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Abstract

Moore’s Paradox engendered various proposals for aspects of the logic of be-
lief, both for believers to avoid falling into its form of incoherence and for special
principles to serve as axioms or rules for doxastic logic. The proposal here devel-
oped is to study the logic pertaining to believers who are self-transparent in the
sense that, although they may have many false beliefs, they are right about what
their beliefs are. The logic of the language of factual description of their situa-
tion is a normal modal logicKDC4C4, but is to be distinguished from the internal
logic that governs what follows from their beliefs, on pain of incoherence. The
adequacy and completeness proofs for that logic show it to be, in some respects,
severely non-classical.

1 Introduction

Beliefs are often, perhaps even typically, false. WritingBp for the factual statement
that the agent in question believes that it is the case that p, it is clear thatBp and p can
have, and often do have, opposite truth-values. But starting with G.E. Moore’s seminal
paper [6] it is recognized that one cannot assert that, or believe both the propositions
expressed, without falling into some sense of incoherence. This has however proved
quite puzzling. Agents cannot coherently state that p while denying that they believe
that p, but neither can they assert the contradictory, in any general way. For the claim
that always, either they believe that p or it is not the case that p, is a claim implying
clairvoyance or access to a magical crystal ball. Moore’s paradox appears to present a
dilemma with incoherence on either horn.

The challenge for the logic of belief is then to distinguish, and formulate precisely,
the relevant criteria of incoherence distinct from classical inconsistency or logical false-
hood. Equivalently, the task is to make explicit the logic by which beliefs must follow
from or block one another, the form of reasoning that is sound within coherent belief.

2 Introducing the self-transparent believer

To recognize Moore’s point in practice takes some clarity about one’s own cognitive
or doxastic state, some transparency with respect to one’s beliefs. If a robot were con-
structed to simulate rational belief and were programmed only to avoid logical false-
hoods and unsatisfiable theories, it would have no qualms about entering into instances
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of Moore’s paradox. Only if it were programmed to have correct beliefsabout what its
beliefs are, could it possibly be in a position to escape such incoherence.

Accordingly I propose to study the concept of believers who, though perhaps wrong
about many things, are right about what beliefs they have. With the notation introduced
above, that would require the logical principles

1] If Bp thenBBp
2] If BBp thenBp

to hold. I will call such believersself-transparent.1

These sorts of principles are not unfamiliar from efforts to formulate a logic of be-
lief within normal modal logic, and that would seem at first blush to be the framework
within which to begin. This leads us to set up a simple language for belief attribution,
in which we can state both what is the case in a world and, with respect to a single be-
liever, what is believed there. As I will elaborate briefly below, the logic that is sound
and complete for this language is essentially known already, and easy to formulate.

But given that, I propose a different focus for logical exploration: to articulate what
counts as coherent or incoherent belief content for such a believer, and what follows
for such believers themselves when they reflect on what is implied by the beliefs they
have. Specifically, of course, the relevant coherence must imply that they are not prey to
instances of Moore’s paradox. But beyond that we want to have a sound and complete
logic that captures their valid inference patterns.

Will classical logic remain? Yes, classical logic will remain sound, in that all the
classically valid arguments remain valid. However, certain familiar meta-rules, such
as reductio ad absurdum, will not. There is a complete logic of transparent belief, and
despite the preserved soundness of classical logic, the two are not the same.

3 Distinguishing two consequence relations

Intuitively, statement p is aclassical consequenceof premises X exactly if p is true
in all worlds in which those premises are true. The similar intuitive explanation of
doxastic consequence will be: p is believed in all those worlds where those premises
are believed.

Let us call the belief set in world w the set of statementsB(w) = {p: Bp is true in
world w}, and introduce the symbol⇒ for the doxastic consequence relation. Then we
can say equivalently that p is a doxastic consequence of X if and only if p belongs to
every belief set which contains X. This defines a consequence relation subject to the
basic structural rules:

For all sets of sentences X and sentences p:

1Principle2 has appeared in the literature, though rarely, but with a different interpretation, such as that
it characterizes a ‘stable’ reasoner, in the sense that suggests a commitment not to doubt one’s own beliefs
about what one believes. Taking modal statements as statements of fact, however, 2] states factually that the
agent’s beliefs about what they believe are true, and that is the reading here maintained.
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(Identity) if p is in X then X⇒ p

(Weakening) if X⇒ p and X⊆ Y then Y⇒ p

(Transitivity) if X ⇒ p and Y⇒ q for every member q of X
then Y⇒ p

(To shorten the text somewhat, from here on “X” will be used for a set of sentences
and “p” for a sentence. But for clarity I will mostly use the phrase “is a doxastic
consequence of” rather than the special symbol “⇒”.)

