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Abstract

This paper presents axiomatic systems equivalent to Bengt Hansson’s semanti-
cally defined dyadic deontic logics, DSDL1, DSDL2 and DSDL3. Each axiomatic
system is demonstrated to be sound and complete with respect to the particular
classes of models Hansson defined, and in that way to be equivalent to his logics.
I also include another similar member of the family | call DSDL2.5 and provide
an axiomatic system for it. These systems are further found to be decidable, and,
although DSDL3 is compact, the three weaker ones are shown not to be.

1 Introduction

2019 marks the 50th anniversary of the publication of Bengt Hansson’s seminal paper
“An Analysis of Some Deontic Logics” [5]. While there were precursors and other
contemporary works developing similar concepts, Hansson’s paper, perhaps more than
any other, set the stage for research into dyadic deontic logics, while it also stimu-
lated the use of semantical methods for the analysis of normative language. In that
paper Hansson proposed a way to model statements of conditional obligation, or obli-
gation under circumstances, with a pattern that, broadly speaking, has since become
quite standard, even commonplace. From those constructions he then defined three
systems of dyadic deontic logic, DSDL1, DSDL2 and DSDL3, of increasing strength.
These were defined entirely semantically. Although Hansson presented various prin-
ciples that are valid, or not, for each logic, he seemed little interested in axiomatic or
proof-theoretic treatments of them. Later, Spohn [16] offered an axiomatization for the
strongest, DSDL3. The other two have received far less attention, and the question of
their axiomatization has remained oplen.

In this paper | introduce axiomatizations for all three of Hansson’s logics as he
formulated them, and demonstrate their adequacy by proving them sound and com-
plete with respect to the classes of models Hansson defined. | also include another
member of the family, which | call DSDL2.5 since it is between DSDL2 and DSDL3.
Regarding DSDL3, my version is a little different from Spohn’s, though demonstrably
equivalent to his. In the form | give, however, it is easy to see how, from an axiomatic
point of view, this system is a natural extension of the others. Moreover, | prove a

1Some efforts to reconstruct DSDL1 and DSDL2 differ significantly from Hansson'’s account, e.g., in the
language of the systems, the form of model applied to the language, even the rule of interpretation for dyadic
deontic formulas; cf., e.g., Parent [10] or Aqvist [17, 18] with his systBrasdF, and Parent’s subsequent
results for those systems, [12]. As a result, those efforts fall outside the framework of this paper.
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strong completeness result for it, and thus show DSDL3 to be convplaeteas Spohn
provided only weak completeness.

The course of this paper is as follows: Section 2 presents the details of Hans-
son’s semantics for dyadic deontic logic, and defines his systems DSDL1, DSDL2 and
DSDL3, as well as DSDL2.5. This section also describes an alternative, though sim-
ilar, way of modeling dyadic deontic statements. This will be useful for establishing
later results. Section 3 defines the axiomatic systems we shall be studying; | call these
DDL-a, DDL-b, DDL-c and DDL-d.

With Section 4 the work begins. Here we prove that DDL-d is equivalent to Hans-
son’s DSDL3. The proof will be straightforward and its methods familiar. Though
this system is the strongest of the family, we put it first because it is easiest to work
with. The demonstrations for the others will, unfortunately but perhaps inevitably, be
more difficult; that for DDL-b and DSDL2 is particularly challenging. Those demon-
strations occupy Section 5, to establish the equivalence of DDL-a, DDL-b and DDL-c
with DSDL1, DSDL2 and DSDL2.5, respectively. Following that, Section 6 presents
some ancillary results that follow from those of the preceding sections, most notably
that, in contrast to DSDL3, the weaker logics DSDL1, DSDL2 and DSDL2.5 are not
compact, and then that all of these systems, including DSDL3, are decidable, subjects
that Hansson did not address. Here too we examine a variation on the form of interpre-
tation Hansson applied to dyadic deontic formulas, and find that the variation makes
little difference to the systems determined by the semantic rules. Section 7 is merely a
quick recap of what has been established.

Axiomatizing Hansson’s logics in this way helps one better to understand and ap-
preciate the commitments of these systems by identifying their fundamental principles.
Nonetheless, throughout this paper | will only be concerned with the technical prob-
lems of the equivalence of the axiomatizations to Hansson’s semantics. In particular, |
do not address philosophical questions of the adequacy of the systems for problems in
deontic logic or the analysis of normative discourse. Nor do | compare the virtues or
vices of the different systems amongst themselves. | do not survey other work in dyadic
deontic logic. Furthermore, the focus here is entirely on Hansson’s DSDL logics. | do
not discuss the various other topics and themes he raised in his paper.

2 Hansson’s DSDL systems

Here | present Hansson'’s logics DSDL1, DSDL2, and DSDL3, essentially as he pre-
sented them, though in my own notation and style of doing things; | also add DSDL2.5.

| specify the language of these logics, and the particular way Hansson modeled that lan-
guage in terms of which he defined his systems. | then describe another similar form
of model for the language, a form with, however, some noteworthy contrasts, which
allow it to be more flexible than Hansson’s own, and thus useful later on.

2.1 Theausterelanguage

Hansson formulated his systems of dyadic deontic logic only for an austere language
that excludes formulas in which deontic modalities occur within the scope of other
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deontic modalities, and that also excludes mixed formulaghich deontic formulas

are truth-functionally combined with non-deontic formulas. Further, it contains no
other modalities, such as for alethic necessity or possibility. This austerity is common
in studies of deontic logic, though by no means universal.

Let us make that austere language more precise. It begins with the language of
a ‘base logic’,Lg., that we take now to be a language for the classical propositional
calculus, with denumerably many atomic formulasq, r, ..., etc., and the usual
connectives-, A, v, -, with the usual formation rulesA < B is defined agA -

B) A (B — A). T is any classical tautology anda classical contradiction ifig, . | use
‘A, ‘B, " C, etc. as variables for formulas in this base languatg,

The austere deontic languag®s;, =, based onCg, contains the primitive dyadic
deontic operato©O(-/-), such thatO(B/A) is well-formed and a member dfp, =
whenever, and only whe,B € Lg, . Informally, O(B/A) may be read to say, ik
then it ought to be thaB, or B is obligatory, given circumstancey cf. [5], p. 133.

Lpa also contains the Boolean connectives, v, -, which we may take to be the
same as foCg, but now also applied to formulas ifip, =, so that ifa,8 € Lp, =, then,
and only then;~a € LpLa, « AB € LpLa, @ VB € Lpa, anda — B € Lpy 2, all as usual.
That is the whole of_p 2. | use ‘a’, ‘B, 'y ’, etc. as variables for formulas ap, a.
P(B/A), for conditional permission, is defined a®(-B/A).

For L. to contain denumerably many atomic formulas is significant. If the lan-
guage had a finite vocabulary, our results would be easier to obtain, though they would
also be somewhat different. | do not pursue that difference here, however.

2.2 Hansson’s models

To interpret formulasA € L£g, Hansson drew on standard classical logic. In effect,
he identified possible worlds with familiar valuation functions. Melbe the set of all
classical valuations fog_. l.e., for eachp € V, ¢ is a function defined for every
atomic formulap € Lg, such thatp(p) € {1,0}, andp(p) = 1 iff (p) + 0. | use ‘¢’,
with or without decoration by subscripts or superscripts, as variablesvover

The full interpretation functiofA| for formulasA € Lg, is specified in the usual
way, to give the set of valuations under whighvould be true:

Ipl={peV:p(p)=1},

A=V - A
AN =|A|n[B)
|Av B|=|AJu|B|

|A—B|=(V-]A)uU|B|.

We may presuppose, usually without remark, familiar results from classical logic, e.g.,
that— A — BIiff |A| ¢ |B| and~ A < BIiff |A| = |B|, wherer represents derivability
within the classical propositional calculus. Often | will say a form@lla Lg, is ‘BL-
consistent’, or simply ‘consistent’, and mean either tlat @, or that+ -A. By the
soundness and completeness of the calculus, the two come to the same thing. Similarly
for sets of formula<C c Lg, C is consistent ifthere is ap € V such thaty € |C| for

everyC e Ciff C# 1.
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To interpret formulas € Lp, s, Hansson identifies a modekith a binary relation
R defined oveW, so thalR ¢ VxV. If we think of the members of as possible worlds,
thenR may be thought to rank such worlds according to some standard of value, or
desirability, or preference, or what have you. Hansson himself takesreflect the
relation ‘is at least as ideal as’, [5], p. 143. | will often call such models/relations
‘H-models’, to contrast them with other models described below.

The strict counterpar®, of R is specified as usual, Fgr¢’ € V,

o Py’ iff pRy’ and not-('Ry).

Note thatP is transitive ifR is. In general, however, unless explicitly stated other-
wise, we do not assume any particular properties for these relations, except that by its
definitionP must be asymmetric, hence irreflexive, regardless of the natire of

As usual too, for such aR and forX c V, we define the ‘maximal’ members of
X, i.e., maximal with respect t&, or R-maximal, as Hansson did, [5], p. 143:

e Maxz(X) = {¢: ¢ € X and there is n@’ € X such thaty’'Py}.

The informal idea thaB is obligatory under circumstanc@gust in caseB must hold in
all the ‘best’A-worlds, is now realized in the concept of maximality. Hansson specifies
thatO(B/A) is true inR just in case all the maximal members|af are within|B|.

e RuleH R O(B/A)iff Max(|A|) < |B].

From that, the rest of the relation is as usual:

Re-ciff RE a,

REaABiff RE candR & B,
REavBif R orRE S,
REa—-pBiff REaorRiB.

By the definition ofP(B/A) we also have:
R & P(B/A) iff Maxz(|A]) n |B| # 2.

Let us say, as usual:

e « € Lpais H-valid, or simply ‘valid’, with respect to a class of H-models/rela-
tions just in case, for every in that classR & «.

e « is an H-consequence bfc Lp = with respect to a class of H-models/relations
justin case, for everR in that class if, for every €T, R i v, thenR k£ a.

We writelr; a to say thatr is H-valid andrl" It; « to saya is an H-consequence ©f
both with respect to a class of H-models, given by the context. In a similar vein, let us
also say, as usual,

2Hansson wrote ‘valuation’, [5], pp. 1423, but | will reserve that term for the valuations Gygr, as
above.

3In his account of DSDL3, Spohn, [16], p. 239, defines maximality somewhat differently. | discuss that
other definition in Section 6.3 below. Until then, we follow Hansson’s own specification.
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e « € Lpa is satisfiable in a class of H-models/relations just in case theres an
in that class such th&  a.

e I' c Lpa is satisfiable in a class of H-models/relations just in case thereks an
in that class such that for evepe I', R & y.

We can now define Hansson'’s systems, as Hansson did, in terms of classes of such
models; cf. [5], p. 144.

e DSDL1 is the set ofZp a-formulas,a, that are H-valid with respect to the class
of all reflexive relation®R c V x V;

e DSDL2 is the set ofp a-formulas,a, that are H-valid with respect to the class
of all relationsR c V x V that are reflexive and that also meet the condition that,
forall Ae Lg, if |A] # @, then Max (|A]) # @;

e DSDL3 is the set ofp a-formulas,a, that are H-valid with respect to the class
of all relationsR c V x V that meet the conditions for DSDL2 and for whiRhs
transitive, i.e., for allp, ¢’, ¢ € V, if Ry’ andy'R¢"” thenpRy”, and also total
(complete, strongly connected), i.e., for@lly’ € V eitherpRy’ or ¢'Re.

For DSDL1 and DSDL2, reflexivity is nice, but not necessary; the same formulas
would be valid with or without this condition; cf. Hansson [5], p. 143. The same is true
for DSDL2.5 below. Of course, for DSDL3, totality implies reflexivity, but even that
condition could be weakened to weak connectivity, that # ¢’ thengpRy’ or ¢'Re,
without affecting the set of valid formulas, with or without reflexivity. Later, at the end
of 85, we will see that transitivity is also an optional condition for relatiBrfer all
the logics, except of course DSDL3 where it is explicitly required.

The condition for DSDL2 relationR is a form of the famous, or infamous, Limit
Assumption. Here itis a sort of consistency condition, calling for there to be at least one
maximal A-world whenever there are in fadtworlds, i.e., wheneveA is consistent.

Let us say thaR is limited just in case it meets this condition for Alk Lg, .

e RcV xVislimited iff, for anyA e Lg_, if |A| # @, then Max(|A]) # @.

Later we will apply that terminology to other relations for much the same condition,
and also to models containing such a relation.

While that is a form of the so-called Limit Assumption, it still allows that there
could be sequences Afworlds not capped or limited by any maximal members. Some
might increase in rank without end; others might form terminal loops in terms of
P so that no member comes out on top. A stronger form of the Limit Assumption
would block those possibilities. This is the condition known in the literature on non-
monotonic logic as ‘stoppering’ or ‘smoothness’ fler* As pertains to the present
framework,

e RcVxVisstoppered iff, for everf e Lg_, if ¢ € |A|, then either € Maxg(|A|)
or there is a’ € Maxg(JA|) such thaty'Pe.

4See for example, [7, 8, 9, 14]. In [3] | called this ‘being limited’ and described the Limit Assumption
in terms of it; this should not be confused with the present sense of limitation.
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Stoppering implies limitation, but not converselyRfis total and transitive, however,
as for DSDL3, then the two are equivalent; proved in Theorem 3 below.

To capture the class of stoppered relations, we add to Hansson’s framework the
system | call DSDL2.5 since it is stronger that DSDL2 and weaker than DSDL3; also
proved in Theorem 3.

e DSDL2.5is the set ofp a-formulas,«, that are H-valid with respect to the class
of all relationsk c V x V that are reflexive and stoppered.

2.3 P-models

Here is another sort of model that is often used, with variations, to interpret formulas
of dyadic deontic logic. | call these P-models since, like Hansson'’s, they are based on
preference-like relations. They are more general than his, however.

A P-model is a structuré! = (W, <,v) in which W is a nonempty set of points
or so-called possible worlds, ands a function assigning to each atque Lg, a set
of such points, the worlds where it holds truehNfy so thatv(p) ¢ W. < is a binary
relation of relative value, preference, desirability, comparative ideality, or what have
you, defined oveWV such thatc ¢ W x W. Except as explicitly stated, we assume no
particular properties fot. The strict counterpars, of < is defined as usual:

e W< W iff w<w andw £ w.

FormulasA € Lg, are interpreted in the usual way, by sets of worlds in wiich
holds true according tM. GivenM = (W, <, v):

Iplm = Vv(p),

|=Alm = W~ A,

|AABlm = [Alm 0 |Blu,

|AV Blm = |Alm U |Bwm,

|A = Blm = (W - |Aju) U |Blu.

FormulasO(B/A) € Lp= are interpreted in P-models very much as in Hansson’s
H-models. With Max(|A|w) defined as was MaxX|A|):

e RuleP MiEO(B/A)iff Max<(|Alm) < |Blm-

Extension ofi; to Boolean constructions, negations, conjunctions, etc., of such deontic
formulas,O(B/A), is as always. As with H-models, by the definitionRfB/A), also

M & P(B/A) iff Max. (JAlw) N |Blw # 2.

A formulaa is P-valid, or simply ‘valid’, for a class of P-models,a, just in case
for every P-modelM, in that classM & a, and similarlyl” i @ just in case for every
P-model,M, in the class, iM & y for everyy e T, thenM & a.

A P-modelM = (W <,v) is limited, or stoppered, just in case its relatiens
limited, or stoppered, in the sense described above for Hanssonian reRtidasr
later reference, we note that\i¥/ is finite andx< is transitive, therc is necessarily
stoppered.
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Rule P is clearly much the same as Hansson’s Rule H, just as the redatiom
P-model corresponds very much to Ris In other respects, however, this framework
differs significantly from Hansson’s. In P-model, = (W, <,v), W can be any sort
of nonempty set, finite or infinite, and it can include members that are nothing like the
classical valuations that comprise the fields of relatiBnsvioreover,W with v may
have no worlds to correspond to some valuations. In that case, there may be formulas
A e Lg_ that are consistent y¢A|w = &; in effect,A is consistent but not possible,
according to the model. Models where that does not occur will be called ‘replete’.

e AP-modelM = (W <,v) isrepletefor Lg justin case, foralAe Lg, if |A|+ @
then|Ajy # @.

Furthermore, P-modeld/l = (W <,v), might also have distinav,w’ ¢ W that
agree on all formulag € Lg., and so are indistinguishable duplicates of each other,
as far asM is concerned. Yet, though indistinguishabkeandw’ remain distinct and
may stand in different positions vésvis<. Let us say, for a giveM = (W, <, v),

e w,W ¢ W are duplicates of each other M just in casew # w' and, for all
AeLg ,We |A|M iff we |A|M

P-models with duplicates are ‘redundant’; those without are ‘irredundant’.

e M = (W x,v)isredundanfust in case there ang,w’ ¢ W that are duplicates of
each other irM.

e M = (W <,v)isirredundantjust in case it is not redundant.

By extension, Hanssonian models/relati®verV may also be said to be irredundant
since necessarily contains no duplicates.

3 Axiomatics

The preceding section presented Hansson’s semantically defined DSDL logics, as well
as DSDL2.5. Here we introduce the axiomatic systems, DDL-a, DDL-b, DDL-c and
DDL-d, that will be proved to be equivalent to those semantical systems. All contain
the classical propositional calculus oués, a, including closure under its rules; they
then add all instances of the following schemas:

e For DDL-a:

(LLE) O(C/A) < O(C/B) when+ A < B,
(RW) O(B/A) - O(C/A) when+ B - C,
(Reflex) O(A/A),

(AND)  (O(B/A)AO(C/A)) - O(BAC/A),
(OR) (O(C/A) AO(C/B)) -~ O(C/Av B).

e DDL-b = DDL-a + all instances of:
(RP) P(1/A)whenAis BL-consistent.
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e DDL-c = DDL-b + all instances of Cautious Monotony:
(CautMono) (O(B/A)AO(C/A)) - O(C/AAB).

e DDL-d = DDL-b + all instances of Rational Monotony:
(RatMono) (P(B/A)AO(C/A)) - O(C/AA B).

We note that (CautMono) is derivable in DDL-d, and thus DDL-d is an extension of
DDL-c; see the proof of Theorem 3 below.

