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Alethic-Deontic Logic: Deontic Accessibility
Defined in Terms of Alethic Accessibility

Daniel Ronnedal

Abstract

According to many normative theories, to say that something ought to be, or
ought to be done, is to state that the being or doing of this thing is in some
sense a necessary condition (requirement) of something else. In this paper, I
explore the consequences of such a view. I consider what kind of alethic-
deontic logic is appropriate for theories of this sort. Alethic-deontic logic is a
kind of bimodal logic that combines ordinary alethic (modal) logic and
deontic logic. Ordinary alethic logic is a branch of logic that deals with
modal concepts, such as necessity and possibility, modal sentences,
arguments and systems. Deontic logic is the logic of norms. It deals with
normative words, such as “ought”, “right” and “wrong”, normative sentences,
arguments and systems. I will define the so-called deontic accessibility
relation in terms of the so-called alethic accessibility relation, and I will
examine the consequences of this definition. It will turn out that a particular
alethic-deontic system, Strong alethic-deontic logic, is plausible given this
definition. By adding a certain frame-condition, the accessibility condition,
we obtain a slightly stronger system, Full alethic-deontic logic. Some of the
technical details of these systems are briefly described. Most of the systems
mentioned in this paper are developed in more detail elsewhere.

1. Introduction

Georg Henrik von Wright has suggested that “[t]o say that something ought
to be, or ought to be done, is to state that the being or doing of this thing is a
necessary condition (requirement) of something else” (von Wright (1971, p.
161)). He goes on:

[T]o say that something ought to be or ought to be done is to say that
the being or doing of this thing is a necessary condition of a certain
other thing which is taken for granted or presupposed in the context.
An ‘ought’-statement is typically an elliptic statement of a necessary
requirement. ... This suggestion seems to me, on the whole,
acceptable. If we accept it, then we are always, when confronted with
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an ‘ought’, entitled to raise the question ‘Why?’, i.e. to ask for the
thing for which this or that is alleged to be a necessary requirement.
(von Wright (1971 pp. 171-172))

Other philosophers have given similar analyses of some fundamental
normative concepts. According to Alan Ross Anderson:

The intimate connection between obligations and sanctions in norma-
tive systems suggests that we might profitably begin by considering
some penalty or sanction S, and define the deontic or normative
notions of obligation, etc. along the following lines: a state-of-affairs p
is obligatory if the falsity of p entails the sanction S; p is forbidden if p
entails the sanction S; and p is permitted if it is possible that p is true
without the sanction S being true. (Anderson (1956. p. 170))

By adding these definitions to various systems of alethic modal logic,
Anderson achieves a kind of “reduction” of monadic deontic logic to alethic
modal logic. A similar analysis is offered by Stig Kanger (1957). The basic
idea is that it ought to be the case that A iff A is a necessary condition for
avoiding the sanction or for meeting some kind of demands (e.g. the demands
of morality). (See also Anderson (1956), (1958), (1959), (1967) and Aqvist
(1987), Chapter IV.)

In this paper, I will explore a set of normative theories that in some sense
share this basic idea and consider what kind of alethic-deontic logic is
appropriate for systems of this kind. Even though such systems are similar to
those developed by von Wright, Anderson and Kanger, they differ from the
latter in several important ways. Roughly, according to the theories we will
focus on in this paper:

It ought to be the case that A iff A is a necessary condition for
creating (obtaining) a possible world that has property M, where M
can be almost any property in which we are interested.

The possible world w can, for instance, have M iff w is good enough, meets
the requirements of morality, is morally acceptable, has a total amount of
value that is positive, above a certain threshold or maximal, is at least as good
as every other (alethically accessible) world, doesn’t contain any violations of
rights, or is a Kingdom of Ends, etc. According to a theory of this kind, one
ought to perform an action iff performing this action is a necessary condition
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for creating (obtaining) a possible world that has property M. In other words,
one ought to perform an action iff the state of affairs that consists in one’s
performing this action is a necessary condition for creating (obtaining) a
possible world that has the property M. Or again, one ought to perform this
action iff the state of affairs that consists in one’s performing this action
obtains in every possible world that has property M. More precisely, all the
theories we focus on in this paper define our basic deontic concepts in the
following way:

“It ought to be the case that A” is true in the possible world w iff “A”
is true in every possible world that is alethically accessible from w and
that has property M.

