices for DSDL1⊆ DSDLo1, and thus DSDLo = DSDL1. For (ii), (iii) and (iv) the
argument is similar, applying Lemma 93 as required.

With that, we find that, as far as what formulas are valid under therules, the
choice between Hansson’s original Rule H and the alternative Rule O makes no dif-
ference, other things being equal. It might, of course, make a difference with regard
to what one says about particular models, or the role of various properties of those
models. For example, Spohn [16] §4.2 can argue that the condition of totality is idle
for the determination of DSDL3, but only because he is applying Rule O, rather than
Hansson’s Rule H. Under Rule H, it is necessary to require relationsR to be total in
order to validate (RatMono) or Spohn’s own axiom (A4).
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7 Quick recap

Hanssondefined his dyadic deontic logics, DSDL1, DSDL2 and DSDL3, entirely se-
mantically, as sets of formulas valid with respect to certain classes of models, construed
as relationsR over the setV of classical valuations. To his three, I have added another,
DSDL2.5, between DSDL2 and DSDL3; for all of four, see §2. The purpose of this
paper was to provide an axiomatization for each of them. For that, in §3, I introduced
the axiomatic systems, DDL-a, DDL-b, DDL-c and DDL-d. In §4 and §5 these were
proved to be sound and complete with respect to the classes of models for DSDL1,
DSDL2, DSDL2.5 and DSDL3 respectively, and so to be equivalent to Hansson’s se-
mantical systems. That accomplished our primary goal. For a lagniappe, we found at
the end of §5 that under Rule H relationsR can be required to be transitive without
affecting what principles are valid.

In §4 we proved DDL-d to be strongly complete for DSDL3 models, and hence
that DSDL3 is compact. By contrast, in §5 we only proved the three weaker systems to
be weakly complete. In §6.1 we found that DSDL1, -2, and -2.5 are not compact, and
so there is no strongly complete axiomatization for them. In addition, in §6.2 we estab-
lished that each of the axiomatic systems and its semantical counterpart is decidable,
by virtue of the DDL systems being conservative extensions of their decidable finite
subsystems, DDLn, for n ≥ 1. Finally, in §6.3, we saw that, somewhat surprisingly, as
regards which formulas are valid, other things being equal, it does not matter whether
one interprets formulasO(B/A) in terms of maximality with Rule H, as Hansson did,
or in terms of optimality with Rule O, as others have.

To demonstrate these results proved more challenging than one might have ex-
pected at first, at least for the three weaker logics. Inevitably there are complexities
in treating these systems, as we saw in §5.1 with Stage 1 of the argument. The chal-
lenge is exacerbated, however, by two particular features of Hansson’s systems and
their models. One must accommodate the infinitude of the languagesLBL andLDLa,
and one must provide models for these languages that are irredundant, as the class of
classical valuations,V, over which Hansson’s relationsR are defined, necessarily is. If
it were not for the call for irredundancy we could have stopped at Stage 1, as it is easy
to apply the demonstrations there to the full axiomatic systems in the infinite language.

To obtain the requisite irredundant models, it was especially helpful to begin by
retreating from the infinite language, to establish results first for finite counterparts of
DDL-a, -b and -c in terms of finite P-models. This was crucial for the decidability
results mentioned above. More to the point, this allowed us in Stage 2 of §5.2 to apply
the method of marking worlds from the original P-models, and so to derive the irre-
dundant H-models required for the demonstrations of completeness for the full infinite
DDL logics, which proved their equivalences to Hansson’s DSDL systems.

If we can achieve completeness results both for the finite DDLn logics and for
the full infinite DDL systems with respect to redundant models, and if we can achieve
completeness results for the full infinite systems with respect to irredundant models,
what then of irredundant models for the finite logics? In the framework of Hansson’s
semantics, consider the class,Vn, of valuations defined only for then many atoms of
the finite languageLn

BL , and relationsRn ⊆ Vn×Vn defined over them.Vn is necessarily
irredundant. One might then expect DDLn-a to be equivalent to DSDLn1, the formulas
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valid for all such relationsRn, andDDLn-b to be equivalent to DSDLn2, those valid for
all suchRn that are limited forLn

BL , and DDLn-c equivalent to DSDLn2.5, those valid
for all Rn that are stoppered forLn

BL . One might expect that, but it is not so, at least
not whenn ≥ 2, and it is not so precisely because of the irredundancy inherent in these
models, though interestingly DDLn-d is equivalent to DSDLn3, those formulas valid
for Rn ⊆ Vn × Vn that are limited forLn

BL , transitive and total. I will not explore this
topic here, however. Instead, I leave it as an open, educational exercise for the intrepid
reader to find how those equivalences fail, and then to devise complete axiomatizations
for finite DSDLn1, DSDLn2 and DSDLn2.5. It can be done.
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Reprinted in R. Hilpinen, (ed.). (1971).Deontic Logic: Introductory and System-
atic Readings. Dordrecht: D. Reidel. pp. 121−147; page references to the latter.

[6] Hughes, G. E. and Cresswell, M. (1996).A New Introduction to Modal Logic.
London: Routledge.

[7] Kraus, S., Lehmann, D., and Magidor, M. (1990). Nonmonotonic Reason-
ing, Preferential Models and Cumulative Logics.Artificial Intelligence44, pp.
167−207.

[8] Makinson, D. (1994). Five Faces of Minimality.Studia Logica52, pp. 339−379.

[9] Makinson, D. (1994). General Patterns in Nonmonotonic Reasoning. In D. Gab-
bay, C. Hogger, and J. Robinson, (eds.)Handbook of Logic in Artificial Intelli-
gence. Oxford: Oxford University Press, pp. 35−110.

[10] Parent, X. (2010). A Complete Axiom Set for Hansson’s Deontic Logic DSDL2.
Logic Journal of IGPL18, pp. 422−429.

[11] Parent, X. (2014). Maximality vs. Optimality in Dyadic Deontic Logic. Com-
pleteness Results for Systems in Hansson’s Tradition.Journal of Philosophical
Logic43, pp. 1101−1128.

Lou Goble

60



[12] Parent, X. (2015). Completeness of Åqvist’s SystemsE andF. Review of Sym-
bolic Logic8, pp. 164−177.

[13] Parent, X. (forthcoming). Preference-based Semantics for Hansson-type Dyadic
Deontic Logics. A Survey of Results. In D. Gabbay, J. Horty, X. Parent, R. van
der Meyden, L. van der Torre, (eds.)Handbook of Deontic Logic and Normative
Systems2. London: College Publications.

[14] Schlechta, K. (1996). Some Completeness Results for Stoppered and Ranked
Classical Preferential Models.Journal of Logic and Computation6, pp. 599−622.

[15] Schlechta, K. (1997).Nonmonotonic Logics: Basic Concepts, Results, and Tech-
niques. Berlin: Springer.

[16] Spohn, W. (1975). An Analysis of Hansson’s Dyadic Deontic Logic.Journal of
Philosophical Logic4, pp. 237−252.

[17] Åqvist, L. (1984). Deontic Logic. In D. Gabbay and F. Guenthner, (eds.)Hand-
book of Philosophical Logic2. Dordrecht: Kluwer, pp. 605–714, (2nd edition 8,
2002, pp. 147−264).

[18] Åqvist, L. (1987).An Introduction to Deontic Logic and the Theory of Normative
Systems. Naples: Bibliopolis.

Lou Goble
lgoble@willamette.edu

Axioms for Hansson’s Dyadic Deontic Logics

61