The usual definitions of derivation, derivability, theorem, etc. apply to each of
these. In the postulates (LLE) and (RW) | writeto indicate derivability within the
classical propositional calculus fdlg . | will also write + to indicate derivability
within the DDL systems. No confusion should result from this ambiguity, given the
divide betweenCg. and Lp, =, and the notation we use for the formulas of each. For
each axiomatic systerh,, « is consistent fot, or simply consistent wheh is given
in context, when, as usuad,—-« in L, and similarly" ¢ Lp, - is consistent foL. when
'vBA-BinL, foranyBe Lpa.

In the following sections | will demonstrate that

e DDL-a=DSDL1,
e DDL-b =DSDL2,
e DDL-c =DSDL2.5,
e DDL-d = DSDL3.

Half of that is easy; it amounts to the soundness of the axiomatic systems.

Theorem 1 (i) DDL-a is sound with respect to the class of all reflexive H-moé&els

(i) DDL-b is sound with respect to the class of all H-modRlshat are reflexive and
limited. (iii) DDL-c is sound with respect to the class of all H-modRlghat are
reflexive and stoppered. (iv) DDL-d is sound with respect to the class of all H-models
R that are reflexive, transitive and total and also limited. l.ex i in one of these
systems, them, @ with respect to the appropriate class of H-models.

Proof. Proved in the usual way by showing that all axioms are valid for the re-
spective classes of models and the rules of the logics preserve validity. These are easy
enough to leave to the reader, though for illustration we present the validity of (Caut-
Mono) and (RatMono) with respect to DSDL2.5 and DSDL3 models.

For (CautMono), suppogeis stoppered, and th& = O(B/A) andR & O(C/A),
so that Max(JA|) ¢ |B| and Max(|A|) ¢ |C|. Supposey € Maxg(|JA A B|). Since
¢ € |A]andR is stopperedy € Maxg(|A]) or there is ao’ € Maxz (JA|) such thaty'Pe.

The second is not possible, for if it were thghe |B|, whencep’ € |A A B|, in which
casep ¢ Maxg (JAA B|), a contradiction. Therefore,e¢ Maxg(|A|) and sop € |C|. That
suffices for Max(]JA A B|) ¢ |C|, and so foR £ O(C/A A B).

For (RatMono), supposR is transitive, total and limited, and th&ts P(B/A)
andR i O(C/A), so that there is somg € Maxg(|A|) such thaty € |B|, and also
Maxz (|A]) ¢ |C|. Consider any’ € Maxg(|A A Bf); we showy' € Maxg(|A[). Since
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¢’ € |A|, suppose, foreductio, there is somg” € |A| such thaty”Py’. By totality, eith-

er pRy" or both¢” Ry and not-(¢R¢), i.e., "’ Pp. The second case is not possible,
however, since thep ¢ Maxz(|A]), a contradiction. HenceRy". By transitivity,
¢P¢’. In that case, since € |A A B|, ¢’ ¢ Maxzr(|A A B|), another contradiction.
Therefore, there is no sug and sop’ € Maxg(|A]). Theny' € |C|. That suffices for
Maxg (JAA B|) ¢ |C|, and so foR = O(C/AAB). m

Corollary 2 DDL-ac DSDL1;DDL-b c DSDL2; DDL-cc DSDL2.5;
DDL-d c DSDL3.

Theorem 1 is of fundamental importance, of course. It is also useful to demon-
strate that the systems are indeed separate, and each is a proper extension of its alpha-
betical or numerical predecessors.

Theorem 3 (i) DDL-a c DDL-b c DDL-c c DDL-d. (iij) DSDL1c DSDL2c
DSDL2.5c DSDL3.

Proof. That DDL-ac DDL-b, etc. is obvious, except, perhaps, for DDI-DDL-

d and DSDL2.5 DSDL3. For the former, we now show that (CautMono) is derivable
in DDL-d. SupposeO(B/A) andO(C/A). EitherP(B/A) or -P(B/A). If the first,
thenO(C/A A B) by (RatMono). If the second, theB(-B/A) by definition; hence,
O(B A -B/A) by (AND). SoO(L/A). In that case, by (RP)A must be inconsistent,
and- A < 1, whence- A < (A A B), from whichO(C/A A B) follows by (LLE).

For DSDL2.5¢c DSDL3, it suffices that iR is limited, transitive, and total, the®
is stoppered. To see that, suppgse|A|. SinceR is limited, there is &’ € Maxg (|A]).
SinceR is total, eitherpRy’ or ¢'Py. In the first casep € Maxg (|A|), for if not, then
there is ap”’ € |A| such thaty” Py, in which casey’Py’, sinceR is transitive, and then
¢' ¢ Maxg(|A|), a contradiction. Thus, in this cases Maxz(|A|), which suffices for
stoppering. In the second case, since alregddyMaxg (|A|), there is ap’ € Maxg (JA|)
such thaty’Py, which also suffices for stoppering.

To show the listed containments to be proper, we now give (a) an instance of
(RP) not valid for DSDL1, (b) an instance of (CautMono) not valid for DSDL2 and
(c) an instance of (RatMono) not valid for DSDL2.5. For all of these we distinguish
four valuations, which might be thought of as determining the first four rows of a
conventional truth-table fop,q,r € Lg_. LetS be the set of all atoms ofg, other
thanp,q,r. Letos, ¢z, 03, 04 be those members & such that:

p1(P)=1 ¢1(q)=1 ¢i(r)=1
p2(P)=1 ¢2(q)=1 ¢o(r)=0
e3a(P)=1 ¢3(q)=0 ¢3(r)=1
ea(P)=1 ¢a(q)=0 ¢4(r)=0
©1(8) = v2(S) = w3(S) = wa(s) = 1, for all other atoms € S.

LetY be the set of all valuationg € V other thanp;, ¢2, @3, ©a4.

(a) Consider this instance of (RF(T/p), since atonp is consistent. LeR; be
exactly such that for alp € V, ¢R1¢, and alsap;R1¢2, ¢2R1¢3, ¢3R1¢4, ¢4R1¢1, and
w4R1¢, for all othery € Y. Ry is obviously reflexive. Also, the four selected valuations
form a loop byP; and¢g4 ranks higher than all other valuations. Because of that and

21



Lou Goble

the loop, Max, (|p|) = @. Hence,R;y % P(T/p). Therefore,P(T/p) ¢ DSDL1 and
P(T/p) ¢ DDL-a.

(b) Consider this instance of (CautMon@P(q/p)AO(r/p)) - O(r/pAq). Let
R be exactly such that for alf € V, ¢Ro¢, and, for allp € Y, ¢1R2¢, while ¢oRo¢4,
waRop3 andpsRops. Thus,e,, @3, ¢4 form a loop byP, while ¢; stands alone, though
ranked higher than alp € Y. By inspection, Max,(|p|) = {¢1}. Sinceyp; € |q| and
1 € |r|, Maxg,(|p|) < |q] and Max, (|p|) < |r|. Hence Rz  O(q/p) andR; & O(r/p).
On the other hand, Max(|p A q|) = {¢1,¢2}, and sincep; ¢ |r|, Maxg,(|pA q|) € |r],
so thatR, & O(r/p A q). It remains to show theR; is limited. Consider any € Lg.
such thatA| = @. If ¢; € |A|, theny; € Maxg,(|A|), so that Max, (JA|) # @. Suppose
then thatp; ¢ |A|. It follows that, for allp € Y, if ¢ € |A| theny € Maxg,(|A|), and so
Maxg, (|A]) # @. Supposep; € |Al. LetS(A) be the set of all atoms &f that are inA.
Considerp* such thatp* (p) = ¢*(q) = 1 ande*(r) = 0 ande*(s) = 1 for all se S(A)
ande*(t) = O for all other atoms € S — S(A). There must be one sugti € V. For it,
¢* agrees withp, on all atoms that are constituentsffHencep* € |A|. Buty* # ¢,
nor 3, NOr ¢4, NOr 1. Hencep* €Y, and sop* € Maxg, (JA]) and Max, (JA|) * @.
In caseyps € |A| or ¢4 € |A|, argue similarly that Max,(|A|) # @. In case none of
p1—p4 are in|A|, then there must be somec Y such thatp € |A|, in which case again
Maxg,(|A]) # @. Hence,R; is limited. Thus,(O(g/p) A O(r/p)) — O(r/pArq) ¢
DSDL2, and sqO(q/p) A O(r/p)) - O(r/pAq) ¢ DDL-b.

(c) Consider this instance of (RatMond(q/p) A O(r/p)) = O(r/pAq). Let
R3 be exactly such that for all € V, ¢R3¢; also, for allp € Y, ¢1R3¢; andp1R3p4 and
p3Rsap2. Thus, Max,(|p|) = {¢1,¢3}. Since both are ifr|, Maxz,(|p|) < |r|, so that
Rz & O(r/p). Also Maxz,(|p|) n|a| # @, by virtue of;. Hence,R3 & P(q/p). On
the other hand, Max(|pA q|) = {¢1,¢2}, and so Max,(|p A q|) ¢ |r|, by virtue ofe,.
Hence,R3 # O(r/p A ). We show thaRj is stoppered. Suppose soe Lg and
somey such thatp € |A|. If ¢ = ¢; thenp € Maxg,(|A|). Similarly if ¢ = ¢3. If ¢ = @3,
then if g3 € |Al thenys € Maxg,(JA|) andgsPsp. If @3 ¢ |A|, theng € Maxg,(|A|).
Similarly if ¢ = ¢4, With @1 in place ofps. Likewise, if ¢ € Y. Hence, for anyA and
@, if ¢ € |A|, then eithekp € Maxg,(JA|) or there is ap’ € Maxg,(|A|) such thaty'Psp,
which is to sayRj is stoppered. Consequent{®(q/p) A O(r/p)) = O(r/pAQ) ¢
DSDL2.5, and P(q/p) A O(r/p)) - O(r/pAq) ¢ DDL-C. m

4 DDL-d=DSDL3

As we establish the equivalences of the axiomatic systems with Hansson’s semantically
defined dyadic deontic logics, we begin with DDL-d and DSDL3 because that is the
most straight-forward. The demonstration will follow familiar paths, and thus perhaps
be a comfortable exercise to limber up for more arduous hikes to come.

Since we already have the soundness of DDL-d in Theorem 1, let us turn straight
away to completeness. Lat be any maximal DDL-d consistent set of formulas of
Lpra. Givenw, for anyAe Lg, let

o Ap={B:0O(B/A)ecw}.
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Lemma4 (i) If P(T/A) € w thenAa is BL-consistent. (i) If OB/A) ¢ w, thenAa u
{-B} is BL-consistent.

Proof. For (i), supposé(T/A) € w, but thatA, is not BL-consistent. Then there
areDy,...,Dp € Ap such that (D A--- ADp) — 1, where for eactd;, O(D;/A) € w.
By application of (AND) it follows thatO(D1 A --- A Dp/A) € w; it also follows by
(RW) that— O(Dy A --- A Dy/A) - O(L/A). Hence,O(1/A) € w. SinceP(T/A) e w,
-O(=T/A) e w, i.e.,~O(L/A) € w, contrary to the consistency of HenceAa must
be consistent. The argument for (ii) is similar.

This lemma will apply as well in later arguments for the other systems.

As earlier,V is the set of classical valuations fd, . Givenw, let us say, for
peV andAe Lg:

e ¢ isw-normal forAiff for all Be Ap, ¢ € |B|.

Henceforth, we drop the prefix ‘w’ on ‘w-normal’, and just say ‘normal’.
We now define an H-model, i.e., a binary relatiere V x V, that will be shown
to verify all and only sentences im, Lemma 8 below.

e Forg,¢’ €V, pR¢' iff for all B such thaty’ is normal forB, there is amA such
thate is normal forAandP(A/Av B) € w.

To demonstrate th® has the requisite properties for a DSDL3 relation and that
it does the work it is supposed to do, it is helpful to know the following principles are
derivable in DDL-d. The first, often called (S), is derivable even in DDL-a, and so in alll
the DDL systems; it will figure frequently in the proofs for those other systems. (S) is,
in fact, interderivable with (OR), given the other postulates of DDL-a. Here we derive
it using (OR), and leave it as an exercise to the reader to derive (OR) from it. It is not
difficult. The second principle applies to showing tRas transitive; it is interderivable
with (RatMono). We derive (transit) here, and leave the derivation of (RatMono) from
it as another exercise. It is harder. The third principle is less interesting; it applies to
showing thaRr is total.

Lemmab5 These are derivable in DDL-d:
@ (S OC/A/\ B) —>O(B—>C/A),
(2) (transit) (P(A/AvB)AP(B/BvC))—P(A/AvC),
(3) (total) P(r/Av B) —» (P(A/Av B) v P(B/Av B)).

Proof. (1) For (S), suppos®(C/A A B). ThenO(B — C/A A B), by (RW). Also,
O(AA -B/AA-B), by (Reflex); henceDQ(B - C/AA -B), also by (RW). From those,
O(B— C/(AAB)v (AA=B)), by (OR), and the®(B - C/A) follows by (LLE).

(2) For (transit), suppose (&(A/Av B) and (b)P(B/Bv C), i.e.,~O(-A/Av B)
and-O(-B/Bv C). Suppose, foreductio, (c)-P(A/AvC),i.e.,O(-A/AvC). Then
O(-A/(AvC) A (AvBvC)) by (LLE), soO((AvC) - -A/AvBvC) by (S),
i.e., (1) above. From that, ((p(-A/Av Bv C) follows by (RW). We now derive (ii)
P(AvB/AvBvC),i.e.,.-O(-(AvB)/AvBvC), by anothereductio. For that, suppose
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(d) O(-(AvB)/AvBvC). Under that supposition, we want (ij(BvC/AvBvC), and

s0 suppose, for a thirgductio, (€)O(~(BvC)/AvBvC). SinceO(AvBvC/AvBvC),
(Reflex),O0((AvBvC)Aa=(BvC))/AvBvC) by (AND), whenceO(A/Av Bv C)

by (RW). With (i) that yieldsO(AA -A/Av Bv C) by (AND), and scO(L/Av BvC).
Given (RP), it follows thalAv Bv C is BL-inconsistent, i.ex (AvBvC) < 1. From
that,- (Av BvC) < (Av B). Then, from (i)O(-A/Av B) by (LLE), contrary to (a)
above. Therefore, (e) is false; so (iFBv C/Av Bv C). From (d), it follows that
O(-B/Av Bv C) by (RW). With (iii), O(-B/(Bv C) A (Av Bv C)) by (RatMono).
ThenceO(-B/Bv C) by (LLE). That contradicts (b) above. Hence, (d) is false, and so
(i) P(AvB/AvBvVC). (i) and (ii) yield O(-A/(Av B) A (Av Bv C)) by (RatMono).
ThenO(-A/AvB) by (LLE). That contradicts (a). Hence, (c) too is false, and therefore,
P(A/Av C), as required.

(3) For (total), supposB(T/Av B), i.e.,~O(L/Av B), and supposeP(A/Av B)
and-P(B/Av B), i.e.,O(-A/Av B) andO(-B/Av B). ThenO(-A A -B/Av B) by
(AND). SinceO(Av B/Av B), (Reflex),O((Av B) A—-AA-B/Av B) by (AND) again,
and thusO(1/A v B) by (RW), which contradicts the first supposition. Hence, either
P(A/Av B) or P(B/Av B); so, if P(T/Av B), thenP(A/Av B) v P(B/AvB). m

Lemmab6 R is reflexive, transitive, and total.

Proof. Reflexivity follows from totality below. For transitivity, suppog&¢’ and
©'Ry”. We showpRy"”. For that, consider ang such thaty” is normal forC. Since
¢'R¢", there is 8B such thaty’ is normal forB andP(B/Bv C) € w. SincepR¢’, there
is anA such thaty is normal forA andP(A/Av B) € w. By (transit), Lemma 5(2),
P(A/Av C) € w. That suffices fopR¢", as required.

For totality, consider any, ¢’ € V. Suppose it is not the case theRy’. Then
there must be somB such thaty’ is normal forB and for allA such thatp is normal
for A, P(A/Av B) ¢ w. To see thap'Rey, consider anyC such thatp is normal forC.
ThenP(C/C v B) ¢ w. Sincey’ is normal forB, ¢’ € |B|, and sop’ € |Bv C|. Hence,
Bv C is consistent, and so, by (R®)P(1/Bv C). ThusP(1/Bv C) € w. Given that,
andP(C/Bv C) ¢ w, it follows thatP(B/B v C) € w by (total), Lemma 5(3). Hence,
for any C such thaty is normal forC there is aB such thaty’ is normal forB and
P(B/Bv C) € w. That suffices fop’R¢, as requiredm

Lemma7 Forall p €V, and all Ac Lg, ¢ is normal for A iffio € Maxz (|A|).

Proof. L - R: Suppose is normal forA. By (Reflex)O(A/A) € w, SOA € Aa.
Hencey € |A|. Suppose then, faeductio,y ¢ Maxg(JA|). Then there is somg’ € |A|
such thaty’Pe. Since it is not the case thaRy’, there must be somB such that
¢" is normal forB and for allC if ¢ is normal forC thenP(C/C v B) ¢ w. Hence,
P(A/Av B) ¢ w, i.e.,O(-A/Av B) € w. Sincey € |A|, ¢ € |Av B|; hence, Av Bis
consistent. By (RP); P(T/AvB), sothatP(T/AvB) € w. SinceP(A/AvB) ¢ w, then,
by (total), Lemma 5(3)P(B/Av B) € w. SinceO(-A/AvB) e w, O(-A/(AvB)AB) ¢
w by (RatMono), and the®(-A/B) € w, by (LLE). Sincey’ is normal forB, ¢’ € |-A|,
hencey’ ¢ |A. Butitis given thaty’ € |AJ; thus a contradiction. Consequently, it must
be thaty € Maxg (|A]).
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R — L: Supposey € Maxg(|A]). Since obviouslyy € |A|, A is BL-consistent.
That being so P(T/A), by (RP), so thaP(T/A) € w. By Lemma 4(i),Aa is BL-
consistent. Hence there is a valuatighe V such that for allC € Aa, ¢’ € |C|. ¢’ is
thus normal forA; so alsay’ € |A|. Sincep € Maxg(|A|) andR is total, Lemma 6pRy’.
Hence, for allC such thaty’ is normal forC, there is somé such thatp is normal for
B andP(B/Bv C) € w. Hence, there is some suéhsuch thatP(B/Av B) € w.
Now consider amyD € Aa, so thatO(D/A) € w. ThenO(D/AA (Av B)) € w, by
(LLE); hence,O(A — D/Av B) € w, by principle (S), Lemma 5(1). It follows that
O(A - D/(AvB)AB) €w, by (RatMono). HenceD (A — D/B) € w, by (LLE). Since
¢ is normal forB, ¢ € |A - D|. Since alsap ¢ |A|, ¢ € |D|. That suffices fop to be
normal forA, as requiredm

We will see that sort of equivalence between normality and maximalitye
proofs to come for the other systems as well.