“It is permitted that A” is true in the possible world w iff “A” is
true in at least one possible world that is alethically accessible from w
and that has property M.

“It is forbidden that A” is true in the possible world w iff “not-A”
is true in every possible world that is alethically accessible from w and
that has property M.

Almost every, and perhaps every plausible theory taking this form — and
“defining” the alethic accessibility relation in the same way — has the same
alethic-deontic logic, even though “M” may stand for many different
properties. An important subclass of theories of this kind is “doing the best
we can” theories. The basic idea behind these theories is that we ought to do
our best, or that we ought to do the best we can. One theory of this kind has,
for instance, been developed by Fred Feldman (see Feldman (1986)).
According to Feldman, “all of our moral obligations boil down to one - we
morally ought to do the best we can.” And by this he means, “we morally
ought to do what we do in the intrinsically best possible worlds still
accessible to us” (Feldman (1986, xi)). He goes on to say: “As I see it... what
a person ought to do as of a time is what he does in the intrinsically best
worlds accessible to him as of that time” (Feldman (1986, p. 13)). According
to a theory of this kind, we can, for instance, define the concept of ought in
the following way:

“It ought to be the case that A” is true in the possible world w iff “A”
is true in every possible world w' that is alethically accessible from w
and that is such that there is no other possible world w" that is
alethically accessible from w that is better than w'.
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This idea can (in principle) be combined with almost any value-theory and
with almost any analysis of the relation “better than”. Intuitively, the
definition entails that one ought to do A iff one does A in all the best
alethically accessible worlds. If some kind of hedonism is true, then the
possible world w is better than the possible world w’ iff the total amount of
well-being (“pleasure” over “pain”) is higher in w than in w'. If something
else has value, e.g. justice, freedom, virtue, knowledge, beauty, friendship,
love etc., these values will influence the relative values of different possible
worlds. We will not develop on this here. The important thing to note is that
many normative theories seem to share the same basic, formal structure. We
therefore have good reason to question what sort of alethic-deontic logic is
appropriate for theories of this kind.

Alethic-deontic logic is a form of bimodal logic that combines ordinary
alethic (modal) logic and deontic logic. Ordinary alethic logic is a branch of
logic that deals with modal concepts, such as necessity and possibility, modal
sentences, arguments and systems. For some introductions, see e.g. Chellas
(1980), Blackburn, de Rijke & Venema (2001), Blackburn, van Benthem &
Wolter (eds.) (2007), Fitting & Mendelsohn (1998), Gabbay (1976), Gabbay
& Guenthner (2001), Kracht (1999), Garson (2006), Girle (2000), Lewis &
Langford (1932), Popkorn (1994), Segerberg (1971), and Zeman (1973).
Deontic logic is the logic of norms. It deals with normative words, such as
“ought”, “right” and “wrong”, normative sentences, arguments and systems.
Introductions to this branch of logic can be found in e.g. Gabbay, Horty,
Parent, van der Meyden & van der Torre (eds.) (2013), Hilpinen (1971),
(1981), Ronnedal (2010), and Aqvist (1987), (2002). Alethic-deontic logic
contains both modal and normative concepts and can be used to study how
the two interact. In the paper Ronnedal (2012) I say more about various
bimodal systems and in Ronnedal (2015) I prove some interesting theorems
in some alethic-deontic systems (see also Ronnedal (2012b) and (2015b)).
Anderson was perhaps the first philosopher to combine alethic and deontic
logic (see Anderson (1956)). Fine & Schurz (1996), Gabbay & Guenthner
(2001), Gabbay, Kurucz, Wolter & Zakharyaschev (2003), Kracht (1999),
and Kracht & Wolter (1991) offer more information about how to combine
various logical systems.