Our purpose is now to explore the relation between the classical and doxastic con-
sequence relations in the special case in which the relative doxastic possibility relation
between worlds is the appropriate one for modeling the self-transparent believer.

4 The classical consequence relation

Our language L has the usual form of syntax of normal modal logic, with denumerably
many atomic sentences and the connectives &,∨, ⊃, B. Before displaying its semantics,
we formulate here the logic that we mean to be sound and complete for this language:

R0. If p is a theorem of classical propositional logic then⊢p

R1. If ⊢p then⊢Bp

R2. p, p⊃ q ⊢ q

A1. ⊢B(p⊃ q) ⊃ (Bp⊃ Bq)

A2. ⊢Bp⊃ BBp

A3. ⊢BBp⊃ Bp

A4. ⊢Bp⊃ ∼B ∼p

Rule 2 extends the set of theorems to a deductive consequence relation. By R2 and
axiom A1 it follows that if q follows from p1, . . . , pk thenBq follows fromBp1, . . . ,Bpk.
That is, the notion of belief here is such that it includes all that is believed implicitly,
in the sense of being something that follows logically from what is believed.

In the standard notation for normal modal logics, this logic isKD4C4.2 But since
the main concern of this essay is its interpretation as a logic for the self-transparent
believer, I will use the mnemonic acronymLSTB for this logic. Interpretations of
nearby logical systems have focused on deontic and tense logic.3

5 Semantic analysis

A model structure for language L is a couple M= ⟨W, R⟩where W is a non-empty set,
theworlds, and R is a binary relation on W,relative doxastic possibility. I will specify

2Here“4” stands for the S4 axiom A2, and “C4” for its converse, i.e. axiom A3, and “D” for the “deontic”
principle, i.e. axiom A4 (Cf. Garson [2]).

3Axiom A3 is Garson’s condition C4: “Density would be false if time were atomic, i.e. if there were
intervals of time which could not be broken down into any smaller parts. Density corresponds to axiom
(C4): ◻ ◻ A → ◻A, [. . . ] andKDC4 [is] adequate with respect to models whose frames are serial and
dense.. . . ” ([3], no page number).
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properties of R below.
Intuitively, if x and y are worlds, and xRy, then the beliefs the agent holds in world

x do not rule out that y is the actual world, i.e. all the agent’s beliefs in x are true in y.
A valuationv over M is an assignment of truth-values T, F to all sentences at each

world in M, such that the truth tables for connectives &,∼ ∨, ⊃ are obeyed, and in
addition:

For all worlds x in W,v(x, Bp)= T iff v(y, p)= T in all worlds y such that
xRy.

We also writevx(p) for v(x, p)

vx satisfiessentence p (rep. set of sentences X) iffvx(p)= T (resp.vx(q)=
T for all members q of X).

A sentence isvalid in language L iffit receives T from all valuations, at
all worlds, over all model structures.

A set of sentences X issatisfiablein language L iffsome valuation satisfies
it.

A set of sentences Xsemantically entailssentence p in language L iffp
receives truth value T from all valuations, over all model structures at all
worlds therein, which satisfy X.

But R needs to have special properties if the axioms are to present valid sentences. The
condition on R to ensure validity for A2 is well-known from normal modal logic S4: R
must betransitive.

Similarly, to ensure validity for A4, the requirement is again familiar: For each
possible world there is a doxastically possible world as well: if x is a world there is a
world y such that xRy. We can refer to the set of worlds to which x bears R as R(x).
Then A4 says in effect that R(x) is never empty. A relation with this property is called
serial.

What ensures the validity of A3, which is the converse of A2, is not as familiar.
Here we may have recourse to a paper by Frederic Fitch [1] that deserves to be seminal.
Fitch shows how there is a simple recipe in the traditional calculus of relations which
relates modal logic principles with properties of the relative possibility relation. I won’t
put it in those traditional terms, now generally unfamiliar, but the required property for
axiom A3 is this:

R is weakly reflexive: for any worlds x, y, if xRy then there is a world z
such that xRz and zRy.