Lemma8 Forall @ € Lpa,a eWiff R .

Proof. By induction ona. | will show only the basis case whese= O(B/A)
for someA, B € Lg_. The induction to Boolean combinations of such formulas is very
easy, and left to the reader.

L — R: Supposé(B/A) € w. To showR i O(B/A), i.e, Max(JA|) < |B], con-
sider anyy € Maxz(|A|). By Lemma 7 is normal forA. SinceB € Aa, ¢ € |B|. That
suffices for Max(|A|) < |B|, and saR = O(B/A).

R — L: SupposeR & O(B/A), i.e, Maxz(|A|) < |B|. SupposeéD(B/A) ¢ w. By
Lemma 4(ii), Aa U {-B} is BL-consistent, and so there isgasuch that for allC «
Apu {-B}, ¢ € [C|. ¢ is thus normal forA. Hencey € Maxgr(|A|), by Lemma 7. So
¢ € |B|. But alsoy € |-B|, or ¢ ¢ |B|, a contradiction. Henc&®(B/A) e w. m

Lemma9 Rislimited; i.e., for all Ac Lg, if |A| # @, thenMaxz(|A|) + 2.

Proof. SupposgA| + @. ThenA is BL-consistent. By (RP)r P(T/A), so
P(T/A) e w. By Lemma 4(i),A is BL-consistent. Hence there igpa V such that for
all Be Aa, ¢ € |BJ. ¢ is thus normal foA. Hence, by Lemma 7 € Maxg (|]A]), and so
Maxg(|A) + 2. =

From these lemmas, the strong completeness of DDL-d easily®llo

Theorem 10 DDL-d is strongly complete with respect to the class of DSDL3 mod-
elsftelationsR; i.e., if ' I; o with respect to that class, thdh- « in DDL-d.

Proof. Supposd’ It; a with respect to the class of DSDL3 models/relatiéts
and suppose, faeductio,I" #+ a. Thenl'u {-a} is consistent for DDL-d, and so it has
a maximal consistent extension by the usual arguments. Given one sughlefine
the relationR as described above. By Lemmas 6 andR9s reflexive, transitive and
total, and limited. HenceR is a DSDL3 model/relation. Sinos is an extension of
I'u {-a}, for everyy e I', y € w. Hence by Lemma 8, for everye I', R 5 y. Also,
since-a € w, R £ —a. ConsequenthyR & «, and sd’ Ity @ with respect to this class of
models/relations, a contradiction. Therefdre; @ in DDL-d. =
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Since strong completeness implies weak completeness, i.egjlthalid formulas
are derivable, or, for alk € Lp, 2, if It; @ thenr «a, then

Corollary 11 DSDL3c DDL-d.
Hence, with Theorem 1 and its corollary,
Corollary 12 DDL-d = DSDL3.

Moreover, since, as is well-known, strong completeness with soundness implies
compactness for a class of models, i.e., that, for Bnij every finite subset of is
satisfiable in the class thdnis satisfiable in that class, or equivalently['if; « then
there is a finite sdfy < I" such thatl'; I; «,

Corollary 13 DSDL3 is compact.

Proof. Suppose every finite subsetlofs satisfiable in DSDL3 models, but tHat
is not so satisfiable. Then, vacuouslyy, 8 A =8. By strong completenesE+ 8 A -8
in DDL-d. By definition of derivability, there is a finite; ¢ " such that'; + 8 A 8.
By soundnesq;; I, BA—6. Since, by assumptioly is satisfiable, there is @ apt for
DSDL3 such thaR k y for everyy € I't, in which caseR & BA—-B, which is impossible.
Hence[ is satisfiable in DSDL3 models

These are the results to be established in this section. Necomgider the weaker
systems DSDL1, DSDL2 and DSDL2.5. In passing, however, we will also return to
DDL-d and DSDL3 to prove them equivalent by a somewhat different method. That is
for application later, in 86.2, where we find all the logics to be decidable.

5 DDL-a=DSDL1, DDL-b =DSDL2, and
DDL-c=DSDL2.5

This section demonstrates that DDL-a is equivalent to DSDL1, DDL-b to DSDL2 and
DDL-c to DSDL2.5. Along the way, as alluded above, we also return to the equiva-
lence of DDL-d and DSDL3. To establish these results is tantamount to proving the
soundness and completeness of the axiomatic systems with respect to the classes of
Hanssonian models/relatioRsfor the corresponding semantical system. We already
have their soundness in Theorem 1.

For completeness, the demonstrations for the three weaker systems will be more
difficult than that for DDL-d in the preceding section. They will proceed in two major
stages. Stage 1 establishes the systems’ completeness in terms of P-models. There we
will find that for anya that is not a theorem of the logic there is an appropriate P-model
that falsifiese. Unfortunately, the models we find are redundant, and we need irredun-
dant models to match Hansson’s definitions. To get around that, we will work at first
not exactly with DDL-a, -b, and -c, but rather with their finite counterparts and finite,
though redundant, P-models for them. From those, however, in Stage 2, we can derive
Hanssonian relatior® that also falsifye and are appropriate for DSDL1, DSDL2 and
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DSDL2.5. With that, completeness for the full systems in teofirglationsR follows.
We apply similar procedures to DDL-d and its finite counterparts.

By ‘finite counterparts’ of these systems, | mean their analogs cast in a finite
language. By ‘finite language’ | just mean a language with finitely many atoms. Section
2.1 specified the full, infinite languag€s, andLp 2. We now wish to speak of their
finite sublanguages. For any finite> 1, let £, be a standard propositional language,
just like Lg., except that’g, has exactlyn many atoms. From those, more complex
formulas are formed as usual. We may suppose thakifm, thenl], ¢ £g, ; also
[:EL C EBL-

Lp, = is simply the dyadic deontic language based’@p as the fullCp,= is based
on Lg., with O(B/A) well-formed whenA,B € L], . L]a ¢ Lpa. If a formula
a e LD ., buta ¢ L3, let us say that is from leveln, and writed(a) = n. Plainly,
for everya € Lpy 2, there is a finiten > 1 such thati(a) = n.

If L is one of the logics DDL-a, -b, -c or -d, so, for finite> 1, the finite logicL."
is a set of formulas fronf .. These are determined axiomatically by all instances of
the schemas df that are formulas of}, ., or that follow from those by the rules of
inference restricted to formulas @, .. This should be clear enough. Notice we do
not presume that" = L n L], .. While that is true, to demonstrate it calls on results
yet to be established; see Corollary 89 in §6.2 below. For hévwalways refers to the
axiomatic system given by the limitation of the postulatek a6 £}, .. DDL"-a is the
counterpart of DDL-a in finiteZ]}, »; similarly DDL"-b, DDL"-c, and DDL"-d.

A P-model defined foL, = is understood to be just that, defined £} . and not
for any other, richer language. That isNf = (W, <, v) is defined forCg, ., thenv(p)
is defined for every atorp € £3, , and for no othersW may still be any nonempty set
and< ¢ WxW. In light of this, a P-modeM defined forL}, ., if replete, is understood
to be replete forC], , not the whole ofCg, i.e.,

o A P-modelM = (W, <,v) defined forL], ., is replete forCy, justin case, for all
Ae L], if |Al# @ then|Alw # @.

Similarly, a P-modeM = (W, <,v) defined forL} ., is, if said to be limited or
stoppered, understood to be limited or stoppered with respeig ta.e.,

e M= (W x,v) defined forL, . is limited for £g, justin case, for evere L}, ,
if |Ajm # @, then Max (|Alm) # ;

e M = (W x,v) defined forL}, . is stoppered forCg, just in case, for evenA ¢
L3, , and everyw € W, if w € |Alu, thenw ¢ Max<(]Ajuw) or there is aw’ ¢
Max. (JA|w) such thaw' < w.

We now take the first small step on our journey. This lemma applies to all of the
systemd. = DDL-a, -b, -c, and -d, and their finite counterpdrts

Lemma 14 For any finite n> 1 and anya € Lpa, if (@) = n, then if- @ in L", then
+ain L, with L" the finite counterpart of in the languageCp, . over L, .

Proof. Obvious, since any derivation afin L" will be a derivation ofa in L,
given thatC],a c Lpia. m

Now the work begins.
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51 Stagel

This stage of the argument demonstrates the soundness and completeness of each sys-
temL" in the framework of finite P-models of the appropriate kinds. As usual, sound-
ness is routine, and so, for the most part, left to the reader to verify.

Theorem 15 For each finite n> 1, (i) DDL"-a is sound with respect to the class of
P-models defined fofg, . that are replete forCg, and whose relatior is reflexive;
(i) DDL"-b is sound with respect to the class of P-models defined fpr that are
replete for£g, and whose relatiork is reflexive and limited foCg, ; (iii) DDL "-c is
sound with respect to the class of P-models defined’fpe that are replete forCg,
and whose relatiorx is reflexive and stoppered faj, . (iv) DDL"-d is sound with
respect to the class of P-models defined48y. that are replete forCj, and whose
relation < is reflexive, transitive and total, as well as limited £, .

Proof. As with Theorem 1, this is proved by demonstrating that all the systems’
axioms are valid with respect to the appropriate classes of P-models and that the rules
preserve validity. The demonstrations mimic those of Theorem 1, except that we note
that, in the framework of P-models, to validate (RP) for DB, DDL"-c and DDL"-d
requires repletion as well as being limited; repletion is idle for DBRL Thus, for the
validity of (RP), supposé € L}, is BL-consistent, i.e]A| # @. Then, for anyM that
is replete forCy, , |Ajw # @. If M is limited or stoppered fo£g, as well as replete,
then Max (JAjm) # @. From thatM & P(T/A). Henceji P(T/A). m

For later reference, we note that adding a condition of finitemessd not affect
the validity of any of the postulates of DD{ hence:

Corollary 16 For each DDL" system, DDLis sound with respect to the class of finite
P-models appropriate to DDL

We turn now to completeness. For this, we give one sort of demonstration for
DDL"-a and DDL"-b and another for DDI-c, because the first construction is not
conducive to stoppered relations, while the second requires (CautMono) of-BDL
For both methods, however, the arguments are chiefly technical; there is no natural
motivation or informal explanation for the various devices used along the way, except
that they accomplish the desired results. For Blthe proof will echo that of §4.

5.1.1 FiniteDDL"-aand DDL"-b

Assume finiten > 1 is given. We now demonstrate that the finite-based DBland
DDL"-b are complete with respect to the class of P-models defineffifarthat are (i)
finite and (ii) replete forC}, and, for DDL"-b, (iii) limited for £5, .°

5This demonstration draws on methods used by Parent [12] to prove completeness for Aqvist’s systems
E andF, which are similar to DDL-a and DDL-b, though also significantly different. Parent cites Schlechta
[15] as a source of some of his ideas. | have drawn too from Schlechta’s [14], though it has been necessary
to adjust his methods to suit the present systems. Indeed, the present demonstration diverges considerably
from both Schlechta’s and from Parent’s; | need not describe those differences here, however.

28



Axioms for Hansson'dDyadic DeonticLogics

To begin, letw" be a maximal DDL"-a or DDL"-b consistent set of formulas of
L2,a. Much as before, letsy = {B € L}, : O(B/A) ¢ w"}. Lemma 4 for DDL-d
continues to hold here, with" in place ofw.

Let WBL" be the set of all maximal BL-consistent sets of formulag@f. Let Wt
be a triplication oWB-"; i.e., let

o W= {(x,1):xeWBL"},

o W2={(x,2):xe WBL"},

o W3={(x,3):xeWBL"},

o W=WIuW2uWs,
This multiplication is required for Lemma 21 below, which is key to subsequent results.

Henceforth, | will use letters,y, z, etc., as variables for memberswf- ', and

lettersa, b, c, etc., as variables for memberswt. Whena = (x,i), fori € {1,2,3},
I will write & anda” for its two images,(x, j) and (x,k) for j,k € {1,2,3} where

i # j # k= i. Generally, it will not matter which is which, only that+ a’ + 8"’ + a.
ForallAe L}, , let

o [A]={(xi):xeWB" andie {1,2,3} andAc x}.

Thus, fora = (x,i), ae [A]justin caseA € x. Given the multiplication inherent iw!,
it is apparent that eadiA] contains the images of its members.

Lemmal7 ForallaeW'and all Ae £}, ae [A]ifa € [Alifa’ € [A], @ and &'
being the images of a in W
Proof. Obvious. m

For pointsa e W', andformulasA € L}, , let us say, much as before,
e aisw"-normal forAiff, for all B such thaD(B/A) e w", a € [B].

Thus, fora = (x,i}, aisw"-normal forA just in case\a ¢ x. Henceforth, as before, we
drop the prefix, and write simply ‘& normal’.

Lemma18 Forall A,Be L], , if [A] = [B] then (i)~ A < B, and (i) a is normal for
A iff ais normal for B.

Proof. SupposdA] = [B]. For (i), if + A < Bthen-(A < B) is consistent. So
there is anx ¢ WBL' containing eitheA and-B or else-A andB. Consider the first
case; the second is similar. L&t (x,1). a€ [A]; soa < [B]. ThenB ¢ x, contrary to
its consistency. Hence, A < B. (ii) follows from (i), since if- A < B, Ap = Ag by
(LLE). So, fora = (x,i), ais normal forAiff Aa € xiff Ag ¢ xiff ais normal forB. m

For allae W, let

e Ta={Xc W :thereisam e £} suchthatX = [A] anda ¢ [A] andais not
normal forA}.
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Lemma 19 Ta iswell-defined.

Proof. Obvious, by the quantification built into the definition. We also note,
however, that if A] = [B], thenais normal forA iff ais normal forB, Lemma 18(ii);
since als@ € [A]iff a € [B], then, under the definitiohA] € Taiff [B] € Ta. m

In general, given a sef’, of nonempty setsx, let us say:

e y is asampler sebver X just in case both (i) for ever) € X, there is arx € X
such thatx € y, and also (ii) for everx € y, there is arX € X’ such thatx € X.

Thus, predictably, a sampler gebver X' is composed of samples from all thes X
Lemma 20 For any setX, of nonempty sets there is a samplergever X.

Proof. Given X, lety = U X. y is a sampler set oveY, by the definition.m

In caseX is empty, then the only sampler set ovewill bez, but it still counts.
Obviously, forae W, Tais a set of nonempty subsets, though it might be empty.
For allae W, let

e da={y:yisasampler set ovéfaanda¢ y}.

Lemma21 (i) For alla e W!, ®a = @. (ii) For every app ¢ W, there is ay € ®b such
that a¢ y.

Proof. (i) follows directly from (ii). For that, considey = UYb - {a,b}. We
show thaty is a sampler set ovéfb. First, consider an¥X € Tbh, so that there is aA
such thatX = [A] andb € [A]. By Lemma 17p’ € [A] andb” ¢ [A], i.e.,b’ ¢ X and
b"” e X, for b’,b” the two images ob. In casea = b’, thenb” € y; in casea + b/, then
bothb’ € y andb” € y. In either case, (a), for an¥ € Tb, there is & € X such that
C € y, as required for a sampler set. Next, consider@ny. Thenc € |JYb, so that
(b), for anyc ¢ y, there is arX € Yb such that € X, as also required for a sampler set.
By (a) and (b) togethey is a sampler set ovérb. Sinceb ¢ y, y € ®b. Obviously,
a¢ y. Hence, there is g€ ®b such that ¢ y. m

We are now in a position to define our intended model. et (W, <, v), with
e W={(a,y):aeW andy ¢ ®a},
o for (a,x),(b,x') e W, (a,x) < (b,Y) iff either (i){(a, x) = (b, x') or (i) ac y’,
e v(p)={(a,x)eW:ae[p]}, foreach atonpe L], .
Lemma22 M is a P-model defined fof, ., andx is reflexive.

Proof. This should be obvious, or nearly so. Given Lemma 21(i), for eaary\!,
there is gy € ®a. Since there ara ¢ W, there are thuga, y) ¢ W. HenceW # @.
Clearly,< ¢ Wx W, andv is well-defined for all and only atonyse £f, . HenceM is a
P-model defined fo£g, .. Thatx is reflexive is given by clause (i) of its definitiom

It remains to show tha¥l doesthe work it is supposed to do. With poings, ),
(b,x’), etc. now in play, let us write ‘AA]|' to signify the set of points iW whose left
member belongs tpA]. l.e.,
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o |[[All= {(a.x) e W:ae[A]}.

Lemma 23 For all a e W! and all Ae £}, , ais normal for A ifthere is ay € ®a such
that(a, y) € Max<(|[A])).

Proof. L - R: Supposa is normal forA. By virtue of (Reflex)a € [A]. Consider
the sety = UTa- [A]. We show first (1)y € ®a and then (2)a, x) € Max<(|[A])).
For (1), we show that is a sampler set ovéfa. First, consider an¥X € Ta, so that
there is aB such thatX = [B] anda € [B] anda is not normal forB. We show first
that[B] - [A] # @. Suppose, foreductio,[B] - [A] = @. Then[B] < [A], whence
[A]n[B] = [B]. Itis not hard to show, and so left to the reader, fidin[B] = [AAB].
That being so[B] = [A A B]. Thus,ais not normal forA A B, by Lemma 18(ii). On
the other hand, consider a®ysuch thaitO(C/A A B) € w". By principle (S), proved
in Lemma 5(1),0(B — C/A) € w". Sincea is normal forA, a € [B - C], so that, if
a=(xi), B— C e x. Givenac [B], thenB ¢ x; it follows thatC ¢ x; hencea ¢ [C].
That suffices foa’s being normal foA A B, a contradiction. Therefor¢B] - [A] # @.
Thus, there is & € [B], i.e.,c € X, such that ¢ [A]. Thence UYa- [A],i.e.,,C€ y.
Thus (i), for anyX € Ta, there is & € X such thatt € y. Next, consider ang ¢ y.
So,c € UYa, which is to say, there is a¥ € Ta such thatc € X. Thus (ii), for any
C € x, there is arX € Ta such thatt € X. By (i) and (ii), y is a sampler set ovéra.
Furthermorea ¢ y, for suppose, foreductio,ac y. Thenae U YTa-[A]; soa¢ [A], a
contradiction. Therefore ¢ y. Sincey is a sampler set ovéfaandat¢ y, (1) y € ®a.