In monadic deontic logic the truth-conditions for normative sentences are
usually defined in terms of a primitive deontic accessibility relation. The
truth-conditions for “obligation-sentences”, for instance, are often defined in
the following way: “It ought to be the case that A” is true in a possible world
w iff “A” is true in every possible world that is deontically accessible from w.
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In Ronnedal (2012) I use two primitive accessibility relations, one alethic and
one deontic. In this paper, we will define the deontic accessibility relation in
terms of the alethic accessibility relation and see what follows. According to
this definition, the possible world w’ is deontically accessible from the
possible world w iff w' is alethically accessible from w and w’ has the
property M. Given this definition of the deontic accessibility relation, it
follows from the standard definition of the truth-conditions for “ought-
sentences” that “it ought to be the case that A” is true in the possible world w
iff “A” is true in every possible world that is alethically accessible from w
and that has property M.

In this paper I only consider some alethic-deontic systems. I don’t say
anything about how various norms might be related to different moments in
time. However, all the systems I describe can be embedded in a temporal
dimension in a more or less straightforward way. For an idea about how this
might be possible, see Ronnedal (2012¢) (see also Ronnedal (2012b)).

The essay is divided into seven sections. In part 2 I describe the syntax of
our systems and in part 3 I talk about their semantics. Part 4 deals with the
proof theoretic characterization of our logics, while part 5 offers some
examples of theorems in the various systems and an analysis of some
arguments. Part 6 gives information about some deductively equivalent
systems; and Part 7 details soundness and completeness theorems.

2. Syntax
Alphabet. (i) A denumerably infinite set Prop of proposition letters p, g, 1, s,
t, P1, q1, T1, S1, ti, P2, Qo T2, S2, tr..., (i) the primitive truth-functional
connectives — (negation), A (conjunction), v (disjunction), > (material
implication), and = (material equivalence), (iii) the modal (alethic) operators
0, &, and €, (iv) the deontic operators O, P, and F, and (v) the brackets (, ).

Language. The language L is the set of well-formed formulas (wffs)
generated by the usual clauses for proposition letters and propositionally
compound sentences, and the following clauses: (i) if A is a wff, then LA,
OA and ©A are wifs, (ii) if A is a wff, then OA, PA and FA are wffs, and
(iii) nothing else is a wff.

Definitions. KA = PA A P—A, and NA = (OA v O—A). L (falsum) and T
(verum) are defined as usual.

Capital letters A, B, C ... are used to represent arbitrary (not necessarily
atomic) formulas of the object language. The upper case Greek letter I’
represents an arbitrary set of formulas. Outer brackets around sentences are
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usually dropped if the result is not ambiguous. We also use a, b, c, ... as
proposition letters.

The translationfunction t. To understand the intended interpretation of
the formal language in this essay we can use the following translation
function. t(—A) = It is not the case that t(A). t(A > B) = If t(A), then t(B).
And similarly for all other propositional connectives. t(CJA) = It is necessary
that t(A). t(CGA) = It is possible that t(A). t(<-A) = It is impossible that t(A).
t(OA) = It ought to be the case that (it is obligatory that) t(A). t(PA) = It is
permitted that t(A). t(FA) = It is forbidden that t(A). t(KA) = It is optional
(deontically contingent) that t(A). t(NA) = It is non-optional (deontically
non-contingent) that t(A). If t(p) and t(q) are English sentences, we can use t
to translate a formal sentence containing p and q into English. For instance,
let t(p) be ““You are honest” and t(q) be “You lie”. Then the t-translation of
“(Op A O(p 2 —=q)) 2 O—q” is “If it ought to be the case that you are honest
and it is necessary that if you are honest then it is not the case that you lie,
then it ought to be the case that it is not the case that you lie”." This is an
instance of the so-called means-end principle that says that every necessary
consequence of what ought to be ought to be.