We do not want R to be reflexive, though that would guarantee the validity of A3, but
would also validate (Bp⊃ p).

It is more customary to call Rdenseif it has this property. The reasons to prefer
calling this propertyweak reflexivityare two. First, if R is reflexive, so that xRx for
all x, then it is weakly reflexive. Secondly, in the above formula we detect a threat of
infinite regress, for of course it implies that if xRz then there must be some world u
such that xRu and uRz, and so forth and so forth. But the regress can stop, and the
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property hold, if any of those worlds is possible relative to itself.For example if xRy
and yRy then y itself can serve as the “middle” world – a dash of reflexivity will do.
To sum up:

M = ⟨W, R⟩ is a model structure for language L exactly if W is a non-
empty set and R is a binary relation on W which is transitive, serial, and
weakly reflexive.

With relevance to Moore’s paradox, and to doxastic consequence, it is also pertinent to
point out what is not valid. Showing this also gives us the opportunity to display some
specific simple models.

Thomason ([6], [7]) and Cross ([1]) includedB(Bp⊃ p) as a principle of doxastic
logic, which it seems was extrapolated from Hintikka’s extended discussion of Moore’s
paradox with the conclusion thatB(p & ∼Bp) as well asB(∼p & Bp) are indefensible
([4], 64–78, 123–125).4 Extrapolations from Hintikka’s book to axioms systems in
epistemic or doxastic logic are, at the least, difficult and contentious. In this case it is
remarkable that the putative principleB(Bp⊃ p) plays a central role in the derivation of
contradictions by the G̈odel type arguments presented by Thomason and Cross in these
articles (see further the critical discussion in van Fraassen [10], with reference to p. 17
numbered line (ii), and pp. 19–20). So it is pertinent that this putative principle cannot
become a theorem in the logic of the self-transparent believer.

Theorem 1 Neither B(Bp ⊃ p) nor B(p ⊃ Bp) is valid for all sentencesp.

We will define two model structures in which these formulas are falsified, and a di-
agram will help to guide the imagination. The arrows in the diagram represent the
relative doxastic possibility relation, but for clarity, the arrows implied by the require-
ment of transitivity are not shown. To distinguish the two model structures, arrows that
belong only to the first model structure are solid.

u t a b c

Model structure M1 = ⟨{a, b, c}, R1⟩ with R1(a) = {b, c}, R1(b) = {b, c},
R1(c) = {c}.

By inspection, R1 is transitive and serial. We verify similarly that R1 is weakly reflex-
ive, noting that for example the fact that aR1b is accompanied by the two facts that
aR1b and bR1b, and that the fact that cR1c is accompanied by the facts that cR1c and
cR1c.

Valuationv is defined in part by:v(a, p)= T, v(b, p)= T, v(c, p)= F, where p is
alphabetically the first atomic sentence.

It follows from this thatv(b, Bp)= F, and hence also thatv(b, p⊃ Bp)= F.

Thereforev(a, B(p ⊃ Bp)) = F, since aR1b.

4SeeThomason ([7, p. 9 numbered line 13; [6], p. 393, numbered line (ii)); in an endnote Thomason
added “Other arguments to this effect can be found in that text, particularly in the applications Hintikka
makes of a theory of belief meeting these conditions to matters such as Moore’s paradox of saying and
disbelieving” ([6], p. 394).
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Next, model structure M2 is formed by adding to M1 two new worlds in a way that
duplicates part of the initial structure. That is,

M2 = ⟨{u, t, a, b, c}, R2⟩ with R2(u) = {t, a, b, c}, R2(t) = {t, a, b, c}, R2(a)
= {b, c}, R2(b) = {b, c}, R2(c) = {c}. By inspection, R2 is transitive, serial,
and weakly reflexive.

Valuationv’ is defined in part by:v’(a, p)= F, v’(b, p)= T, v’(c, p)= T.

Thereforev’(a, Bp) = T, and hencev’(a, Bp ⊃ p) = F.

Thereforev’(u, B(Bp ⊃ p)) = F, since uR2a.

6 Soundness and completeness of logic LSTB

As Fitch [1] already pointed out, the soundness and completeness proofs for normal
modal logics are easily adapted if some axiom is added and R is required to have the
corresponding property defined by his general recipe. There is no reason to spell this
out here. But we will be relying on those results later on:

LSTB is sound: if X⊢p in LSTB then X semantically entails p in L.