Next we show thata, y) € Max.(|[A]]). Since (1)y € ®a, (a, x) ¢ W, and since
ace [A], (a,x) € |[A]l- To see that it is maximal ifA]|, suppose, foreductio, there
were soméh, y’) € |[A]| such thatb, ') < (a, x). Obviously,(b,x’} + (a,x). Hence,
by definition of<, and so of<, b € y. Since(b,x’) € |[[A]|, b € [A]. Sinceb € y,
b e UTaandb ¢ [A], a contradiction. Hence there is no sudhy’), and so (2)
(a.x) e Max<(|[A])).

R — L: Suppose somg € ®a such thata, y) € Max<(|[A]|). Since(a, x) € |[A]],
a € [A]. Suppose, foreductio,a is not normal forA. Then[A] € Ta. By definition
of @a, y is a sampler set ovéfa, and so there must be sofne [A] andb € y. Since
x € ®a, a ¢ y, and sinceb € y, a + b. By Lemma 21(ii), there is g ¢ ®b such
thata ¢ x'. (b,x') € W. Also, (b,x’) € |[A]|. Sinceb ¢ y, (b,x') < (a,x). Since
(a,x) € Max<(|[A]]), it follows that(a, y) < (b,x’). And sincea = b, (a,x) # (b,x});
hence, it must be thate 5/, a contradiction. Therefora,is normal forA. m

Lemma24 Forall Ae L3, |[A]l = |Am.

Proof. By an easy induction oA, easy enough to leave to the reader.

These preliminaries enable our key lemma:
Lemma25 Forall @ € L., eW" iff M 5 .

Proof. By induction ona. We show the basis case, where= O(B/A). The
induction to more complex formulas is routine, and left to the reader.

L - R: Suppos®(B/A) e w". To show thaM & O(B/A), i.e., that Max (|Alm) ¢
|B|m, suppose somé, ) € Max<(|Ajm). By Lemma 24 (a, y) € Max<(|[A]|). Since
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(a,x) € W, y € ®a. Hence there is @ such thafy € ®aand(a, x) € Max<(|[A]]). By
Lemma 23ais normal forA. Hencea ¢ [B]. Then(a, x) € |[B]|, and so{a, x) € |B|u,
by Lemma 24. That suffices for Ma§{A|w) < |B|m, and so fotM & O(B/A).

R — L: SupposeM & O(B/A), so that Max (|Alw) € |B|m. SinceO(B/A) € L], a,
A,B e L}, . By Lemma 24,[A]| = |Ajw and|[B]| = |Blu. Hence, Max(|[A]]) ¢
[[B]]. Suppose, foreductio, O(B/A) ¢ w". Then, by Lemma 4(ii)Aa u {-B} is
BL-consistent. Hence there is ane WBL" such thatAa U {-B} ¢ x. Leta = (x,1).
SinceAa < X, ais normal forA. By Lemma 23, there is g € ®a such that{a, y) ¢
Max.(|[A]])- Thus,(a,x) € |[B]|, so thata € [B], which means thaB ¢ x. But also
-B € x, contrary to its consistency. Hence it must be B&B/A) e w". m

Lemma 26 For finite L3, , M is (i) finite and (ii) replete for’g, .

Proof. (i) That M is finite follows from £g, being finite. Thus, there are only
finitely manyx WBL" so only finitely manya € Wt. Further, for anya € W, since
for anyy e ®a, y ¢ W, there can be only finitely many sugts. As a result, there are
only finitely many pointga, y) € W.

For (i), for Ae L}, , supposéA| = @. ThusAis BL-consistent, and so there is an
x ¢ WBL" such thatA € x. Leta = (x,1). By Lemma 21(i), there is & ¢ da. For such
aone,a,y) e W. SinceAc x, ac [A], so(a,x) € |[[A]l. By Lemma 24(a,x) € |Alv;
hence|A|y # @, as required for repletionm

Lemma 27 If w" is an extension of DDL:b, then M is limited forC, .

Proof. This follows from (RP) being in DD-b. SupposeA ¢ L3, such that
|Alm # @. By Lemma 24][A]| # @. Suppose thefa, x) € |[A]], so thata € [A], and
suppose = (x,i) for somex e WBL" andi € {1,2,3}. Sinceac [A], A€ x. ThusA s
BL-consistent. By (RP); P(1/A) in DDL-b; hence,P(T/A) € w". By Lemma 4(i),
Aa is consistent. Hence there iyy& WBL" such thatAa © y. Letb = (y,1). be W',
Sinceb is normal forA, there is g’ € ®b such thatb, y') ¢ Max<(|[A]|), by Lemma
23. So by Lemma 24p, x’) € Max<(|Alm), and thus Max(|A|w) # @, as required for
M to be limited forg, . m

From these completeness follows quickly in the usual way.

Theorem 28 For all finite n > 1, (i) DDL"-a is weakly complete with respect to the
class of all P-models defined fdl}, . that are finite and replete fo£3, and whose
relation < is reflexive, i.e., for any € L} 4, if I @ for that class, themr « in DDL"-a.

(ii) DDL"-b is weakly complete with respect to the class of all P-models defined
for L3, that are finite and replete fof], and whose relatios is reflexive and limited
for L3, , i.e., for anya € L] o, if 15 @ for that class, them « in DDL"-b.

Proof. Givenn > 1 ande € L}, , for (i) suppose « in DDL"-a. Then-a is
consistent for DDL-a. Letw" be a maximal DDL-a consistent set ofp, . formulas
such that-a € w". By the usual arguments, we know there is one. Mebe defined
from w" as described above. By Lemma 24,is a P-model defined fof, . and=<
is reflexive. By Lemma 26M is finite and replete foCy, . By Lemma 25M i —a;
henceM & «a. It follows that 1t « for the class specified. Hence, Iif « for that class,
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then+ « in DDL"-a. The argument for (i) is the same visvis DDL"-b, with the
addition of Lemma 27 that assures thatf M is limited for £, . m

While this theorem emphasizes completeness with respect to rioitkels, that
is only because that is what will be applied in Stage 2 of the overall argument. The
demonstration could, however, easily be adapted to establish the completeness of the
full systems, DDL-a and DDL-b in the infinite languagg, = in terms of infinite P-
models. Moreover, while this theorem only asserts weak completeness for these sys-
tems, the argument is also readily adapted to establish the strong completeness of the
full systems, for appropriate classes of P-models.

Finitude enters the picture in another way as well. By Theorem 15 and its Corol-
lary 16 and Theorem 28, for each finite> 1, each DDI”-a and DDL”-b is character-
ized by a class of finite models, which is to say, it has the finite model property.

Corollary 29 For each finite n> 1, each DDI”-a and DDL"-b has the finite model
property in terms of appropriate P-models defined £gf .

Hence, importantly, by the usual arguments, because"&Dand DDL"-b are
finitely axiomatizable:

Corollary 30 For each finite r> 1, each DDI"-a and DDL"-b is decidablé.

That completes this stage for DPMa and DDL"-b. We turn next to DDLC-c.

5.1.2 FiniteDDL"-c

For completeness for finite DDkc, we develop a rather different model than we saw in
the precedind. To construct this model, much as before Métbe a maximal DDE-c
consistent set of?, . formulas.WB" is the set of maximal BL-consistent setsaff,
formulas. For allAe L], , let

o [A]={xeWB": Aex}.
e Ap={B:0O(B/A)ew"}.
Also much as before,
e x e WBL" is normal forAiff Aa c x.
Analogous to Lemma 18 for DDka, here are some useful little tools.

Lemma 31 (i) If [A] = [B], then~ A < B; (ii) if [A] = [B], then for any x WBL", x is
normal for A iffx is normal for B; (iii) if [A] = [C] and[B] = [D] then OA/AVB) e w"
iff O(C/Cv D)ewn

60na logic’s being decidable if it has the finite model property and is finitely axiomatizable, see standard
sources on modal logic, such as Chellas [1], §2.8, Cresswell [2], §7.1.4, or Hughes and Cresswell [6], pp.
152-3.

"The demonstration here draws on the proof of the representation theorem for the fogipreferen-
tial reasoning given by Kraus, Lehmann and Magidor, [7] 85, Theorem 5.18, though streamlined now and
adapted to suit the needs of the present framework, and my own style of doing things.
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Proof. (i) and (ii) are easy and left to the reader; apply the argument for Lemma 18
for DDL"-a. (iii) follows from (i). Thus, if[A] = [C] and[B] = [D] then+ A < C and
+ B < D, whence- (AvB) < (CvD). Then,O(A/AvB) e w"iff O(C/CvD) e w",
by (LLE) and (RW).m

We now define the modeM = (W, <, v), where

o W= {(x,X):xeWBL" and there is ai € £}, such thaX = [A] andxis normal
for A},

o for (x, X),{y,Y) € W, (x, X) < (y,Y) iff either (i) (x, X) = (y,Y), or (ii) for all
A,Be L] ,if X=[A]andY = [B], thenO(A/Av B) e w" andx ¢ [B],

e V(p)= {(xX) eW: pex).
Lemma32 M is a P-model defined fofp, ..

Proof. Since all components dfl are well-defined, we need only show that
W = @. For that, consider that € L}, is consistent. Hence, by (RP) P(T/T) in
DDL"-c, and therP(T/T) € w". By Lemma 4(i),A is consistent, and so there is an
x € WBL" such thatA; ¢ x. Thusx is normal fort, and so{x, [T]) e W, andW # . m

Lemma 33 < is (i) reflexive, (i) transitive.

Proof. (i) Reflexivity is trivial by clause (i) of the definition of. (ii) For transi-
tivity, suppose(x, X) < (y,Y) and(y,Y) < (z,Z). If either of those is by clause (i) of
the definition ofx, it is trivial that (x, X) < (z,Z). So suppose both are by clause (ii).
Thus, for allA,B € L3, , if X = [A]andY = [B] thenO(A/Av B) € w" andx ¢ [B],
and for allC,D € £g,, if Y = [C] andZ = [D] thenO(C/C v D) € w" andy ¢ [D].
Consider amyA,D € £}, such thatX = [A]andZ = [D]. Since(y,Y) € W, there is a
B such thaty = [B] andy is normal forB. ThenO(A/Av B) € w" andx ¢ [B], i.e.,
B ¢ x, and alsdO(B/Bv D) € w" andy ¢ [D]. We show firstO(A/Av D) € w". For
that, givenO(A/Av B) e w" andO(B/Bv D) e w", O(Av B/Av B) € w by (RW) or
(Reflex) andO(Av B/Bv D) € w" by (RW), whence (aP(Av B/AvBv D) e w"
by (OR) and (LLE). Sinc®(A/Av B) € w", O(A/(Av B) A (Av Bv D)) € w" by
(LLE), whence (b)O((Av B) - A/Av Bv D) € w" by (S), Lemma 5(1). Then,
with (a), O((Av B) A ((Av B) - A)/Av Bv D) € w" by (AND), so that (c)
O(A/Av Bv D) € w" by (RW), and then (dO(Av D/Av Bv D) € w" by (RW)
again. From (c) and (d), by (CautMon®@{A/(Av D) A (AvBv D)) e w", and so, by
(LLE), () O(A/AvD) € w", as desired. Next, we shaw¢ [D]. Suppose, foreductio,
xe€[D],i.e.,D € x. Since(x, X) € W, there is ark such thaX = [E] andxis normal for
E. Since thu§E] = [A], xis normal forA, by Lemma 31(ii). Sinc®(B/Bv D) e w",
O(B/(BvD)A(AvBvD)) e w" by (LLE), whenceO((BvD) — B/AvBvD) € w" by
(S). SinceD(A/AvBvVD) e w", as (c) above, the®((BvD) - B/AA(AvBvD)) e w"
by (CautMono), whenc®((Bv D) — B/A) € w" by (LLE). Sincex is normal forA,
(BvD) - Bex Thus, ifD € x, Bv D € x, so thatB ¢ x, a contradiction. Therefore
D ¢ xand sox ¢ [D]. That and (eP(A/Av D) € w" suffice for(x, X) < (z,Z). m

For everyAe L], let
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o |[A]l = {{x X) e W: xe[A]}.

Lemma 34 For all x ¢ WB" and all Ae £g,, (i) if x is normal for A then(x, [A]) €
Max< (|[A]]); (ii) if, for any X ¢ WBL", (x, X) e Max<(|[A]|), then x is normal for A.

Proof. For (i), supposex is normal forA. Given (Reflex)x € [A], so(x,[A]) €
[[A]|- To show it to be maximal there, suppose,feductio, there is somg,Y) € [[A]]
such thatly,Y) < (x,[A]). Obviously,(y,Y) # (x,[A]); so, for allBandC, if Y = [B
and[A] = [C], thenO(B/Bv C) € w" andy ¢ [C]. Hencey ¢ [A]. But then(y,Y) ¢
[[A]|, a contradiction. Hence, there is no syghY), and so(x, [A]) e Max<(|[A]]).

For (ii), suppose, for som¥ c WBL", (x,X) ¢ Max.(|[A]]). Since(x,X) ¢ W,
there is aC such thatX = [C] and x is normal forC. SoC ¢ x andx € [C]. Also
x € [A], andA ¢ x. To find x is normal forA, we show first thaO(C/Av C) € w".
For that, suppose, foeductio,O(C/Av C) ¢ w". ThenAa,c U {-C} is consistent, by
Lemma 4(ii). Hence, there isyae WBL" such thatAa,c U {-C} € y. Sincey is normal
for AvC, (y,[AvC]) e W. Since-C ey,C ¢y, andy ¢ [C]. SinceAvC eyandC ¢y,
thenAey. Soy € [A]. Then(y,[Av C]) € [[A]]. We show(y,[AV C]) < (x, X). For
that, consider anp andE such thafAvC] = [D] andX = [E] = [C]. By (Reflex) and
(LLE), O(AvC/AvCvC) ew" HenceO(D/D vV E) € w", by Lemma 31(iii). Since
y¢[C],y ¢ [E]. That suffices foty,[Av C]) < (x, X). Moreover, sincece [C], X # Y,
so(x, X) # (y,[Av C]). Consequently,x, X) £ (y,[Av C]), for, if (x, X} < (y,[AvC])
that must be by clause (ii), so that¢ [Av C], whereasx € [Av C] sincex ¢ [C].
Since, thus(x, X) £ {y,[AVv C]), {y,[AV C]) < (x, X). But then(x, X) ¢ Max.(|[A]]),
a contradiction. Therefor®(C/Av C) € w". Given that, it follows thak is normal
for A, for consider anyD € Aa, so thatO(D/A) e w". ThenO(D/AA (Av C)) e w" by
(LLE), and thenO(A -~ D/Av C) e w" by (S), Lemma 5(1). Sinc®(C/Av C) e w",
O(A - D/C A (AvC)) e w" by (CautMono). HenceQ(A — D/C) € w" by (LLE).
From that,A - D e x sincex is normal forC. With A ¢ x, thenD ¢ x, which suffices
for Aa € x and so forx to be normal forA. m

We can now establish our key lemmas.
Lemma35 Forall Ae L], [[A]] = |Alw.

Proof. By an easy induction oA, left to the readerm
Lemma36 Forall @ € L., @ eW"if M 5 a.

Proof. Proof is by induction ony, but we consider only the basis case where
@ = O(B/A), for someA,B ¢ L}, . The induction to more complex is routine, and
left to the reader.

L - R: Suppose@(B/A) € w". To show that Max(|Alm) ¢ |B|m, consider any
(x, X} € Max<(|Alm). By Lemma 35,x, X) € Max<(|[A]|). By Lemma 34(ii) thenx
is normal forA. Hencex € [B], and then(x, X) € |[B]|. So(x, X) € |B|m, Lemma 35.
That suffices for Max(JAjm) € |B|m, and so forM 5 O(B/A).