There seem to be several different kinds of necessity and possibility:
logical, metaphysical, natural, historical etc. If not otherwise stated, we will
usually mean “historical necessity” by “necessity” in this paper.

3. Semantics

3.1 Basic concepts
Alethic-deontic frame. An (alethic-deontic) frame F is a relational structure
<W, R, S>, where W is a non-empty set of possible worlds, and R and S are
two binary accessibility relations on W.
R “corresponds” to the operators [J, < and <, and S to the operators O,
P and F. If Rww’, we shall say that w’ is R-accessible or alethically accessible
from w, and if Sww’, that w’ is S-accessible or deontically accessible from w.
Alethic-deontic model. An (alethic-deontic) model M is a pair <F, V>
where: (i) F is an alethic-deontic frame; and (ii)) V is a valuation or
interpretation function, which assigns a truth-value T (true) or F (false) to
every proposition letter p in each world w € W.

' Of course, stylistically this is not a particularly “nice” sentence. Nevertheless, it makes a good
job in conveying the informal meaning of the formal sentence.
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When M = <F, V> we say that M is based on the frame F, or that F is the
frame underlying M. To save space, we shall also use the following notation
for a model: <W, R, S, V>, where W, R, S and V are interpreted as usual. “F”
stands for a class of frames and “M” for a class of models.

Truth in a model. Let M be any model <F, V>, based on a frame F =
<W, R, S>. Let w be any member of W and let A be a well-formed sentence
in L. |y, w A abbreviates 4 is true at or in the possible world w in the
model M. The truth conditions for proposition letters and sentences built by
truth-functional connectives are the usual ones. The truth conditions for the
remaining sentences in L are given by the following clauses: (i) |F—u, w LJA
iff for all w' € W such that Rww': |, w A, (ii) |F—w, w <A iff for at least
one W' € W such that Rww'": |F—y w A, (iil) |F—w, w <A iff for all w' e W
such that Rww": |F—v, w —A, (iv) |, w OA iff for all w' € W such that
SWw': |, w A, (V) |, w PA iff for at least one w' € W such that Sww":
|, w A, and (vi) |F—u, w FA iff for all w' € W such that Sww’: |F—u, w —A.

Validity. A sentence A is valid on or in a class of frames F (| A) iff A
is true at every world in every model based on some frame in this class.

Satisfiability. A set of sentences I is satisfiable in a class of frames F iff
at some world in some model based on some frame in F every sentence in I’
is true. T is satisfiable in a model iff at some possible world in the model all
sentences in I are true.

Logical consequence. A sentence B is a logical consequence of a set of
sentences I" on or in a class of frames F (I" |— B) iff B is true at every world
in every model based on a frame in F at which all members of I are true.

3.2 Conditions on a frame

We will begin this section with exploring several different conditions on our
frames. These conditions are divided into three classes. The first class tells us
something about the formal properties of the relation R, the second about the
formal properties of the relation S, and the third about how S and R are
related to each other in a frame. Then we will go one and define the deontic
accessibility relation in terms of the alethic accessibility relation and consider
the consequences of this definition.

The variables ‘x’, ‘y’, ‘2z’ and ‘W’ in tables 1, 2 and 3 are taken to range
over possible worlds in W, and the symbols A, D, V and 3 are used as
metalogical symbols in the standard way. Let F = <W, R, S> be a bimodal
frame and M = <W, R, S, V> be a bimodal model. If S is serial in W, i.e. if
Vx3ySxy, we say that S satisfies or fulfils condition C-dD and also that F and



M satisfy or fulfil condition C-dD and similarly in all other cases. C-dD is
called “C-dD” because the tableau rule T-dD “corresponds” to C-dD and the
sentence dD is valid on the class of all frames that satisfies condition C-dD
and similarly in all other cases. Let C be any of the conditions in table 1, 2 or
3. Then a C-frame is a frame that satisfies condition C and a C-model is a
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model that satisfies C.