LSTB is complete: if X semantically entails p in L then X⊢p in LSTB.

Corollary to completeness: if X is consistent in LSTB then X is satisfi-
able in L.

We note also that deducibility inLSTB is finitary, given the definition, and note without
proof that semantic entailment in L is finitary. Hence the completeness claim and its
corollary extend to infinite sets of sentences.

For soundness, let us just show that the one unfamiliar feature, axiom A3, is satis-
fied.

Given a model structure M= ⟨W, R⟩ and a world x in W, suppose that in world x,
Bp is false.

So there is a world y such that xRy and p is false in y.

By weak reflexivity, there is a world z such that xRz and zRy.

Since zRy and p is false in y, it follows thatBp is false in z.

But thenBBp is false in x, since xRz.

7 Approaching the doxastic consequence relation

The sentenceBp is true in a world if it is believed there, by the agent of that world,
that it is the case that p. Let us call the set of sentences that are believed in a given
world a belief set. The doxastic consequence relation will be determined by what is
characteristic of belief sets. So let’s begin by asking: what is in a belief set?

Let us focus on a specific model structure M= ⟨W, R⟩and a particular valuationv.
With reference to M andv understood, we will simply say that a sentence p is true in
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world w iff v(w, p) = T. We then represent the contents of the agent’s beliefs in world
w, a member of W, as the agent’s belief set,Bv(w) = {p: v(w, Bp) = T}.

In the context where M is specified I will refer to the ‘access region’ of world w as
R(w) = {u in W: wRu}. It is clear then thatBv(w) = {p: for all worlds x in R(w),v(x,
p) = T}.

Thedoxastic consequence relationis then defined by:

sentence p is adoxastic consequenceof set of sentences X if and only if
for all models M= ⟨W, R⟩, worlds w in W, and valuationsv on M, if all
members of X belong toBv(w) then p belongs toBv(w).

8 Characteristics of belief sets

With our focus on a single model structure M and valuationv it will be more convenient
to suppress reference to them and to just writeB(w) = {p: Bp is true in world w}. Its
members are the sentences which are true in every world doxastically possible relative
to w.

T0. If B(w) ⊢p then p is a member ofB(w).

For if p is true in all the worlds in which all members ofB(w) are true then p is true in
all the worlds in R(w), and hence p is inB(w).

T1. If Bp is inB(w), then p is inB(w).

For if Bp is in B(w) thenBBp is true in w, by the soundness of the relevant axiom A3
of LSTB, henceBp is true in w. Therefore p is true in all members of R(w), and hence
belongs toB(w).

T2. If p is in B(w), thenBp is inB(w).

For if p is in B(w) thenBp is true in w, hence by the soundness of the axiom A2 of
LSTB, BBp is true in w, and soBp is inB(w).

Remark 2 We see therefore that in the agent’s doxastic reasoning, each of a sentence
p and sentence Bp can be inferred from each other.

In classical logic the Deduction Theorem, or in natural deduction formulation the rule
of Conditional Proof, would lead, from the correctness of these inferences, to the cor-
responding conditionals. Not so in doxastic reasoning:

T3. Neither(Bp ⊃ p) nor (p ⊃ Bp) belongs to all belief sets for all sen-
tences p.

This follows from Theorem 1, given the soundness and completeness ofLSTB.
But there is also no way in which a rational self-transparent believer will land in

Moore’s Paradox:

T4. Neither(Bp & ∼p) nor (∼Bp & p) belongs to any belief set.
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For suppose that(Bp & ∼p) is true in all members of R(w). Then bothBp and∼p are
true in all members of R(w). SoBBp andB(∼p) are true in w. By the soundness of
axiom A3 of LSTB, Bp andB(∼p) are then both true in w, which implies that both p
and∼p are true in all members of R(w). By axiom A4, R(w) is not empty, so there is a
world in which p and∼p are both true, which is impossible.

Equally, suppose that(∼Bp & p) belongs to belief setB(w). Then p is inB(w),
hence by T2 above,Bp is in B(w). So both∼Bp andBp are inB(w), but the soundness
of axiom A4 guarantees that a belief set is not inconsistent.

9 Characteristics of the doxastic consequence relation

Whatever is the logic of the doxastic consequence relation it is clear from T1–T4 that
it is non-classical.

Before formulating the logicLDOX, which captures the doxastic consequence re-
lation, we can discern what some of its theorems can or cannot be, on the assumption
that those theorems are precisely the sentences that are true in all belief sets.