R — L: SupposeM & O(B/A), so that Max(JAjm) < |Blw. By Lemma 35,
Max.(|[A]]) < |[B]]- To find O(B/A) € w", suppose, foreductio, O(B/A) ¢ w".
ThenAa u {-B} is consistent, Lemma 4(ii), and so there is>am WEL" such that
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Aau {-B} ¢ x. Thus,x is normal forA. By Lemma 34(i),(x, [A]) € Max<(|[A]]).
So(x, [A]) € |[B]|, and thusx € [B], i.e., B € x. But also-B ¢ x, so thatB ¢ x, a
contradiction. Thereforé)(B/A) e w". m

Lemma 37 For finite L5, , M is (i) finite and (ii) replete forCg,

Proof. For (i), sincely, is finite, WBL" s finite. Since, for am € £5,, [A] €
WBL | the set of all such sefs\] is also finite. Hence there are finitely many pairs
(X, X) with x ¢ WBL" andX = [A] for someA e £5, . ThusW is finite. For (i), if,
for A € ch, |Al + @, thenA is BL-consistent. By (RP)- P(T/A) in DDL"-c, so
P(T/A) e w". By Lemma 4(i),Aa is consistent, and so there is &r WBL" such that
Aa € X. Sincexis thus normal fo, (x, [A]) e W. SinceA € x, (x,[A]) € [[A]], and so,
by Lemma 35(x, [A]) € |Alu. HencelA|w + @, as required for repletionm

Lemma 38 < is stoppered foil],

Proof. ThatW is finite andx is transitive suffices fox to be stoppered. Never-
theless, to enable this result to be readily applicable to the full infinite DDL-c, we also
present a demonstration based on the structure of this nvbdel

Consider anyB € L3, , and supposéx, X) € |B|m. Since(x, X) € W, there is an
A€ L], such thaiX = [A] andx is normal forA. Since(x, X) € |B|m, {x, X) € |[B]|, by
Lemma 35, and s® € [B] and thusB € x. EitherO(A/Av B) € w" or O(A/AvB) ¢ w".
For the first case, we show (&), X) € Max.(|B|u); for the second case, we show (b)
there is &y, Y) € Max<(|B|u) such thaty,Y) < (x, X). (a) and (b) together meanis
stoppered fo’],

For (a), suppos®©(A/Av B) € w". Since(x, X) ¢ |B|u, suppose, foreductio,
there is soméy, Y) such thaty,Y) € |B|u such thafy, Y) < (x, X), so that alsdy, Y) <
(x,X}. By Lemma 35,(y,Y) € |[B]|; soy € [B]. Further, sincdy,Y) € W, there is
someC such thaty = [C] andy is normal forC. Obviously(x, X) # (y,Y). Since
{y,Y)} = (x X), for all D andE such thaty = [D] andX = [E], O(D/D v E) ¢ w" and
y ¢ [E]. Thus,O(C/Av C) e w" andy ¢ [A]. We now showO(B - A/C) € w". Given
O(A/Av B) e w", thenO(Av C/Av B) e w", by (RW); likewiseO(Av C/Av C) e w"
by (Reflex) or (RW). Hence (ip(Av C/Av Bv C) e w" by (OR) and (LLE). Further,
sinceO(A/Av B) ew", O(A/(AvB) A (AvBvC)) ew"by (LLE). SOO((Av B) —»
A/Av BvC) e w" by (S), Lemma 5(1), whence (i(p(B - A/Av Bv C) € w" by
(RW). (i) and (ii) yield (iii) O(B - A/(AvC) A (Av Bv C)) € w" by (CautMono),
whenceO(B - A/Av C) € w" by (LLE). That withO(C/A v C) € w" yield O(B —
A/C A (AvC)) e w" by (CautMono) again. From th&(B — A/C) € w" by (LLE), as
desired. Sincg is normal forC, B - Ay, and sincd e y, thenA ey, so thaty € [A],

a contradiction. Therefore, there is no syghY), and so{x, X) € Max-(|B|m).

For (b), suppos®(A/Av B) ¢ w". ThenAa,s U {-A} is consistent, Lemma
4(ii), and so there is § € WBL" such thatAa,g U {-A} ¢ y. Thusy is normal for
Av B; so(y,[Av B]) € W. SinceAvBeyand-Acy,Bey, sothaty € [B].
Thus,{y,[Av B]) € |[B]|. By Lemma 34(i){(y,[AV B]) e Max<(|[Av B]]|). It follows
that(y,[A v B]) € Max<(|[B]|), for if there were soméz,Z) ¢ |[B]| such thatz,Z) <
(y,[AvB]), then sincdz,Z) € |[AvB]|, {y,[AvB]) ¢ Max<(|[Av B]|), a contradiction.
Since thugy,[A v B]) € Max<(|[B]|), then{y,[A v B]) € Max<(|B|u), by Lemma 35.
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We show next thaty,[A v B]) < (x,X). For that, consider an{p and E such that
[AvB] = [D] andX = [E] = [A]. SinceO(Av B/Av Bv A) e w", by (Reflex)
and (LLE),O(D/D v E) € w" by Lemma 31(iii). Further, sinceA ¢ y y¢[A] s

y ¢ [E]. That suffices foty,[Av B]) < (x, X). Sincex e [A]andy ¢ [A], x £y, SO that
(y,[Av B]) # (x, X). Hencex, X) £ (y,[AV B]), since, if(x, X) < (y,[Av B]), then
x ¢ [Av B] by clause (i), and since € [A], x € [Av B]. Consequentlyy,[Av B]) <

(x, X}, as required for this casas

Completeness now follows:

Theorem 39 For all finite n > 1, (i) DDL"-c is weakly complete with respect to the
class of all P-models defined fdl}, . that are finite and replete fo£3, and whose
relation < is reflexive and stoppered fdlg, . l.e., for anya € L], ., if I @ for this
class, then- @ in DDL"-c. (ii) DDL"-c is weakly complete with respect to the class of
all P-models defined fofg, . that are finite and replete fa€g, and whose relatior

is reflexive and stoppered fdlj, , and also transitive.

Proof. By much the same argument as for Theorem 28. Givenin DDL"-c
Lemma 36 entails there is a moddl = (W, <,v) such thatM & «, while Lemma 37
ensures thaM is finite and replete fo£y, , Lemma 33 ensures thatis reflexive and,
for (i), transitive, and Lemma 38 ensurbbis stoppered foCy, . m

Part (ii), with transitivity, will be useful in the proof of TheoredY below.

As with DDL-a and DDL-b, much the same demonstration would establish the
strong completeness of the full system DDL-c over the full infinite language for the
class of infinite stoppered P-models. Finally, as with DiaLand DDL"-b,

Corollary 40 For each finite n> 1, DDL"-c has the finite model property in terms of
P-models defined fof}, ..

Corollary 41 For each finite = 1, DDL"-c is decidable.

That completes this stage for DPAc.

5.1.3 FiniteDDL"-d

Although we have already established the equivalence of DDL-d with DSDL3 in 84, for
later reference, especially in 86.2, it will be convenient now to demonstrate the sound-
ness and completeness of the finite counterparts of DDL-d in terms of finite models.
Here we need only sketch the argument since, when filled in, it will merely recapitulate
that of 84. Nothing there required the infinitude &%, andLp . We do, however,
now give these results in terms of P-models, which are easier to describe for finite
constructions.
Soundness for DDI-d was given in Theorem 15. For completeness, suppfse

to be a maximal DDE-d consistent set of formulas frogf, .. As earlier, leW?"" be
the set of maximal consistent setsaf, formulas. As before todda = {B: O(B/A) €

w"}, and, forx e WBL", xis normal forAiff Ax < x. Let M = (W, <,v) be such that:
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e W= WBLn,

e forw,w' ¢ W, w < w iff, for all B such thatv' is normal forB, there is amA such
thatw is normal forAandP(A/Av B) e w",

e v(p)={weW: pews}, forall atomspe L, .
With its definition of<, M plainly mimicsR from 84.

Lemma42 M is a P-model (i) defined fofy, ., (ii) finite, and (iii) replete forLg, ,
and (iv) < is reflexive, transitive and total, as well as limited 6§, . l.e., M is a
P-model apt for DDLC-d.

Proof. (i)—(iii) are obvious. (iv) is by the arguments for Lemmas 6 anth@tatis
mutandis.m

By the argument for Lemma W is normal forA iff w € Max.(|Ajm), and so, by
the argument for Lemma 8,

Lemmad43 Forall @ € Lo, eW" if M 5 .
Hence,

Theorem 44 For all finite n > 1, DDL"-d is sound and complete with respect to the
class of all P-models defined fdf}, . that are finite and replete fa€g, with relations
< that are reflexive, transitive and total, as well as limited £; .

Proof. By the standard arguments

As with the other finite systems,

Corollary 45 For each finite n> 1, DDL"-d has the finite model property in terms of
P-models defined fof}) a.

Corollary 46 For each finite > 1, DDL"-d is decidable.

This completes Stage 1 of our journey.

5.2 Stage?2

With the completion of Stage 1, we have found that,dar L], ., if #+ o for DDL"-a,

-b, -c, or -d, then there is a P-moddl = (W, <, v) defined forL}, . of the appropriate
kind such thatM & . In this second stage, we develop a method whereby to match
the, possibly duplicative, worlds &¥ in M with corresponding valuationse V. That
done, we can derive a Hanssonian model/relatyrof the appropriate kind such that
likewise R # a. From there the equivalence of the full DDL systems with the DSDL
logics follows. We apply these procedures first to demonstrate that DBD&DL1,
DDL-c = DSDL2.5 and DDL-d= DSDL3. DDL-b and DSDL?2 are more difficult, and
so deserve a subsection of their own.
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5.2.1 Full DDL-a, DDL-c, and DDL-d

Given finiten > 1, consider any P-mod#ll = (W, <, v) defined forL}, . over £}, that

is (i) finite, (ii) replete forLy, , and (iii) with < reflexive, and perhaps (iv) transitive and
so stoppered fo£d, , and also perhaps (v) tota may be redundant. In shoi] is

to be a model of the sort presented in Stage 1 above for'B)IDDL"-c or DDL"-d.
Supposa&V to contain exacthk many members, including all duplicates. Suppose them
to be ordered a$wy,...,wx) by some enumeration. Consider a Bet {rq,...,rx}

of exactlyk many atomg € Lg_ such that each ¢ L], . SupposeR is ordered as
(ra,...,rg) by some enumeration. These new atoms will be used as markers for the
worldsw; € W; that is, each; e R marks, or is the marker ofy; € W in their respective
orderings.V is the set of all classical valuations defined odgy . Given that marking,

we pick out certain select membeys,, of V to stand in place of the worlds; ¢ W.
Forw; e W andr; € Rits marker, letp,, be thaty € V such that

e o(p)=1iff w; € v(p), for all atomsp € L3, ,
e o(r)=1,and
e ¢(s)=0forall other atomse Lg, i.e.,5¢ L], ands=r;.

Clearly there is such @, and only one, for eacw; ¢ W. We will sayg,, is ‘marked
for’ w;, by virtue of its verifying the atom;, the marker fom;. ¢, corresponds to, or
is a counterpart of;, in the sense that the two agree on all formulaggp.

Lemma47 Forall Ae L, W € |Alm iff ow € |Al.

Proof. By an easy induction oA € £g, , left to the readerm

While eachw; € W hasits counterparty,, € V, there will, of course, be myriad
other members d¥ that correspond to no sueth € W, not because they do not agree
with somew; on all A € £g, , but because they are not marked for thiah the requisite
way. E.g., there will bey € V such thatp(ry) = ¢(r2) = 1, forry,rp € R, ore(s) =1
for somes¢ £3, ands=r for anyr € R. LetV* be the set of those valuations\Vtthat
are marked counterparts for worlds\Ww

o V¥ ={peV:thereis an ¢ W such thatp = ¢y, }.
Lemma 48 V* is finite.

Proof. Obvious, given thatV of M is finite. m

Valuationsgy, € V* thatare marked for their counterpasts will play the role of
those counterparts in a new irredundant H-model. GMen (W, <, v) as described, let
Rm €V x V be defined fronM, thus: For allp, ¢’ € V,

e pRy ¢ iff either

()  @eVFandy' e V¥, andw < w;j if ¢ = ¢, andy’ = gy, Or
(i) @ gV
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Hence, all members of* are ranked among themselves as their counterparts are
ranked inM, while all members of/* are ranked strictly higher than non-members
of V¥. Those non-members are ranked equally with each other.

Lemma49 (i) Ry is reflexive, and (i) ik is transitive, therRy, is transitive. (iii) If <
is total, thenRy, is total.

Proof. (i) Reflexivity is obvious, given that is reflexive. (ii) For transitivity, if
< is transitive, supposgRv ¢’ ande'Rye”. If ¢ ¢ V¥, then immediatelyRu ", by
clause (ii) of the definition oRy. If ¢’ ¢ V¥, then alsay” ¢ V¥, and agairpRy¢". If
¢ ¢ VH theny' ¢ V¥, by clause (i), and sp” ¢ V¥, andpRn¢"”. Suppose then all three
are inV¥. Then there is &; € W such thatp = ¢,, and aw; € W such thaty’ = ¢, and
aw € W such thaty” = ¢y . Sincepy, Rmew, andgy, Rmew , then by definition oRy,
clause (i), it follows thatv, < w; andw; < wi, whereuporw; < wi, sincex is transitive.
That suffices fopy, Rmew, Or eRue”’, by clause (i).

(iii) For totality, supposex is total overW. If ¢,¢’ € V¥ then eithergRy¢’ or
©'Rmo, by the totality of<. If ¢ ¢ V¥ or ¢’ ¢ V¥, then eithery’'Rye or pRy¢’ by
clause (ii) of the definition oRy;. m

Lemma50 Forall A e Lf, , w € Max<(|Alm) iff ow € Maxg,, (JA]).

Proof. SupposeA € L], . L — R: Supposen; € Max<(|Ajw). Sincew; € |Aly,
ow € |A|, by Lemma 47. We show,, € Maxg, (JA]). Suppose not; suppose, for
reductio, there is somg € |A| such thatoPy ey, . Sincep,, € V¥, it must be thaip € V¥,
Hence there is w; such thaty = ¢,,. By definition of Ry, wj < wi. Sincew; € |Aly,
by Lemma 47, themv; ¢ Max.(JA|m), a contradiction. Hence there is no suych |A|,
andey, € Maxg,, (|A]).

R — L: Supposepy, € Maxg,, (JA|). Sincepy, € |A|, Wi € |Alw, by Lemma 47. We
showw; € Max.(|A|m). Suppose not; suppose, fieductio, there is some; € |Aly
such thatv; < wi. Considergy, € V¥. ¢y, € |A|, by Lemma 47. By definition oRy,
ow;Pmow, but thenp,, ¢ Maxg,, (JA|), a contradiction. Hencey, € Max<(|Ajy). =

Lemma5l Forall @ € L, M iff Ru & a.

Proof. By induction ona. We show the basis, whewe= O(B/A). The induction
to more complex cases is routine and easy, and so left to the reader. SQB@A <
Lp, o, and thusA,B e L], .

L — R: SupposéM 5 O(B/A), so that Max(|A|m) < |B|m. To show Max,, (|A|) €
|B|, and thusky & O(B/A), consider anyy € Maxg,, (JA]). Sincey € |A|, andM is
replete forLy, , there is aw; € W such thaw; € |Aly. Considerpy, € V. ¢y € |A],
by Lemma 47. Fop, eitheryp € V¥ or ¢ ¢ V¥. In the second case,,Pu¢, and then
¢ ¢ Maxg,, (JA]), a contradiction. Henceg € V¥, and so there is w; € W such that
© = ;. Thusgy, € Maxg,, (|A]). By Lemma 50w; € Max<(|Alw). Hencew; € [B|u.
From thatp,, € |B|, Lemma 47, i.e.p ¢ |B|, which suffices for Max, (|A[) ¢ |B|, and
so forRy £ O(B/A).

R — L: SupposeRy £ O(B/A), so that Max,, (JA|) < |B|. To showM 5 O(B/A),
i.e., that Max(|Alm) < |B|m, consider anyy; € Max.(JAlw). Considerp,, € V¥ that is
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marked forw;. By Lemma 504y, € Maxg,, (|A]). Thengy, € |B|, whencew; € [B|u, by
Lemma 47. That suffices for MaiAlm) < |B|m, and so forM 5 O(B/A). m

That lemma establishes the equivalenc&adindR), with respect to formulas in
Da- Naturally it is silent with respect to other formulasf, = sinceM has nothing
to say about them. This does, however, provide what we need to establish that DDL-a
is equivalent to DSDL1.

Theorem 52 DDL-a=DSDL1;i.e., foralla € Lp,a (i) if - @ in DDL-a, theniy; a with
respect to the class of all reflexive Hanssonian relatiRrisV x V, and conversely (ii)
if I; @ with respect to the class of all reflexive Hanssonian relatiBns V x V, then
+ « in DDL-a.

Proof. (i) corresponds to the soundness of DDL-a with respect to Hanssonian
H-models, see Theorem 1. (ii) is weak completeness for DDL-a. Supppsefor
reflexive relationsR, but that+ « in DDL-a. Obviously there is a finita > 1 such that
A(@) = n. By Lemma 144 « in DDL"-a, and by Theorem 28(i), there is a reflexive
P-modelM = (W, <,v) such thatM ¥ a. Let Ry be defined fromM as described. By
Lemma 51 Ry ¥ @. Moreover,Ry, is reflexive, Lemma 49(i), and so a model apt for
DSDL1. Hencey « for the class of DSDL1 relations, a contradiction. Consequently,
if I;  for that class, ther « in DDL-a. m

At the end of §5.2.2, with Corollary 83, we will see that DDL-also sound and
complete for all relation® that are transitive as well as reflexive.

For the equivalence of DDL-c and DSDL2.5, we need to show Rhais stop-
pered. For that we must go beyohls being stoppered sindd would only be stop-
pered for£3, andRy must be stoppered for the full infinite languagg . To achieve
that, it would help if the field oR\, were finite, since finitude coupled with transitivity
entails stoppering, and we kndiy, is transitive if< is. But, of course, the field da?y,
is not finite. To get around that, we consider first a relation that is defined for a finite
field, namelyR},, the restriction oRy to V¥. l.e.,

o Forallg,¢’ €V, Ry ¢ iff ¢, ¢" € V¥ andgRu¢'.
Lemmab53 If < of M is transitive, therR}, is transitive.
Proof. By the argument for Lemma 49(ii), in the case wheye’, ¢’ ¢ V¥. m
Lemma54 If < of M is transitive, therR}, is stoppered.

Proof. By Lemma 48\V* is finite. SinceRY}, is transitive, if< is, Lemma 53, then
R\, is stoppered since transitivity and finitude of field suffice for stoppening.

Lemma55 Forall Ae Lg and for allg e V¥, ¢ € Maxg: (|A]) iff ¢ € Maxg,, (|Al).

Proof. Supposep € V¥, and for L R: suppose € Maxg: (|A[). Henceyp ¢ [A|.
Suppose, foreductio,p ¢ Maxg,, (JA|). Then there is @ € |A| such thaty’Py¢. Since
©'Rme, ¢’ € V¥, by definition ofRy. Hence 'R}, ¢, and likewise, since not-(pre’),
not-(¢Ry,¢"). Thus,¢'P),¢, in which casep ¢ Maxg: (|Al), a contradiction. Therefore,
¢ € Maxg,, (JA|). The argument R> L is much the samem
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Lemma56 If < of M is transitive, therRy, is stoppered.