3.2.1 Conditions on the relation R

Condition Formalization of Condition
C-aT VxRxx

C-aD Vx3dyRxy

C-aB VxVy(Rxy D Ryx)

C-a4 VxVyVz((Rxy A Ryz) o Rxz)
C-as VxVyVz((Rxy A Rxz) o Ryz)

Table 1

3.2.2 Conditions on the relation S

Condition Formalization of Condition
C-dD Vx3JySxy

C-d4 VxVyVz((Sxy A Syz) o Sxz)
C-d5 VxVyVz((Sxy A Sxz) D Syz)
C-dT’ VxVy(Sxy D Syy)

C-dB’ VxVyVz((Sxy A Syz) o Szy)

Table 2

3.2.3 Mixed conditions on alethic-deontic frames

Condition Formalization of Condition

C-MO VxVy(Sxy o Rxy)

C-0C Vx3y(Sxy A Rxy)

C-0C' VxVy(Sxy o 3z(Ryz A Syz))

C-MO’ VxVyVz((Sxy A Syz) o Ryz)

C-ad4 VxVyVz((Rxy A Syz) © Sxz)

C-ad5 VxVyVz((Rxy A Sxz) D Syz)

C-PMP VxVyVz((Sxy A Rxz) o Iw(Ryw A Szw))
C-OMP VxVyVz((Rxy A Syz) > Iw(Sxw A Rwz))
C-MOP VxVyVz((Sxy A Ryz) > Iw(Rxw A Swz))

Table 3

10
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3.3 Definition of the deontic accessibility

relation in terms of the alethic accessibility relation

Ronnedal (2012) gives information about some of the relationships between
the conditions introduced above. The appendix in Ronnedal (2012b) offers
more information. In this section we will see what happens if we define the
deontic accessibility relation in terms of the alethic accessibility relation in a
certain way. Here is our definition:

Def(S) VxVy(Sxy = (Rxy A My)). The possible world y is deontically
accessible from x iff y is alethically accessible from x and y has the
property M.

In our theorems below we treat M as an ordinary monadic predicate. But it
can be replaced by almost any predicate and the proofs will go through
anyway. It follows that, as we mentioned in the introduction, almost every,
and perhaps every plausible theory taking this form — and “defining” the
alethic accessibility relation in the same way — has the same alethic-deontic
logic, even though “M” may stand for many different properties. As we also
mentioned in the introduction, an important subclass of theories of this kind
is “doing the best we can” theories. According to these theories, we ought to
do our best, or the best we can (see the introduction). For theories of this
kind, we can replace “My” in Def(S) by “—3z((—z=y A Rxz) A Bzy)”, where
Bzy is read “z is better than y”. According to these theories, the deontic
accessibility relation is defined in the following way: VxVy(Sxy = (Rxy A
—3z((—z=y A Rxz) A Bzy))), which says that the possible world y is
deontically accessible from the possible world x iff y is alethically accessible
from x and there is no other possible world z alethically accessible from x
that is better than y.

Before we introduce our theorems, we will consider one more frame- and
model-condition.

C-adD Vx3y(Rxy A My)

According to this condition, every possible world x can see at least one
possible world y that has the property M. We will also call C-adD the
accessibility condition.

We are now in a position to establish some theorems that tell us
something about the consequences of Def(S).

11
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Theorem 1. R is an equivalence relation (i) iff R is reflexive (C-aT),
symmetric (C-aB) and transitive (C-a4), (ii) iff R is reflexive (C-aT) and
Euclidean (C-a5), (iii) iff R is serial (C-aD), symmetric (C-aB) and transitive
(C-a4), (iv) iff R is serial (C-aD), symmetric (C-aB) and Euclidean (C-a5).

Proof. Straightforward.

It is reasonable to assume that the alethic accessibility relation is an
equivalence relation given almost any interpretation of our alethic concepts,
for instance if we think about necessity, possibility and impossibility as
historical, nomological, metaphysical or logical. If we assume this, our
alethic operators will behave as S5-operators.