Failure of a meta-rule: the Rule of Conditional Proof. As noted, T1 means that p
is a doxastic consequence ofBp, while T3 shows that(Bp ⊃ p) is not a theorem. So in
this case,

Bp ⊢ p in LDOX, but it is not the case for all sentences p that⊢ (Bp ⊃ p).

The Deduction Theorem for classical logic entails the admissibility of the Rule of Con-
ditional Proof, which would entitle us to infer that⊢ (Bp ⊃ p) from Bp ⊢ p, but note
well that Conditional Proof is not an ‘ordinary rule’ like Modus Ponens. It is ameta-
rule. That is, it does not present simply the form of a valid argument, but rather the
form of inference from validity of some arguments to the validity of others.

Another failure of a meta-rule: the rule ofReductio ad Absurdum

1. (Bp & ∼p) assumption
2. Bp from 1
3. p from 2, becauseBp ⊢ p
4. ∼p from 1
5. ∼(Bp & ∼p) from 1–4 by Reductio ad Absurdum
6. (Bp ⊃ p) from 5

We know that for arbitrary sentences p, 6 is not a theorem ofLDOX, due to fact T3.
The sequence 1–6 above is not a correct deduction (derivation) inLDOX. The upshot
is that Reductio ad Absurdum is not an admissible rule forLDOX.

Nevertheless, on the positive side, we can note that the following will have to hold:

If p is theorem ofLSTB then p is a theorem ofLDOX.

Modus Ponens is an admissible rule forLDOX.

The first is clear because to be completeLSTB is accountable to the fact that if p is
true in all worlds then it is a member of all belief sets, and so needs to be a theorem. A
similar argument applies, mutatis mutandis, to inferences by Modus Ponens.
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So belief sets are closed under the consequence relation ofLSTB, but not all rules
admissible forLSTB are admissible forLDOX. We will just have to be very careful
not to rely on meta-rules!

10 Logical system LDOX

Motivated by the above quasi-intuitive reflections, the logical systemLDOX, for the
same syntax asLSTB but with its above indicated interpretation, is the following:

A1. If p is a theorem ofLSTB then⊢p

R1. p, p⊃ q ⊢q

R2. p⊢Bp

R3. Bp ⊢ p

Note that none of the three rules are meta-rules; no meta-rule is to be assumed to be
admissible at this point. However

Theorem 3 If X ⊢ p in LSTB thenX ⊢ p in LDOX.

That is so because A1 and R1 together provide us will all inferences inLSTB. The
meta-rule that if p is a theorem then so isBp, in LSTB, will have helped to generate
the set of theorems there. But it is not needed in deductions inLDOX, given that
any theorem ofLSTB can appear as a line in aLDOX derivation with no further
justification.

This may all be clear enough, but becauseLDOX is not, despite its origin, a normal
modal logic, and actually non-classical in some respects, it will be well to spell out
some of its basic characteristics. We begin with an explicit definition of the relation⊢
of deducible derivability in LDOX:

A derivation fromset of sentences X, inLDOX, is a finite sequence of sen-
tences of L, each of which either belongs to X, or is a theorem ofLSTB,
or follows from preceding sentences by application of one of rules R1, R2,
or R3.

The last member of a derivation is called its conclusion, and it is clear that every mem-
ber of a derivation from X is also the conclusion of some derivation from X. All mem-
bers p of the sequence are said to be (deductively)derivablefrom X, in symbols X
⊢p.

This relation of derivability is thus, by its definition, a finitary relation, and it obeys
the Structural Rules:

(Identity) if p is in X then X⊢p

(Weakening) if X⊢p and X⊆ Y then Y⊢p

(Transitivity) if X ⊢p and Y⊢q for every member q of X
then Y⊢p

A set of sentences X is atheoryin LDOX, or LDOX-theory, exactly if all sentences de-
ductively derivable from X are members of X. The important relation between theories
and deductive derivability is this:
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Theorem 4 It is not the case thatX ⊢ p in LDOX if and only if there is an LDOX-
theory which containsX but does not containp.

The syntax, and hence the set of derivations from X, is only countably infinite. So let
the derivations be enumerated as D(1), D(2), . . . and define the seriesS= {X(1), X(2),
. . .} as follows: X(1)= X; X(n + 1) = X(n) ⋃ {q}, where q is the conclusion of D(n).
Since⊢ is a finitary relation, the union ofS is a theory. A sentence p can belong toS
only if it already belonged to one of the sets X(k), that is, only if it is derivable from X.