Proof. Supposex is transitive. Consider any ¢ |A|, for anyA e Lg, . ¢ € V¥ or
¢ ¢ V¥ In casep € V¥, then ifp ¢ Maxg,, (|A]), ¢ ¢ Maxg:, (|A]), by Lemma 55. Then,
sinceR}, is stoppered, Lemma 54, there ig'ac MaxR;hlA(|A|) such that’P},¢. Since
bothp, ¢’ € V¥, ¢'Pye. Further, by Lemma 55y’ € Maxg,, (|A]), which suffices for
stoppering for this case. In caget V¥, then eithe* n|A| = @ or V¥ n |A| # @. In
the first case, thep € Maxg,, (|A|) since there is n@’ € |A| such thaty'Py ¢, and that
suffices for stoppering for this case. In the second case, therg is\&' andy’ € |A|.
SinceRY}, is stoppered, there is@l’ € V¥ such thaty” e Mame(|A\). For such ap”,
¢" € Maxg, (|A]) by Lemma 55 and alsg”Pne, by the definition ofRy, and that
suffices for stoppering for this case tam.

We can now conclude the equivalence of DDL-c and DSDL2.5, as agelf
DDL-d and DSDL3 again.

Theorem 57 DDL-c = DSDL2.5; i.e., for alle € Lp,a (i) if - @ in DDL-c, theni; «
with respect to the class of all Hanssonian relatighs V x V that are reflexive and
stoppered, and conversely (ii)iif « with respect to the class of all Hanssonian rela-
tionsR c V x V that are reflexive and stoppered, thew in DDL-c. (iii) Likewise for
all relationsR that are transitive as well as reflexive and stoppered.

Proof. By the argument for Theorem 52 above, with Lemma 56 to assur&that
is stoppered, given thad has a transitive relatior, as given by Theorem 39, part (ii),
and also Lemma 49(ii) for transitivity a8y, for part (iii). m

We include patrt (iii) to complement Theorem 82 for DDL-b andGrollary 83
for DDL-a with regard to transitive relatior.

Theorem 58 DDL-d = DSDL3;i.e., foralla € Lpa (i) if - @ in DDL-d, theniy; a with
respect to the class of all Hanssonian relatiddis V x V that are reflexive, transitive
and total and also limited, and conversely (ii){f @ with respect to the class of all
Hanssonian relation® c V x V that are reflexive, transitive and total and also limited,
then+ « in DDL-d.

Proof. By the argument for Theorem 57, applying Lemma 49 to enByrés both
transitive and total wheg is, as given by Theorem 44. By the argument for Lemma
56, Ry is stoppered. Since being stoppered entails being limRgds limited. m

While this theorem essentially repeats Theorem 10 and its Cordlip 84, |
include it now for later reference, in 86.2. We may note that the rel®igrapplied
here is defined differently from the relatiBrapplied for Theorem 10.

522 Full DDL-b

Before demonstrating that the full DDL-b is equivalent to DSDL2, it may be helpful to
see why the method that yielded the equivalences for DDL-a, DDL-c and DDL-d with
DSDL1, DSDL2.5 and DSDL3 in the previous subsection breaks down for this system,
and thus why we must go to extra lengths to achieve our desired result.
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Here is a simple example based i 2. Suppose a certaiM? = (W2, <2,v?),
defined for£3, ., that is finite and replete fo€3, , but redundant, and whosé is
reflexive and limited forC3, . To be replete requiré&? to have at least four members,
but with redundancy there will be more. Suppt¢e= {Wwy, W2, Wa, W4, Ws, We, Wy, Wg },
and suppos# is such thatvs is a duplicate ofvi, wg a duplicate ofv,, w; a duplicate
of wz andwg a duplicate ofv,, and also, for convenience, supp@sgews, W7, Wg suffice
for repletion, though that will not matter here. Repletion is not the issue. Suppose
is given entirely by:

Wi <PWo Wo<2Wg W3<?Ws Wg<?w
w <2 w, for allw e W?

Thus, wi, Wo, Wa, Wy form a loop by<?, andws, We, Wy, wg just stand by themselves.
The latter suffices fol? to be limited for£3, , though that will not really matter here
either.

Now we try to apply the method developed for DDL-a, etc. to define an ap-
propriate relatiorRy;.. Consider the eight atoms,...,rg ¢ EéL, to mark each of
Wi, ..., Wg € W2, Definegy,,. .., pw, € V¥ as before. WitlR . also defined as before,
it follows that amongv/#, besides reflexivity, just

ow Rmzow,  pwoRmz0ws  @wsRmzw,  @wRmzow,

and so there is a loop 2 for gw,, Yw,, Yws, P, While Qu, Gws, Py, Pw, Stand
alone. By the latter, the limit condition will hold for al € £3, , given thatM? is
limited for £3, . l.e., for allAe L3, , if |A| # @, then Max ,(|A]) # @. For DDL-b to
be equivalent to DSDL2, however, we neRl- to be limited for allA € Lg , and not
merelyL3, .

Consider then the formulB=ry v ra vz Vv rs. Thengy, € |B|, ow, € |B|, ow, € |B]|
andey, € |B|, but none of those is maximal fB| by Ry, because of the loop. Each
of pws ¢ |B|, ows ¢ |Bl, ow, ¢ |B| andgy, ¢ |B|, so of course none of those is maximal
for |B|. There will be countless othere |B|, but they will not be maximal there either
since they are not iN* and sopy, P2, for any suchp. In short there is n@ € V such
thaty € Maxg,, (|B|), and the limit condition fails. As a resuRy: % P(T/B) even
thoughP(T1/B) is valid for DSDL2.

To rescue the limit condition, for an appropriate relatfyy based on an arbitrary
finite M, we must be assured thist contains no such terminal loops by While one
might try to prove completeness for DBIb for finite loop-free models, it is difficult to
see how that would go. If the relatianof M were transitive, then that would exclude
loops by<. On the other hand, for finite models, a transitive relation would suffice not
only for the limit condition but also for stoppering, which would verify (CautMono),
which is not in DDL-b, cf. Theorem 3. To avoid stoppering, we now take a different
course. We will find DDL-b to be complete for P-models with transitive relations, and
thus loop-free, but we will let go of finiteness for such models.

The demonstration takes two steps. In Step 1, we establish finite' D& be
complete with respect to P-modeM;, defined for finiteC], ., that are limited for’§,
and also have a transitive relation (‘tau’ for transitive); those models themselves will
be infinite and infinitely redundant. In Step 2, through the method of marking worlds,
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we produce an irredundant, Hanssonian relaRon V x V thatis limited for the full
LpL and equivalent td1” for L3, .. That done, it will follow that DDL-b= DSDL2.

Step 1: Transitive P-models

Given a P-modeM = (W <,v), defined forL}, ., that is finite and replete foff,
with < reflexive and limited forCg, , we now construct another equivalent P-model
M™ = (W7, <",v"), defined forL}, ., that is replete forCg, , and whose relatioa™ is
not only reflexive and limited foCg, but also transitive. UnlikeV, M™ is infinite,
though its infinitude is only denumerafiie.

GivenM = (W, <,v) as described, | will now, contrary to prior practice, asb,c,
etc., as variables for membersWfandi, j, k as numerical variables is, as usual, the
least limit ordinal, which may be identified with the set of natural numbers. Rvibm
defineM™ = (W, <" v7):

e W™ ={(a,b,i) :a,be Wandi € w).
e For(a,b,i),{(c.d, ) e W', (a,b,i) <™ {c,d, j) iff, either
[1] (a.b.i) = (c.d. ]),
or
[2] both (a)b =d andi > j, and (b) either
(b.1)cxdanda=c,
or
(b.2)c=danda<c.

e Vi(p)={(a,b,i) eW :aev(p)}, forall atomspe L3, .
Henceforth, | will usex,y, z, etc. as variables for memberswif.
Lemma59 M"is a P-model defined fofp, . overLg, .

Proof. This follows immediately fromM being such a model, i.eW™ + & be-
causeW = @, andv” is clearly defined for all, and only, atonpse £3, because is so
defined. m

Lemma 60 W' is denumerable.

Proof. SinceM is finite, i.e.,W is finite, there are only finitely many paifa,b),
for a,b € W. For each such pair there are denumerably many pairtsa,b,i) in
W, but the union of finitely many denumerable sets is still denumerable. Hefice,
is denumerablem

8Theprocedures of this step work as well for the full DDL-b over an infinite language and also fof-DDL
a and DDL-a, to show they too are complete with respect to appropriate P-models with transitive relations.
These procedures do not requiveto be finite, or< to be limited. Nevertheless, we keep our focus now
just on DDL"-b, for finiten > 1. The following is a modification and generalization of a method X. Parent
used to establish the completeness of Aquist's systérasd F with respect to P-models with transitive
betterness relations and applying Rule P. (Personal communication, though those results should appear in his
[13]. Parent cites Schlechta [15], esp. Prop 2.83, as a source. | have not seen that work.)
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Lemma 61 <" is (i) reflexive and (ii) transitive.

Proof. (i) is trivial. For (ii), supposga,b,i) <* (c,d, j) and(c,d, j) <* (e, f,k).
We show(a,b,i) <" (e, f,k). If either of the supposed relations is by clause [1], then
the resultis immediate. Hence suppose both are by clause [2]. Then, byp[2.&}; f
andi > j > k. Sob = f andi > k, as required by clause [2.a]. From the first supposition,
by [2.b], either (1)c # d anda = c or (2) ¢ = d anda < c¢. Consider (1). From the
second supposition, either+ f andc = e, in which casea = e, and sinces # f,
(a,b,i) <" (e,f,k) by [2.b.1], or elsee = f andc < e, in which case, since=c,a<e,
and so(a,b,i) <" (e, f,k) by [2.b.2]. Under case (2), with= d anda < c, again either
e+ fandc=e, ore= f andc < e. In the first case, sinae= d andd = f andc = e,
thene = f, a contradiction. So this is not a possible case. In the other case asince
andc = d andd = f ande = f, a < e, which suffices fofa,b,i) <" (e, f,k) by clause
[2.b.2]. Hence, in all possible caséa,b,i) <* (e, f, k), as required.m

To establish the equivalence of the models, these lemmas are useful.

Lemma62 For all A € £, and all (a,b,i) € W, (i) (a,b,i) € |Alu- iff a € |Alm, and
(i) for all j € w, (a,b,i) € |Alu- iff (a,b, J) € |Alur.

Proof. (i) is by an easy induction oA, left to the reader. (ii) follows immediately
from (i). m

Lemma63 For all A € £, and all (a,b,i) € W7, if (a,b,i) ¢ Max(|A
a=bh.

mr), then

Proof. Suppose thata,b,i) € Max.-(JA|w-), buta + b. Since(a,b,i) € |Alur,
(a,b,i + 1) € |Ajm-, by Lemma 62(ii). Trivially,b = bandi + 1 >1i, alsoa = a. Hence,
clauses [2.a] and [2.b.1] of the definitiondfare met, sda,b,i + 1) <™ (a,b,i). Since
(a,b,i) € Max.(|Alu-), it follows that(a,b,i) <* (a,b,i + 1). Hence, by clause [2.3],
i >i+1, which is absurd, of course. Therefore, it must be that. m

Lemma64 Forall Ae £}, and allac W and all i€ w, ae Max<(|Alm) iff (a,a,i) €
MaXSr(|A|Mr).

Proof. L - R: Suppos@ € Max<(|Alm). Soac« |A|u, and thuga,a,i) € |Alu-, by
Lemma 62(i). We shoWa,a,i) € Max.-(|JA|u-). Suppose not, i.e., suppose feductio
there is someb,c, j) € |Aju- such that(b,c, j) <" (a,a,i). Since(b,c,|) € |Alu-, b€
|Alm. Obviously,(b,c, j) # (a,a,i). Since(b,c, j) <" (a,a,i),c=aandj >, by clause
[2.a]. Sincea=a,b < aby clause [2.b.2]. But that is impossible sirce Max< (|Ajm).
Hence, there is no sudb,c, j) € |Alu-, and so(a,a,i) € MaX(|Alur).

R — L: Suppose(a,a,i) € Max«(|Alu-). Since(a,a,i) € |Alu-, a € |Ajuw by
Lemma 62. We showa ¢ Max<(|Alv). Suppose not, i.e., suppose feductiothere
is someb € |Alw such that < a. Obviouslyb # a. Considerb,a,i). (b,a,i) ¢ W".
Also, (b,a,i} € |Alu-. Trivially, a = aandi > i, so clause [2.a] of the definition af is
met. Sinceb < a, (b,a,i) <™ (a,a,i) by clause [2.b.2]. Sincén,a,i) € Max.(|Alw-),
(a,a,i) <" (b,a,i). Sinceb # a, then, by clause [2.b.14 = b, a direct contradiction.
Hence, there is no sudhe |Aly, and sca € Max<(|Aju). =

It is now easy to verify thaM andM"™ areequivalent forLp) a.
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Lemma 65 For all formulasa € L} ., M s iff M 5 a.

Proof. By induction ona. We show only the case wheae= O(B/A) since the
others are easily done, and may be left to the reader.

L — R: SupposéM = O(B/A), so that Max(|A|w) < |B|m. To showM™ = O(B/A),
i.e., that Max- (JAju-) € |B|m-, Suppose som@,b,i) € Max.-(|Ajy-). By Lemma 63,
a=b. Hence,(a,a,i) € Max.-(|Aju-). By Lemma 64a ¢ Max.(|Alu). Hencea ¢
|B|m, and then, by Lemma 62a,b,i) € |B|u-, which suffices for Max (|Alu-) € |B
and so forM™ 5 O(B/A).

R — L: SupposeM™ £ O(B/A), so that Max-(|Alu-) < |Blw-. Consider any
ae Max<(|Alm). By Lemma 64(a,a,i) € Max.-(|Aju-), for anyi € w. Thus,(a,a,i) €
|B|m-, whereupora € |B|y, by Lemma 62. That suffices for MaA|m) < |B|u, and so
for M 5 O(B/A). m

For DDL"-b, it remains to show tha¥l" is replete for£g, and limited forLg, .

MT

Lemma66 M" is (i) replete for£g, and (i) limited for L3, , if M is; i.e., for all
Ace L3, if |Alw- # @ thenMax.(|Alur) # @.

Proof. (i) follows directly from M being replete forC3, and Lemma 62. For
(ii), supposeA € L}, and|Alw- # @. Supposga,b,i) € |Aju-. By Lemma 62a ¢
|Alm; hence|Alw # @. Given thatM is limited for L3, , Max<(|JAjm) # @. Suppose
b € Max.(|JAjm). Consider(b,b,i) ¢ W, for anyi € w. By Lemma 64,(b,b,i) «
Max<-(|Ajwr). Hence, Max- (|A|u-) # @, as requiredm

These results suffider completeness.

Theorem 67 For any finite n> 1, DDL"-b is sound and weakly complete for all P-
models, M= (W, <, V), defined forCg, . that are replete foiC}}, and whose relatiors,
is reflexive, transitive, and limited fagy, .

Proof. Soundness has been done, Theorem 15. For weak completeness, we argue
as usual. Supposea in DDL"-b. By Theorem 28(ii), there is a modkl = (W, <, V)
that is finite and replete fofg, , with < both reflexive and limited for’§, , and is
such thatM & . ConstructM® from M as described. By Lemmas 59, 61 and 66,
M™ is defined forLp, . and is replete foCy, and its<™ is reflexive and transitive and
limited for L5, , and by Lemma 65M" & a. Hencej# « for that class of P-models.
Accordingly, ifis @ for that class, ther « in DDL"-b. =

That is what was primarily to be proved for this step of the argumegérding
DDL-b. While the result has intrinsic interest, perhaps, its purpose is to be applied
in the next step, where we will see tHdf based orM is more nuanced than merely
having a transitive relation and being limited 6§, .

Step 2: Transitive H-models

We now seek a Hanssonian relatiRrthat is equivalent td* for £}, . and is limited
for the full, infinite languageg, ; in passing, it is also transitive. To this end, we adapt
the method of marking worlds that was applied earlier for DDL-a, DDL-c and DDL-d.
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GivenM = (W, <, v), definedfor L3, -, that is finite and replete fag, and whose
relationx is reflexive and limited for’§, , let M™ = (W™, <",v") be derived fromM as
described above in Step 1. As we have sé&&his defined forC}, . and replete foCf,
and its relatiorx™ is not only reflexive and limited fofg, but also transitive. Also, for
alla € L3 a, M" 5 ¢ iff M 5 . FurtherW" is denumerable.

Becausé\N" is only denumerable, there are enough atoms in the denumerably
infinite languageCg. to mark each of the points ¢ W' in much the same manner as
before. LetR= {r : r is an atom ofCg_ andr ¢ £g, }. SinceLy, is finite, there is such
anR, and it is denumerable. LBtbe ordered aé,....ri,...) by some enumeration,
and letW" likewise be ordered &s¢, ..., X, ...) by an enumeration. This establishes a
one-one mapping betwe&andW’. We will say that each in its ordering marks, or
is the marker fory; in its, where the subscript indicates the positiom;adr x; in their
enumerations. Thus the subscripts, etc. onx;, X;, etc. are quite independent of the
internal numerical indexes of these points, i.e., wikea (a,b,k), i has nothing to do
with k, except arithmetic, of course. Clearly, every atoaR marks somex e W, and
everyx € W' is marked by some € R, and these are unique. Whea x; is given in
context, | may write ‘g’ for r;, the marker foix.

As in 85.2.1, marking worlds this way enables a correspondence between certain
valuationsy € V and pointsx, € W, For eachx; e W7, let ¢ be thaty € V such that

e o(p)=1iff x e v (p), forall atomsp e L3, ,
e o(r))=1,and
e ¢(rj) = 0 for all other atoms; € Rsuch that; # r;.

As before, there is clearly suchgg, and only one, for eack € W*. We say thapy, is
marked forx;, or is the marked counterpart gf, by virtue of its verifyingr;, and only
ri, from R, while agreeing wittx; on all formulasA € £, .

Lemma68 Forallr e R, if gy € [r| andgy, € |r|, then x = ;.

Proof. Supposepy € |r| andey, € |r|, butx # xj. By the latter,i # j in the
enumeration ofV*. Hencey; # r; in the ordering oR. Sincepy, € |r|, r =r;, and since
@x; €r],r =rj, and thug; = rj, a contradiction. Henceg = x;. m

me iff ox € |A.

Proof. By an easy induction oA € £3, , given the specification afy, from x. m

Lemma69 Forall Ae L], % €|A

Likewise, as before, let
o V¥ ={peV:thereisanxe W™ andy = ¢y}.
Lemma 70 V* is denumerable.