Theorem 2. (i) Def(S) and C-adD entail C-dD and C-OC. (ii) Def(S)
entails C-MO and C-MO'. (iii) Def(S) and C-aT entail C-dT’ and C-OC'. (iv)
Def(S) and C-aB entail C-dB’. (v) Def(S) and C-a4 entail C-d4 and C-ad4.
(vi) Def(S), C-aB and C-a4 entail C-d5 and C-ad5. (vii) Def(S), C-aT and C-
a4 entail C-OMP. (viii) Def(S), C-aT, C-aB and C-a4 entail C-PMP.

Proof. Left to the reader.

Theorem 3. (i) If Def(S) is true and R is an equivalence relation in a
model M, then M satisfies C-d4, C-d5, C-dT’, C-dB’, C-OC’, C-MO, C-MO’,
C-ad4, C-ad5, C-PMP and C-OMP, but not necessarily C-dD, C-OC and C-
MOP. (ii) If we add the condition C-adD Vx3dy(Rxy A My) (i.e. for every
world x there is a world y that is alethically accessible from x and that has
property M), then M also satisfies C-dD and C-OC (but not necessarily C-
MOP).

Proof. This follows from theorem 1 and theorem 2.

3.4 Classification of frame classes and the logic of a class of frames
The conditions on our frames listed in tables 1, 2 and 3 can be used to obtain
a categorization of the set of all frames into various kinds. We shall say that
F(C,, ..., Cy) is the class of (all) frames that satisfies the conditions Cy, ...,
C.. E.g. F(C-dD, C-aT, C-MO) is the class of all frames that satisfies C-dD,
C-aT and C-MO. F; is the set of all frames where the deontic accessibility
relation is defined in terms of the alethic accessibility relation, i.e. that
satisfies Def(S); and an F-frame is a frame that satisfies Def(S). F{(Eq) is the
class of all F-frames where R is an equivalence relation; and Fy(Eq, C-adD)
or F(Eq, adD) is the class of all Fi-frames that satisfies C-adD (and where R
is an equivalence relation).

The set of all sentences (in L) that are valid in a class of frames F is called
the logical system of (the system of or the logic of) F, in symbols S(F) = {A

12
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e L: | A}. E.g. S(F(C-dD, C-aT, C-MO)) is the set of all sentences that
are valid on the class of all frames that satisfies C-dD, C-aT and C-MO.

By using this classification of frame classes we can define a large set of
systems. In the next section we will develop semantic tableau systems that
exactly correspond to these logics. We will see that Fy(Eq) corresponds to
Strong alethic-deontic logic and Fy(Eq, C-adD) to Full alethic-deontic logic.

4. Proof theory

4.1 Semantic tableaux

We use a kind of indexed semantic tableau systems in this paper. A similar
technical apparatus can be found in e.g. Priest (2008). The propositional part
is basically the same as in Smullyan (1968) and Jeffrey (1967).

The concepts of semantic tableau, branch, open and closed branch etc. are
defined as in Priest (2008) and Ronnedal (2012b, p. 131). For more on
semantic tableaux, see D’Agostino, Gabbay, Hiahnle & Posegga (1999),
Fitting (1983), and Fitting & Mendelsohn (1998).

4.2 Tableau rules
4.2.1 Propositional rules
We use the same propositional rules as in Priest (2008) and Roénnedal

(2012b). These rules are interpreted exactly as in monomodal systems.

4.2.2 Basic a-Rules

O & <
OA, i OAi <A, i
irj \ 2

\: irj O-A, i
A,j Aj
where ] is new
—0A, i —OA, i A, 1
\: \2 \:
O—-A, i O-A, i OAi
Table 4

13
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4.2.3 Basic d-Rules
The basic d-Rules look exactly like the basic a-Rules, except that O is
replaced by O, & by P, < by F, and r by s. We give them similar names.