11 Initial completeness claims for LDOX

A set of sentences isconsistentin a given logic iffthere is some sentence not deducible
from that set, in that logic. A set of sentences X is atheory in a given logic iffX is
consistent in that logic and contains all that follows from it by deductive derivation
in that logic. We shall index these terms toLSTB andLDOX by writing “LDOX-
consistent”, “LSTB-consistent”. “LDOX-theory”, and so forth, or equivalently, “con-
sistent in LDOX”, “theory of LSTB”, and so on, to mark these distinctions. The main
connections between these characteristics can be summed up as follows.

Theorem 5 (a) If X is LDOX-consistent then it is LSTB-consistent.

(b) If X is an LDOX-theory thenX is an LSTB-theory.

(c) If X is LDOX-consistent thenX is part of an LDOX-theory.

(d) If X is an LDOX-theory then for any sentencep, p is in X if and only if Bp is in
X.

(e) Any belief set is an LDOX-theory; to be precise, ifM = ⟨W, R⟩ is a model struc-
ture for L, w a world in W, andv a valuation onM, thenBv(w) is an LDOX-
theory.

Most of this is immediate; note that characteristics T0, T1, T2 of belief sets establish
(e).

The completeness property that we requireLDOX to have is that it ‘catalogues’
the doxastic consequence relation. To be precise, if a set of sentences X is LDOX-
consistent then we require (a) that there is a world w, in some model structure, such
that X is part ofB(w), and (b) if X does not deductively imply p inLDOX then we
require there to be a world w, in some model structure, such that X is part ofB(w), but
p does not belong toB(w). Intuitively, the latter corresponds to there being a possible
believer who believes all that is claimed in X but does not believe that p.

Lemma 6 If X is an LDOX-theory then there is a model structureM = ⟨W, R⟩ for L,
valuationv onM and worldw in W such thatX ⊆ Bv(w).

For let X be an LDOX-theory, and define X∗ = {Bp: p ∈ X}. Clearly, for any sentence
p, p∈ X iff Bp ∈ X iff Bp ∈ X∗, hence X∗ ⊆ X.

X∗ is LDOX-consistent, because X∗ ⊆ X; and therefore also LSTB-consistent.
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Hence by the soundness ofLSTB, there is a model structure M= ⟨W, R⟩ for L,
valuationv on M and world w in W such thatvw satisfies X∗. It follows that for all
sentences p, ifBp is in X∗ then p is inBv(w). Therefore X⊆ Bv(w).

We have to imagine that, since in our representation belief and disbelief are con-
strained only by logical considerations, a given LDOX-theory X could be the whole of
what a given agent believes. That would be the case precisely if for each sentence p,
eitherBp is true in the world of that agent, and p is in X, or else∼Bp is true in that
world. We verify this as follows.

Theorem 7 If X is an LDOX-theory then there is a model structureM = ⟨W, R⟩ for L,
valuationv onM and worldw in W such thatX = Bv(w).

Let X be an LDOX-theory and X∗ = {Bp: p ∈ X}. Let the familyF of sets of sentences
be defined by:

Y is in F if and only if:

(a) X∗ ⊆ Y

(b) Y is LSTB-consistent

(c) if p is a member of Y then there is a sentence q such that either p=

Bq and p belongs to X∗, or p= ∼Bq

First, X∗ belongs toF. As seen in the preceding lemma, X∗ ⊆ X, and is LSTB-
consistent; and if p is a member of X then by definition,Bp is in X∗. Given condition
(a), X∗ is therefore the smallest member ofF.

Second, if q is a sentence not in X then it is not the case that X∗ ⊢ Bq in LSTB.
For X∗ ⊆ X, hence if X∗ ⊢ Bq then X would containBq; since X is an LDOX-theory it
would then also contain q. Therefore X∗⋃{∼Bq} is LSTB-consistent if q is not in X.

Third, the familyF is partially ordered by set inclusion. If Y1, Y2, . . . is a chain
in F then its union is also inF, for that union will be consistent since⊢ in LSTB is
finitary. Hence all such chains have an upper bound; by Zorn’s lemma,F has a maximal
element Z.