Proof. Immediate from Lemma 60m

We now defineRy- muchas previously. Fop, ¢’ € V, let
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e pRy-¢' iff either
()  bothy e V¥ andy' € V¥, andx <™ x; wheny = ¢y andy’ = ¢y;, or
@iy ' ¢ VA
Lemma 71 Ry- is reflexive and transitive.

Proof. Reflexivity is immediate fromk™ being reflexive. Transitivity follows,
mutatis mutandis, by the argument for Lemma 49, giventhad transitive. m

Lemma72 Forall Ae L], , % € Max.(|A

M’) iﬁ‘ﬁxi € MaXRMT(|A|)'
Proof. By the argument for Lemma 50a

Rm- andM™ areequivalent with regard tdp, -, in the sense that:
Lemma73 Forall a € L., M" 5 e iff Ry 5 a.

Proof. By the argument for Lemma 51m

We now need to establish thRyy- is limited for all of L, that if A € Lg, then if
|A| # @ then Max,,. (JA]) # @. We distinguish cases dependingAnCase 1A e L}, ;
Case 2A¢ Ly, .

Lemma74 (Casel) If Ae L3, thenif|A| # o thenMaxg,,, (

A+ @.

Proof. GivenA ¢ L5, and|A| # g, then|A|y- # &, sinceMT is replete forlg, .
Since M7 is limited for £3,, Max.-(|Alw-) # @. Supposex € Max« (|Alu-), then
¥y € Maxg,,. (JA]), by Lemma 72. Hence, May. (|A]) + 2. m

We now consider Case 2 whefe¢ L3, , and so there are atomse R that are
subformulas ofA. Let

e R(A)={r eR:ris asubformula oA}.

ObviouslyR(A) is finite and, for this case, nonempty.

Given|A| + @, Ais consistent. By classical logi#, is equivalent to a formul&’
in disjunctive normal form (DNF), so th&{ = B, v--- v By, where each disjunch;, is
a consistent conjunction of literals, i.e., atoms or their negations, figmMoreover,
we now require of each sud, (i) for every atomp € L}, , eitherp or -pis a conjunct
of By, and not both, of course. This is possible sidgg is finite, containing exactin
many atoms. We also require (ii) for every atora R(A), eitherr or -r is a conjunct
of B;, and not both. This too is possible sinB€A) is finite. Thus, each such;
is equivalent to a formul®; A R, whereP; is a complete conjunction of literals from
L, , one for every atom of, , andR; is a complete conjunction of literals froR(A),
one for every atom ifR(A). Let

e 6(A)={B;: Bjisadisjunct ofA’}.

Like Gaul,6(A) is divided into three parts. Let
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e 50(A) = {B; € 6(A) : B is equivalent toP; A R; and all the conjuncts iR are
negative, i.e., for alf that are conjuncts d&;, ¢ = —r for somer € R(A)}.

e 51(A) = {Bi € 6(A): B is equivalent td® A R and exactly one of the conjuncts
of R is positive, i.e., there is onéthat is a conjunct oR; such that? = r for
somer € R(A), and all the rest are negative}

e 5,(A)={B; €6(A): Bjis equivalent td AR, and more than one of the conjuncts
of R is positive, i.e., there areand¢’, both conjuncts oR;, and¢ = r for some
r e R(A) and¢’ =r' for somer’ e R(A) andr = r'}.

Clearly, eachs;(A), fori € {0,1,2}, is finite, sinceA’ has finitely many disjuncts. Of
course, any of these might be empty, though not all, given&hatonsistent.
Givengi(A) fori € {0,1,2}, let A = V6 (A), except in casé;(A) = @, then let
A = pA-p, for some atonp € L], . Thus,Ais equivalent toAg v A; v Ag.
By the nature of the members &f( A), we know this:

Lemma 75 If ¢ € |Ay| theny ¢ VH.

Proof. Obvious. m

We know less about thogee |Ag| or ¢ € |A;|; these might, or might not, be M. We
can, however, focus attention on those that are. For the diyét

o V5(A)= V0 |Ad;
o VI(A)=VFnlA.
In light of Lemma 75, these exhauét n |A|, and they are exclusive.
Lemma76 (i) V¥ n|A]=V5(A)u Vi (A), and (ii) Vi (A) n Vi (A) = @.
We note further that, given th&(A) is finite,
Lemma77 Vi (A)is finite.

That is not so fol§ (A).
With those in place, we now distinguish two further cases. In Cas&/2@|A| =
@; in Case 2.bV* n |A| + @.

Lemma78 (Case2.a) If A¢ L], and V' nlA| =g, thenif|A| # & thenMaxg,,. (
a.

A+

Proof. Suppose\ ¢ £3, andV¥n|A|= g and|A| # @. Considelp € |Al. Sogp ¢ V*.
Suppose, foreductio,y ¢ Maxg,,. (|A]). Then there is &' € |A| such thaty’Py-¢. By
the definition ofRy-, that requiresy’ € V¥; so¢’ € V¥ n|AlandV¥ n |A| = &, a
contradiction. Hencep € Maxg,,. (|A]) and Max,. (|A]) + &. =

For Case 2.b, with/# n |A| # @, we again distinguish two cases: Case 2.b.1,
Vi (A) # @, and Case 2.b.3/5(A) = .
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Lemma79(Case2b.l) If A ¢ £3 and VW n|A| # g, then if \J(A) # g, then
Maxg,,. (JA]) # @.

Proof. SupposéA ¢ £3, andV*n|A|+ &, and suppos¥s (A)  @. Lety € VE(A).
Thusy € V¥ andy € |Ag|, whereAg = Py ARy v --- v Py A Ry, in which eachP; is a
complete conjunction of literals fromi}, andR; is a complete conjunction of negated
atoms fromR(A). Thus, all theR’'s must be the same. Call they. Hence,Aq is
equivalent to(Py v --- v Px) ARy, LetPg = Py v ---v Pe. Pge L] . Sincep € |Ag|,
¢ € |Pg|, so that|Pg| # @. SinceM" is replete forly, , |Po|m- # @, and sinceM” is
limited for £3, , Max« (|Po|m-) # @. Supposex € Max.-(|Po|m-). By Lemma 63, we
know x = (a,a,i), for somea ¢ W andi € w. By Lemma 64a,a, j) € Max«-(|Po|m-)
foreveryj € w.

Let j* € w be the least number such that for everg R(A), if r = r; in the
enumeration oR, andr; marksx = (c,d,k) in the enumeration o#V", thenj* > k.
SinceR(A) is finite, and every € R(A) marks a unique; € W™, there must be such a
j*. As noteda,a, j*) e Max«(|Polmr). Lety* = (a,a, j*), and considegy- € V¥. By
Lemma 69y~ € |Po|. Further,gy- € |Ro|, for suppose not, i.e., suppose, feductio,
¢y ¢ |Ro|. Thusgy- € |-Rg|. SinceRy is a conjunction-ra A ... A -, one conjunct
for each atom iR(A), -Ry is equivalent ta, v - - - v rp, one disjunct for each atom in
R(A). Hence, there is ane R(A) such thaipy« € [r|. Sincegy- € V¥, there could be
only one. Suppose thatmarks pointz e W*, wherez = (c,d, k) for somec,d ¢ W and
K e w. Thusr = r,, so thatpy- € |r,|. Givenz, consider, marked forzby r,. Obviously
¢z € |rz]. Hence, by Lemma 68;* = z, i.e.,(a,a,|*) = {(c,d,k). Thusj* = k. On the
other hand, given the specification pf, sincer, ¢ R(A) andz = (c,d,k}), j* > k, a
contradiction. Hencegpy- € |Ro|. Thusgy- € |Po A Ro|, and sapy- € Ag, which entails
@y+ € |Al. We show it to be maximal itA| by Ru-.

Suppose, foreductio, ey« ¢ Maxg,,. (|A|), so that there is somg € |A| such that
@Pmroy+. Sincepy- € V¥, ¢ € V¥, by the definition ofRy-. Hence, there is ae W*
such thaty = ¢,, wherez = (c,d, k) for somec,d ¢ W andk € w. Sincegy:,¢, € V¥
andg,Py-gy+, <" Y*. ¢, € Vi (A) or ¢, ¢ V{(A). In the first case, witlp, € Vi (A),
and soy; € |Aq|, there must be &, € §1(A) such thatp, € |Bj|. B, is equivalent to a
conjunctionP; A R;, in which R is a conjunction of literals from the atoms BffA)
and exactly one of those is positive. Singge |r,| andg, € R, it must be that, is
that conjunct, and so, € R(A). Givenz <" y*, z <" y*, i.e., (c,d,k) <* (a,a,j*).
Hencek > j*, by part [2.a] of the definition of™. By the specification of*, however,
j* > k, a contradiction. In the second case, with¢ V' (A), theny, € V5(A), by
Lemma 76. Themp, € |Ag| and sop, € |Pol, in which casez € |Pg|u-, by Lemma 69.
But theny* ¢ Max.-(|Po|w-), another contradiction. Hence, there is no sychnd so
@y € Maxg,,. (JA]). Consequently, May,. (|A|) + 2. =

Lemma80 (Case2.b.2) If A ¢ L3 and VW n|A| # g, then if VJ(A) = @, then
Maxg,,. (JA]) + .

Proof. SupposeA ¢ L5, andV¥ n|A| # &, but Vg (A) = @. ThenV{(A) # g,
by Lemma 76. By Lemma 7%/{'(A) is finite. Since, by Lemma 7R is transitive,
Maxg,,. (V4 (A)) # @, for transitivity over a nonempty finite set guarantees a maximal
member of the set. Suppogé € Maxg,,. (V{(A)). Sinceg* € V' (A), ¢* € |A|, and
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Soy* € |Al. We show it to be maximal itA|. Suppose, foreductio,¢* ¢ Maxg,,. (|A]),
so that there is somge |A| such thatpPy-¢*. Sincep* € VH, ¢ € V¥, by the definition
of Ru-. Hence,p € V¥ n|A|. Since, by the opening suppositiop,¢ Vi (A), then
¢ € V{(A), by Lemma 76. But thep* ¢ Maxg,, (V' (A)), a contradiction. Hence
there is no sucl, and sop* € Maxg,,. (JA|). Thus again, Max,. (|A|]) + . =

These cases ensure tiRaj- is limited.
Lemma8l Ry- is limited; i.e., for all Ae Lg, if |A| # @, thenMaxg,,. (|A]) # @.

Proof. SupposeA € Lg. and|A| # @. (i) If Ae Lg,, then Max,, (|A]) # @, by
Case 1, Lemma 74. (ii) IA ¢ £3, , then (a) ifV¥ n|A| = @, then Max,,. (|A|) # @, by
Case 2.a, Lemma 78. On the other hand, (W)'if|A| # @, then (1) ifV§ (A) # @, then
Maxg,,. (|A]) # @, by Case 2.b.1, Lemma 79. But (2M§ (A) = @, then Max,,. (|A[) #
@, by Case 2.b.2, Lemma 80. Since those are all the possible cag&lsz if5, then
Maxg,,. (JA]) # @, as required.m

This completes what was needed in Step 2.

Theorem 82 DDL-b = DSDLZ2; i.e., for alla € Lpa, (i) if - a in DDL-b, theni; «
with respect to the class of all Hanssonian relatighs V x V that are reflexive and
limited, and conversely (ii) if; @ with respect to the class of all Hanssonian relations
R c V x V that are reflexive and limited, thena in DDL-b. Likewise for all relations

R that are transitive as well as reflexive and limited.

Proof. (i) is the soundness of DDL-b, Theorem 1. (ii) is the weak completeness of
DDL-b. We argue as previously, though with an extra step. Supposdor the class
of relationsR that are reflexive and limited, but that in DDL-b. There must be some
finite n such thati(a) = n. By Lemma 14y « in DDL"-b. By Theorem 28(ii), there is
a P-modeM = (W <, v), defined forlg, ., that is finite and replete fof, and whose
relation < is reflexive and limited forCg, , and is such thaM & «. From M, define
M7 = (W7, <", v") as described in Step M" is defined forl3, . and is replete foLy, ,
Lemma 59. By Lemma 691" & «. Moreover,<" is reflexive and transitive, Lemma
61, as well as limited foC}, , Lemma 66. FronM™ defineRy- as described in this
Step 2. By Lemma 7Rw- & a. Further, by Lemma 7Ry- is reflexive and transitive,
and by Lemma 81Ry- is limited. HenceRy:- is apt for DSDL2. Consequently; «
for this class of relations, a contradiction. Hencey,itr for this class, them « in
DDL-b. Given thatRy- is transitive, the same can be said with respect to the class of
relations that are not only reflexive and limited, but also transitwe.

Furthermore, for those particularly interested in transitiglationsR, since the
arguments of Step 1 and Step 2 apply equally well to DDL-a, without the need for the
complexity of Lemma 81,

Corollary 83 DDL-a = DSDL1 is sound and complete for the class of all relatiBns
that are reflexive and transitive.

We have already seen in Theorem 57 that DD£-DSDL2.5 is sound and complete
for the class of relationR that are reflexive and transitive as well as stoppered. As are-
sult, there is no principle, or set of principles, in the present framework that demarcates
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transitivity of relationsR, or transitivity with reflexivity, with or without limitation or
stoppering. Of course, the combination of transitivity with totality does yield (Rat-
Mono) of DDL-d= DSDL3.

6 Ancillary results

With the completion of Step 2 in the argument for DDL-b, and so of all of Stage 2,
we have accomplished our primary purpose, proving that DBLESDL1 (Theorem

52), DDL-b= DSDL2 (Theorem 82), DDL-e& DSDL2.5 (Theorem 57), and DDL-d
DSDL3 (Theorem 10 and its Corollary 12, not to mention Theorem 58). This section
presents some further results that follow from those, or the methods that proved them.
In particular, in 86.1 we find that DSDL1, DSDL2 and DSDL2.5 are not compact, from
which it follows that DDL-a, DDL-b and DDL-c are not strongly complete, and indeed
there are no strongly complete axiomatizations for DSDL1, -2 and -2.5. In §86.2 we
establish that DDL-a, DDL-b, DDL-c, and DDL-d, are decidable; hence so too are
DSDL1, DSDL2, DSDL2.5 and DSDL3. Finally, to end on an optimal note, in §6.3 we
examine a variation on the rule Hansson used to interpret for(BA ), a variation

that is frequently applied for dyadic deontic logic. This alternative relies on a notion of
optimality rather than maximality, such as we have assumed throughout the preceding
discussion. Applying our completeness results, however, we discover that, other things
being equal, the difference of the interpretive rules makes no difference to the logics
themselves.

6.1 Compactness

In Section 4 we proved DDL-d to be strongly complete for the class of DSDL3 models,
and hence that DSDL3 is compact, Theorem 10 and its Corollary 13. By contrast,
Theorems 52, 82, and 57 establish only weak completeness for DDL-a, DDL-b and
DDL-c for their respective classes of H-models. While it may be disappointing not
to have the stronger result for the weaker systems, that is too much to ask for. These
systems are not strongly complete for those models.

That they are not strongly complete follows from the fact that DSDL1, DSDL2
and DSDL2.5 are not compact. That is to say, there are sets of foringla$, = such
that every finite subset df is satisfiable by an appropriate model for the systemI'but
itself is not so satisfiable. Here is an exampleet p,q,r1,...,ri,... be an enumeration
of all the atoms ofg, . Let

e I'o={0(a/pvq),P(=pv-q/p),P(pv-a/~(p<a))}
e I, ={O(ri/p):ri # pandr;  q},

o I'_(pog) = {O(ri/=(p<q)):ri # pandr; # g},

o I :F()UFpUFﬁ(p‘_,q).

9This is similar to an exampletig Hansen used to show that his sys®mL"S is not compact with
respect to his semantics; cf. [4] p. 496.
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Lemma84 Thee is no relationR c V x V that satisfies all of .

Proof. Suppose, foreductio, there were a relatidgh that satisfied every member
of I'*. Since that includeB(-p Vv -q/p), there must be somge Maxz(|p|) such that
¢ €|-pv-q|. Sincey € |p|, ¢ € |-q|, so thaty ¢ |q|. Furthermore, sinc®(ri/p) e,
for every atomr; other thanp or g, R = O(ri/p); hence, Max(|p|) ¢ Iri|, and so
¢ € |ri| for all such atoms;. Likewise, sinceP(pv -q/-(p < q)) € I'*, there must
be somey’ € Maxg(|-(p « q)|) such thaty’ € |pv —q|. Since¢’ € |-(p < q)|,
¢' e|-paglor¢’ € |pa-q| The firstis ruled out since’ € |pv —-q|. Hencey' € |p|
and¢’ ¢ |g|. Also, sinceO(ri/-(p < q)) € I'*, for every atomr; other thanp or
d, R = O(ri/=(p < q)), and so May(|-(p < q)|) < [ri|]. Hence,¢’ € [ri for all
such atomsy;. Thus we se@ and¢’ agree on all atoms g , which means that
¢ = ¢'. Further, althougly € |pv q|, ¢ ¢ Maxz(|p v q|). For, sinceO(g/pv q) € T'*,

R O(a/pva), so that Max(|pv a]) < |q|. Hence, ifp € Maxz(|p v q]), theny € (g,
whereas already ¢ |g|. Since thus ¢ Maxz(|pV q|), there must be @” € |pv g| such
thate" " Pyp. ¢" ¢ |p|, for otherwisep ¢ Maxg(|p|). Hencep” € |q|, ande” € |-p A q].

In that casey” € |-(p < q)|. Sincep = ¢, ¢"'Py’. But theny’ ¢ Maxzr(|-(p < q)|),

a contradiction. Hence there is no sugh. But there must be; we are left with a
contradiction. Therefore, there is no such relafibthat satisfies all of *. m

Notice this requires no reference to the suppdedeinglimited or stoppered, or
having any other typical traits. It applies to all of the DSDL systems.

Lemma 85 Every finite subset df* is satisfiable by a relatiolrR ¢ V x V that is
reflexive or limited or stoppered.