4.2.4 Accessibility rules (a-Rules)

T-aD T-aT T-aB T-a4 T-a5
i i irj irj irj
\) 2 \) jrk irk
irj iri jri 2 \)
where j is new irk jrk
Table 5

4.2.5 Accessibility rules (d-Rules)

T-dD T-d4 T-d5 T-dT’ T-dB’
i isj isj is isj
\) jsk isk \ jsk
isj \ \) Jsi \)
where j is new isk jsk ksj
Table 6

4.2.6 Accessibility rules (ad-Rules)

T-MO T-MO'’ T-0C T-OC'
isj isj i isj
\: jsk \) \:
irj \) isj jrk
jrk irj jsk
where j is where k is
new new
T-ad4 T-ad5 T-PMP T-OMP T-MOP
it irj isj irj isj
jsk isk irk jsk jrk
\ \) \ \ \)
isk jsk jrl isl irl
ksl Irk Isk
where 1 is where 1 is where 1 is
new new new
Table 7

14
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4.3 Tableau systems
A tableau system is a set of tableau rules. A (normal) alethic-deontic tableau
system includes all propositional rules and all basic a- and d-Rules (sections
4.2.1 to 4.2.3 and table 4). The minimal (normal) bimodal tableau system is
called “T”. By adding any subset of the accessibility rules introduced in
sections 4.2.4 to 4.2.6 (tables 5, 6 and 7), we obtain an extension of T. Some
of these are deductively equivalent, i.e. contain exactly the same set of
theorems. We use the following conventions for naming systems. We write
“aA...A,dB;...B,adC,...C,”, where A,...A, is a list (possibly empty) of
(non-basic) a-Rules, B;...B, is a list (possibly empty) of (non-basic) d-Rules,
and C;...C, is a list (possibly empty) of (non-basic) ad-Rules. We abbreviate
by omitting the initial “a” in the names of the a-Rules after the first
occurrence and similarly for the d- and ad-Rules. Also, the initial “T-" in
every rule is usually omitted. If a system doesn’t include any (non-basic) a-
Rules, we may also omit the initial “a”. The same goes for systems with no
(non-basic) d- or ad-Rules. We will sometimes add “TS- in the beginning of
a name of a system to indicate that it is a tableau system we are talking about.
E.g. aDTB45dD45T'B'adOCMOOC'MO'45PMPOMP is the normal,
alethic-deontic tableau system that includes the rules T-aD, T-aT, T-aB, T-a4,
T-a5, T-dD, T-d4, T-d5, T-dT’, T-dB’, T-OC, T-MO, T-OC’, T-MO’, T-ad4,
T-ad5, T-PMP and T-OMP. This system, which includes several redundant
rules, will also be called T{(Eq, adD) (since it corresponds to F(Eq, adD)) or
Full alethic-deontic logic (FADL). If we drop T-OC, and T-dD from this
system, we obtain a system we will call Ty(Eq) (since it corresponds to
F(Eq)) or Strong alethic-deontic logic (StADL). There are many different
systems that are equivalent to FADL and StADL (see section 6).

4.4 Some proof theoretical concepts and the logic of a tableau system

The concepts of proof, theorem, derivation, consistency, inconsistency in a
system etc. can be defined in the usual way. —s A says that A is a theorem
in the system S and I' |— A says that A is derivable from I" in S.

Let S be a tableau system. Then the logic (or the (logical) system) of S,
L(S), is the set of all sentences (in L) that are provable in S, in symbols L(S)
= {A € L: I A}. E.g. L(aTdDadMO) is the set of all sentences that are
provable in the system aTdDadMO, i.e. in the system that includes the basic
rules and the (non-basic) rules T-aT, T-dD and T-MO.
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5. Examples of theorems and arguments

5.1 Examples of theorems
Theorem 4. The sentences in tables 8 to 16 are theorems (or more precisely
theorem schemas) in the indicated systems.

Proof. Left to the reader.