Fourth, for every sentence p, eitherBp or∼Bp belongs to Z. For if Z⋃{∼Bp} is
LSTB-inconsistent then there are sentences q1, . . . , qk in Z such that q1, . . . , qk ⊢Bp
in LSTB, and thusBp is in Z. By similar reasoning, if Z⋃{Bp} is inconsistent then
∼Bp is in Z. Finally, if Z is consistent withBp and with∼Bp and neither is in Z, then
the addition of either sentence to Z would be a member ofF and so Z would not be
maximal.

By the completeness corollary forLSTB it follows that there is a model structure
M = ⟨W, R⟩ for L, valuationv on M and world w in W such thatvw satisfies Z. Hence
any sentence p is inBv(w) if and only if Bp is in Z.

Finally, Bp is in Z iffp is in X. For Z belongs to familyF, henceBp is in Z iffBp is
in X∗, which is the case iffp is in X.

12 The same logic, from another point of view

How logic is typically taught today tends to promote the impression that classical logic
formulated with just axiom schemes and the rule of modus ponens is the same logical
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system as that presented in a natural deduction or Gentzen ruleformulation. That is
not so, as we have just seen.LDOX contains all of the former, but some familiar
natural deduction rules (conditional proof, reductio ad absurdum) are not admissible
for it. Those natural deduction or Gentzen rules are meta-rules (also sometime called
epi-rules), and these can be violated without touching the theorems and ‘ordinary’
inferences.

This separation of ‘ordinary’ and ‘meta’ inferences is typical in supervaluation
treatments that were designed to eliminate arbitrariness in assignments of truth-values
(vide van Fraassen [8], pp. 491–492; [9], Chapter 5 section 3).

The plan for this section will have two parts. The first is to present a straightforward
supervaluation treatment, to build a language in which the pertinent distinction is not
between truth and falsity but between being believed and being disbelieved. The second
is to show that the results for logic coincide precisely with what we found above for
the doxastic consequence relation (Theorem 7).

To begin then, let us look at the self-transparent believer’s belief sets in a different
way, as determining valuations, analogous to a language that has truth-value gaps. We
shall then assign Ts and Fs to represent the values ‘is believed’ and ‘is disbelieved’.
Many sentences will, generally, receive neither T nor F, though with that interpretation
the ‘gaps’ are not truth-value gaps but belief-value gaps. Then we can ask: which infer-
ences preserve the designated value T, what is the consequence relation that captures
preservation (from premises to conclusion) of that value? A supervaluational language
is always built on a simpler language. The simpler language comes with a well-defined
class of ‘classical’ admissible valuations, and the valuations of the supervaluational
language correspond to sets of those ‘classical’ valuations.

In our case the simpler language will be L that was introduced above, with the
semantics spelled out in terms of model structures, worlds, and valuations.

The semantics will appear in two stages. We begin with the same definition of
model structures M= ⟨W, R⟩, where W is called the set of worlds and R the relative
doxastic possibility relation. R has the properties that we imposed before: it is tran-
sitive, and weakly reflexive, and serial. We now add a sort of shorthand that ignores
some aspects of that semantics:

Definition 8 An assignmentf of a value ofT or F to each sentencep is a classical
valuation iffthere is a model structureM = ⟨W, R⟩, a worldw in M, and a valuationv
onM such that for all sentencesp, f(p) = vw(p).

As above, we say that a valuationsatisfiesa set of sentences if and only if it assigns
T to all the members of that set. With our new shorthand the semantic consequence
relation is this:

set X of sentences semantically entails sentence p in L if and only if all
classical valuations which satisfy X also assign T to p

which from here on we will call the classical consequence relation, and define the
classical consequence operatorCL:

CL(X) = {p: X semantically entails p in L}
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Now we are ready to introduce a new language L∗, which has the same syntax as L,
but a different class of admissible valuations. First of all we specify a new relation N
among sentences, the relation ofnon-classical necessitation: For any sentences p, q, it
is the case that pNq if and only if either q is the sentenceBp, or p is the sentenceBq.

Definition 9 A set of sentences issaturatedif and only if it is satisfied by some classical
valuation ofL and is closed both under the classic consequence relation and under the
relationN.

We introduce thenon-classical consequence operatoras follows:

CNL(X) is the least set that contains X and is closed both under the classic
consequence relation and under the relation N.