Proof. Consider an arbitrary finite subset of I'*. Given the enumeration
ri,...,ri,... of all atoms other thamp andq, supposen to be the greatest index oc-
curring on such an atom occurring in a formuldin so thatr,,1 does not occur in any
such formula. Lel1, 2, @3, 04 be those members &f such that

o 01(p) =¢1(q) =1, andp;(ri) = 1, for all atomg; other thanp or q,
e wo(p)=0andy2(q) =1, andyp,(r;) = 1, for all atoms; other thanp or q,

e w3(p) = 1 andes(q) = 0, andes(r;) = 1, for all atomsr; other thanp or q,
includingrp, 1,

e ¢4(p) = 1 andps(q) = 0, andy,(ri) = 1, for all atomsr; other thanp or g, not
includingrp,g; forit, p4(rns1) = 0.

Thus,¢3 andg, agree on all atoms other thag 1; there they differ. Nonetheless, for
all Athat might be a component of a membelf @3 € |A| iff ¢4 € |A.
Consider the relatioR c V x V given entirely by:

* o1Rp3,
o (sz(p4, and

o for all othery € V, p3Rp andy4Rep,
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e forallgp eV, pRo.

It is not hard to see thaR is reflexive, but more importantly it is stoppered, hence
limited. By inspection it is apparent that

o Maxz(|pl) = {¢1, ¢a},
e Maxz(|-(p < q)|) = {¢2, ¢3},
e Maxz(|pVval) = {102}

That is sufficient to verify that for aft € T'f, R & @. ThusR £ P(-=pv -q/p), by virtue
of ¢4, alsoR £ P(pv -g/-(p < q)), by virtue ofys, andR & O(q/p v q) since both
@1 € gl ande; € |q|. Hence, ife € T, R a. If @ € T'p, so thate = O(ri/p) for somer;
other thanp or g, then sincep; ¢ |r;| for all atomsr; ande; € |ri| for all atomsr; except
Ih+1, @ndry,1 could not occur iny, thenR & «. Similarly in caser € I'_(p..q) With @2
andes. HenceR satisfies every member bf. m

From these two lemmas it follows that

Theorem 86 DSDL1, DSDL2, and DSDL2.5 are not compact with respect to appro-
priate classes of H-models/felations.

From that it follows that,

Corollary 87 DDL-a, DDL-b and DDL-c are not strongly complete with respect to the
classes of H-models/relations appropriate for each system. Indeed, no axiomatization
of DSDL1, DSDL2, DSDL2.5 is both sound and strongly complete with respect to the
classes of H-models/felations appropriate for each system.

Proof. By the argument for Corollary 13, if there were an axiomatic system
not necessarily DDL-a, -b or -c, that is sound and strongly complete for these models,
then DSDL1, -2, or -2.5 would be compact. Since they're not, there is nolsush

That being so, we will not regret that we have only establishedvirak completeness
of these three systems for their models.

In passing we might note that the relatiBndefined for Lemma 85 is not total.
That is how DSDL3 escapes Theorem 86 and its corollary. As we have seen, DSDL3
is compact, and DDL-d is strongly complete.

The failure of compactness and strong completeness for DSDL1, DSDL2 and
DSDL2.5 and their axiomatic equivalents is due to the irredundancy inherent in the
framework of H-models; the same would hold for analogous classes of irredundant and
replete P-models. By contrast, DDL-a, DDL-b and DDL-c are strongly complete for
the appropriate classes of P-models wki¢may include duplicate members. That can
be shown with arguments very like those of Stage 1 in 85.1. Given strong completeness,
compactness follows, when redundancy is allowed. Not surprisingly then, there are
redundant P-models that satigfy. | leave it as an exercise to find such a model.
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6.2 Decidability

Herewe show that DDL-a, DDL-b, DDL-c and DDL-d, and their semantical equiva-
lents DSDL1, DSDL2, DSDL2.5 and DSDL3, are decidable. The method to be used is
somewhat novel. Other, more familiar procedures, like taking filters through appropri-
ate models, or other similar strategies, that establish systems to have the finite model
property, from which decidability would follow, given the systems’ finite axiomatiz-
ability, do not apply to these logics. At least, DDL-b, DDL-c and DDL-d do not have
the finite model property.

Indeed, these systems have what might be called the ‘infinite model property’.
Due to (RP), they are sound for no class of models that contains even one finite member.
| leave it as an exercise to verify that there is no finite P-model that satisfies all the
theorems of DDL-b, DDL-c or DDL-d, where | refer to P-models simply because H-
models must be understood as relati@ngver the infinite set of valuationg. If one
allows relations over finite subsets\fthen the same would obtain; there is no relation
over a finite subset of that satisfies all of DDL-b, DDL-c or DDL-d.

Given the failure of the finite model property for these systems, we now draw
their decidability instead from the fact that they are conservative extensions of their
finite counterparts DD!-a, -b, -c, -d, which, as we have seen, do possess the finite
model property and are decidable.

In general, a logical systeln, is said to be a conservative extension of another,
L, justin case ; c L, (extension) and also for evegye L ; that is in the vocabulary of
L,, ¢ € L, (conservation). Here we find that, for any finite 1, the full axiomatically
defined DDL systems are conservative extensions of their finite'@DBlnterparts.

If L is any of the systems DDL-a, DDL-b, DDL-c, or DDL-d, ahd is its finite
counterpart inCg, ., for finiten > 1:

Theorem 88 L is a conservative extension lof.

Proof. Lemma 14 provides that is an extension af". For conservation, suppose
@ € L], and suppose « for any of these full systemd,. Suppose, however, for
reductio,+ « for L", the finite counterpart of in £3, .. By the completeness results
of Stage 1, 85.1, there is a P-modél, of the appropriate kind such thist & «. From
such anM, through the procedures of Stage 2, 85.2, we find a rel&ierRy, orR =
Rw- in the case of DDL-b, of the kind appropriate forsuch thaR ¥ «. Hencey,
for that class of models. By the soundness phowever|r, @, a contradiction. Hence,
FaforL". m

As an immediate consequence, we have
Corollary 89 L" =L n Lg,a.

which was briefly mentioned early in 85.
Related to this, we can see that each of the full systenssnothing but the sum
of its finite subsystems. That is,

Coroallary 90 L = Up,L"



Lou Goble

Proof. ThatUg2,L" c L, follows from Lemma 14. For the converse, consider any
a such that- @ in L. Since there is a finita > 1 such thati(a) = n, so thatr € £} 4,
then+ « in L", sincelL is a conservative extension bf'. Hence,a € Up2,L", which
suffices fol. ¢ Up;L". =

Importantly, Theorem 88 also provides for the decidabilitytafse system®.

Theorem 91 (i) DDL-a, DDL-b, DDL-c, and DDL-d are decidable. (ii) DSDL1,
DSDL2, DSDL2.5 and DSDL3 are decidable.

Proof. For (i), letL be any of DDL-a, -b, -c or -d, and consider an arbitrary
a € LpLa. There is some finita > 1 such thafi(«) = n, and that is decidable. Whether
FainL"or ain L", is decidable, Corollaries 30, 41, and 46+-1& in L", then «
inL, Lemma 14, and if- « in L" thenw @ in L, sincelL is a conservative extension of
L", Theorem 88. Hence the decision for the finite subsystem extends to the full system.
For (ii), apply the equivalences of the systenss.

6.3 Maximality and optimality

In Footnote 3, | observed that in his treatment of DSDL3, Spohn, [16], p. 239, applied
a definition of maximality different from Hansson’s own. Others too use this other
definition, e.g., Aqvist [17, 18], and Parent [10, 12], although they apply it more in
the framework of P-models than Hanssonian H-models. | present that other definition
here, and show that, even though the concepts are not equivalent, the difference makes
no difference for the sets of valid formulas generated, other things being equal. To ease
discussion | now reserve the term ‘maximality’ for Hansson'’s original stipulation and
call the other concept ‘optimality"*

For any relatiorR c V x V, and anyX c V, let us sayp is optimal inX by R, or
R-optimal, just in case is ranked at least as highly as any othét X, i.e.,

e Optr(X) = {¢:peXandforally’ € X, Ry},
which we may contrast with the original:
e Maxg(X) = {¢: ¢ € Xand there is n@' € X such thaty’P¢}, or equivalently,
Maxr (X) = {¢: ¢ € Xand for all¢’ € X, if ¢'Rep, thenpRy'}.
In general, for anyX ¢ V, Optz(X) ¢ Maxg(X), but not conversely. If, howeveRr is
total, then Opt(X) = Maxg(X).

With this alternative idea of what it means to be ‘best’, one can interpret formulas
O(B/A) by an optimality rule:

e RuleO R O(B/A)iff Opty(JA|) < |BI.

105pohn[16], p. 251, also demonstrated that DSDL3 is decidable, applying a different method.
Uparent[11, 12, 13] also discusses the contrast between maximality and optimality in a similar vein.
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We define O-validity as with H-validity but with Rule O appliedptace of Rule
H. Thus,a € Lp = is O-valid with respect to a class of relatidRgust in case, for every
R in that clasRR & @, and so on for related concepts.

Likewise one can specify when relations are limited or stoppered in terms of this
notion.

e Ris O-limited iff, for allAe L, if |A| # @, then Opg(|A|) + 2.

e Ris O-stoppered iff, for alh € Lg|, if ¢ € |A| then eitherp € Opt; (|A]) or there
is ay’ € Opixz(JA]) such thaty'Pe.

On the basis of those, we define variations on Hansson’s DSDL systems.

e DSDL°1 is the set ofr € Lp, =, that are O-valid with respect to the class of all
reflexive relationR c V x V,

e DSDL2 is the set ofr € Lp, =, that are O-valid with respect to the class of all
relationsR c V x V that are reflexive and O-limited;

e DSDL°2.5 is the set ofr € Lp, =, that are O-valid with respect to the class of all
relationsk c V x V that are reflexive and O-stoppered,;

e DSDL°3 is the set ofr € Lp, =, that are O-valid with respect to the class of all
relationsR c V x V that are O-limited and also transitive and total.

Given the difference between optimality and maximality, one might expect the DSDL

systems to differ from Hansson’s own DSDL systems. That is not the case, however.
Although, in general, Ogi(X) # Maxg(X), whenR is not total, nevertheless, for

anyR, there is another relatioR°, close by such that MaxXX) = Optz(X). Given

R, define a relation, of incomparability byR, and then defin®®, thus:

e ¢ly’ iff not-(pR¢) and not-($Ry);

e pR% iff eitherpRy’ or ¢ly'.
It is easy to see tha® is total. More to the point,
Lemma 92 For any X< V, Maxg(X) = Optse(X).

Proof. Suppose € Maxg(X), so thaty € X and there is n@’ € X such thaty'Pe.
To show thaty € Opt:.(X), we need to show that for al’ € X, ¢R°’. To that end,
supposey’ € X, but, forreductio, not-(¢R¢’). Then it is not the case that eithgRy’
or ¢l¢', i.e., not-(¢R¢$) and also not-(¢ly). By the latterwR¢’ or ¢'Ry. Since not
the first,¢'Re. Since thugy’'Ry and not-(¢R¢), ¢’'Py, in which casep ¢ Maxg(X), a
contradiction. HenceyR°¢’, which suffices fop € Optg. (X).

For the converse, suppoge Opts.(X), so thaty € X and for all’ € X, pR%’.
To showy € Maxg(X), suppose, foreductio, there is @’ € X such thaty'Py. Since
¢ € X, pR%'. Hence, eithepRy’, or ply’. Not the first, since’Py, but also not the
second, since’Re. Hence, there is no sugil, and sap € Maxg(X). =
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Lemma93 (i) If R is limited, thenR® is O-limited; (ii) if R is stoppered, theR® is
O-stoppered. (iii) IR is both transitive and total, theR® is both transitive and total.

Proof. (i) and (ii) are immediate from Lemma 92. For (iii), is transitive and
total, thenR = R°, so of courséR? is transitive and totalm

From this we find thaR andR° areequivalent, by their respective modellings, in
the sense that:

Lemma94 Foralla € Lpa, RE ¢ iff Rk a.

Proof. Proof is by induction orx. We show only the basis case, where=
O(B/A), for someA,B ¢ Lg_, since the induction to more complexis routine
and easy. Given Lemma 9R £ O(B/A) iff Maxg(|A|) < |B] iff Optz(JA|) < |B
iff R° 5 O(B/A). m

LetL be any of the systems DDL-a, DDL-b, DDL-c or DDL-d, thens sound
with respect to the classes of relations apt lfowhen validity is understood as O-
validity, and formulas are interpreted by way of Rule O. l.e.,

Lemma 95 Forall @ € Lp,a, if - @in L, thena is O-valid with respect to the classes of
modelsR, apt forL, i.e., those that are O-limited for DDL-b, O-stoppered for DDL-c,
and O-limited, transitive and total for DDL-d.

Proof. Easily shown, in the usual way, and so left to the reader.

With our earlier completeness results, it is now not diffitolestablish that the
DSDL° systems, defined in terms of Rule O, are equivalent to the original DSDL sys-
tems, defined in terms of Rule H.

Theorem 96 (i) DSDL°1 = DSDL1; (ii) DSDL°2 = DSDL2;
(i) DSDL®2.5= DSDL2.5; (iv) DSDP3 = DSDL3.

Proof. For (i) supposer € DSDL°1, but, forreductio,a ¢ DSDL1. Then there
is a reflexiveR such thatR # «. FromR defineR°, as described. By Lemma 94,
R° ¥ a, in which caser ¢ DSDL"1, a contradiction. Hencey ¢ DSDL1, and thus
DSDL°1 c DSDL1. For the converse, suppase DSDL1. Then~ « in DDL-a, by
the completeness of that system, Theorem 52. Hemnds,O-valid for the class of
all relationsR, by the O-soundness of DDL-a, Lemma 95. e DSDL°1, which
suffices for DSDLX DSDL°1, and thus DSDP. = DSDL1. For (ii), (iii) and (iv) the
argument is similar, applying Lemma 93 as required.

With that, we find that, as far as what formulas are valid underrties, the
choice between Hansson’s original Rule H and the alternative Rule O makes no dif-
ference, other things being equal. It might, of course, make a difference with regard
to what one says about particular models, or the role of various properties of those
models. For example, Spohn [16] 84.2 can argue that the condition of totality is idle
for the determination of DSDL3, but only because he is applying Rule O, rather than
Hansson’s Rule H. Under Rule H, it is necessary to require relaRotwsbe total in
order to validate (RatMono) or Spohn’s own axiom (A4).
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7 Quick recap

Hanssordefined his dyadic deontic logics, DSDL1, DSDL2 and DSDL3, entirely se-
mantically, as sets of formulas valid with respect to certain classes of models, construed
as relation®R over the seV of classical valuations. To his three, | have added another,
DSDL2.5, between DSDL2 and DSDL3; for all of four, see §2. The purpose of this
paper was to provide an axiomatization for each of them. For that, in 83, | introduced
the axiomatic systems, DDL-a, DDL-b, DDL-c and DDL-d. In 84 and 85 these were
proved to be sound and complete with respect to the classes of models for DSDL1,
DSDL2, DSDL2.5 and DSDL3 respectively, and so to be equivalent to Hansson’s se-
mantical systems. That accomplished our primary goal. For a lagniappe, we found at
the end of 85 that under Rule H relatioRscan be required to be transitive without
affecting what principles are valid.

In 84 we proved DDL-d to be strongly complete for DSDL3 models, and hence
that DSDL3 is compact. By contrast, in 85 we only proved the three weaker systems to
be weakly complete. In 86.1 we found that DSDL1, -2, and -2.5 are not compact, and
so there is no strongly complete axiomatization for them. In addition, in 86.2 we estab-
lished that each of the axiomatic systems and its semantical counterpart is decidable,
by virtue of the DDL systems being conservative extensions of their decidable finite
subsystems, DDL, for n > 1. Finally, in 86.3, we saw that, somewhat surprisingly, as
regards which formulas are valid, other things being equal, it does not matter whether
one interprets formula®(B/A) in terms of maximality with Rule H, as Hansson did,
or in terms of optimality with Rule O, as others have.

To demonstrate these results proved more challenging than one might have ex-
pected at first, at least for the three weaker logics. Inevitably there are complexities
in treating these systems, as we saw in 85.1 with Stage 1 of the argument. The chal-
lenge is exacerbated, however, by two particular features of Hansson’s systems and
their models. One must accommodate the infinitude of the languageand Lp, ,
and one must provide models for these languages that are irredundant, as the class of
classical valuationd/, over which Hansson’s relatiofsare defined, necessarily is. If
it were not for the call for irredundancy we could have stopped at Stage 1, as it is easy
to apply the demonstrations there to the full axiomatic systems in the infinite language.

To obtain the requisite irredundant models, it was especially helpful to begin by
retreating from the infinite language, to establish results first for finite counterparts of
DDL-a, -b and -c in terms of finite P-models. This was crucial for the decidability
results mentioned above. More to the point, this allowed us in Stage 2 of §5.2 to apply
the method of marking worlds from the original P-models, and so to derive the irre-
dundant H-models required for the demonstrations of completeness for the full infinite
DDL logics, which proved their equivalences to Hansson’s DSDL systems.

If we can achieve completeness results both for the finite ' DBgics and for
the full infinite DDL systems with respect to redundant models, and if we can achieve
completeness results for the full infinite systems with respect to irredundant models,
what then of irredundant models for the finite logics? In the framework of Hansson’s
semantics, consider the clas8), of valuations defined only for the many atoms of
the finite languag€y, , and relation®" c V" x V" defined over themV" is necessarily
irredundant. One might then expect DD4 to be equivalent to DSDI, the formulas
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valid for all such relation®", andDDL"-b to be equivalent to DSD12, those valid for

all suchR" that are limited forCg, , and DDL"-c equivalent to DSDI2.5, those valid

for all R" that are stoppered fafj, . One might expect that, but it is not so, at least
not whenn > 2, and it is not so precisely because of the irredundancy inherent in these
models, though interestingly DOk is equivalent to DSD!3, those formulas valid

for R" ¢ V" x V" that are limited forCg, , transitive and total. | will not explore this
topic here, however. Instead, | leave it as an open, educational exercise for the intrepid
reader to find how those equivalences fail, and then to devise complete axiomatizations
for finite DSDL"1, DSDL"2 and DSDL2.5. It can be done.
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