Equivalently, X is saturated if and only if X is satisfiable in L andCNL(X) = X. Note
thus that CNL(X) is itself a saturated set if X is satisfiable. Finally,

Definition 10 An assignments of a value ofT or F to some sentencesp is a superval-
uation of L iff there is a saturated setX such that for all sentencesp:

s(p) = T if and only iff(p) = T for all classical valuationsf that satisfyX;

s(p) = F if and only iff(p) = F for all classical valuationsf that satisfyX;

s(p) is undefined otherwise.

Definition 11 An assignment of a value ofT or F to some sentencesp is an admissible
valuation of languageL∗ if and only if it is a supervaluation ofL.

Thus X semantically entails p in L∗ exactly if all supervaluations of L which satisfy X
also satisfy p.

Theorem 12 X semantically entailsp in L∗ if and only ifp ∈ CNL(X).

Given the definitions, it is clear that if p is inCNL(X) then p belongs to any saturated
set that contains X, and hence is satisfied by any supervaluation induced by a saturated
set which contains X. Therefore if p isCNL(X) then X semantically entails p in L∗.

For the converse, the setCNL(X) is either satisfied by some classical valuation
or by no classical valuation. In the latter case, CNL(X) contains all sentences, so it
follows trivially that X semantically entails p in L∗ only if p is in CNL(X).

In the former case, note thatCNL(X) is itself a saturated set, and so induces a su-
pervaluation. If that supervaluation does not satisfy p, then we have a counterexample
to the claim that X semantically entails p in L∗. Hence X semantically entails p in this
case only if p is inCNL(X).

Lemma 13 If X is a consistent LDOX-theory thenX is saturated.

An LDOX-theory is an LSTB-theory, and hence by the soundness of LSTB for lan-
guage L, is satisfied by a classical valuation. By the same token, an LDOX-theory is
closed under the classical consequence relation; moreover it is closed under N because
of its rules R2 and R3.
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Lemma 14 If X is saturated thenX is an LDOX-theory.

If p is a classical consequences of X then X⊢p in LSTB since it is complete with
respect to L. Being closed under N, a saturated set is closed under theLDOX inference
rules as well.

Lemma 15 An assignments of a value ofT or F to sentences is an admissible valua-
tion of languageL∗ if and only if there is an LDOX-theoryX such that for all sentences
p, s(p) = T iff p is in X ands(p) = F iff ∼p is in X.

(Note that this assignment will not in general have all sentences in its domain.) This
follows from the preceding two lemmas.

Finally then, the soundness and completeness ofLDOX with respect to language
L∗.

Theorem 16 X ⊢ p in LDOX if and only ifp ∈ CNL(X) in L∗.

Suppose p is not inCNL(X). Then it is not the case that X⊢p in LDOX, by Theorem
4, since there is an LDOX-theory, namelyCNL(X) which contains X but not p.

Suppose conversely that it is not the case that X⊢p in LDOX. Then by Theorem 4,
there is some LDOX-theory which contains X but not p. So by the preceding Lemma,
there is a supervaluation which assigns T to all of X but not to p. Therefore by Theorem
12, p is not inCNL(X).

13 Conclusion: the self-transparent believer from a log-
ical point of view

The logic of language L, which was designed for the factual description of agents
whose beliefs are right about what beliefs they have, isKD4C4, which I gave as name
also the mnemonic acronymLSTB. It is not a theorem of this logic that in general
agents believe, for any belief they have, that they have that belief only if it is true.
This is in contrast to a principle that was part of some logics of belief, and which,
surprisingly, had both been argued for on the basis of Moore’s paradox and been a
crucial ingredient in derivation of paradoxical results.

But our focus has mainly been on characterizing the doxastic consequence relation.
Intuitively, a conclusion is a doxastic consequence of some premises precisely if the
beliefs of any self-transparent believer will include that conclusion if they include all
the premises. The logic which catalogues the doxastic consequences,LDOX, has all
the theorems and inferences ofLSTB and two additional rules. These two rules capture
what was right in the above mentioned principle: for transparent believers, managing
the contents of their beliefs, the inferences fromBp to p, and vice versa, are valid, but
it is not the case that for just any sentence p, they believe the conditionals(Bp ⊃ p)
or (p ⊃ Bp). HenceLDOX is non-classical, in that certain classical meta-theorems,
such as the Deduction Theorem or the admissibility of the Reductio ad Absurdum, fail.
This situation is illuminated by displayingLDOX as the sound and complete logic for
a supervaluational language L∗, designed for doxastic reasoning.
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