Name Theorem System
akK 0(A o B) > (UA o OB) T
aT OADA TS-aT
aD 0A D A TS-aD
aB A OCA TS-aB
a4 OA o OOA TS-a4
as CA D OOCA TS-a5
Table 8
Name Theorem System
dK O(A o B) o (0OA o 0OB) T
dD OA S PA TS-dD
d4 OA 5 O0A TS-d4
d5 PA o OPA TS-d5
dT’ O(OADA) TS-dT’
dB’ O(POADA) TS-dB’
Table 9
Name Theorem System
MO OA > OA TS-MO
oC OA D CA TS-0OC
oc’ O(0A o CA) TS-OC'
MO’ O(CA o 0A) TS-MO’
ad4 OA o OOA TS-ad4
ad5 PA o OPA TS-ad5
PMP POA o OPA TS-PMP
OMP OUA o OOA TS-OMP
MOP OOA o O0OA TS-MOP
Table 10
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Theorem Sys Theorem Sys
FA o OFA ad4 OO0A o OA ad5
OPA DS PA ad4 FA v OPA ad5
<PA v PA ad4 <0A v OA ad5

Table 11. Theorems in some systems (Sys = System)

Theorem Sys  Theorem Sys  Theorem Sys

OA S PA OC <$ASFA MO <GOADOCA PMP
FA o —-0OA OC PASCA MO PSADSSO0A PMP
—(0A A $A) OC —(P-AAOA) MO <OPASPOA OMP
—(FA A OA) OC —(PAASA) MO OSASOFA OMP
PA v O—A OC FAvVOA MO POADOPA MOP
P—A v OA OC OAvO-A MO [OFA > 0%A MOP

Table 12. Theorems in some systems (Sys = System)

(A AB) > (OA A OB)
(DA vOB)>O(A v B)
(DA AOB) > O(A AB)
P(AAB) D (CA A OB)
P(AvB)> (CA vV OB)
(PAVvPB)> OG(AvB)
<(A v B) > (FA AFB)
(©Av<SB)DF(AAB)
(A A<SB)DF(AVvB)
O(A=B)> (0OA=0B)
O(A=B)> (PA=PB)
O(A=B)> (FA=FB)

0(A =B) o (-OA =—-0B)

O(A=B)> (KA=KB)
OA=B)> (NA=NB)
(OAAOADB))o0OB
0(A o B) o (0OA o OB)
OA > (OA>B)>0OB)

(PAAOADB))oPB
O(A o B) o (PA o PB)

PA o (O(A oB) o PB)
(FBAO(A>B))oFA
O(A>B)o> (FBoFA)

FB o (O(A 2 B) o FA)
(PAAOADSB) > OB
OA >B)> (PAD OB)
PA o (O(A >B) > ©B)
(KAAOA>B))oPB
O(A o B) o (KA o PB)
KA o (O(A o> B) o PB)
(KAAOADB) OB
0(A > B)> (KA > ©B)
KA o (O(A o B) > ©B)
(—OB A (A © B)) o —-0OA
0(A o B) o (-OB o -0A)
—0B o (O(A o B) o =0A)

Table 13. Theorems in TS-MO

(A o B) o (OA o OB)
O(A>B)> (PA> OB)
OA>B)> (¥B>oFA)
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(O(AvB)A<$B)>0OA
O(A vB)>C)>o((OAvOB)>00C)
O(A v B)>C)o((PA v PB)>PC)
O((A v B)>C) o (FC o (FA A FB))
OA>(BvC)>(PA>(PBvVPQ)
OA>(BvC)>(FBAFC)DFA)
O(A AB)>C)> ((OA AOB)>00C)
OA > (B AC) > (0A (0B AOQC))

(A > (B AC)) o (PA>(PBAPQC))
OA> (B AC) D> ((FBvFC)>FA)
OAVBA(OA>CO AOBDC)))>0C
(OAvB)A(OAD>C)AOB>D)) o0(C v D)
(OAA(OAD>B)ATA () o (0OB AOC)
(OAAB)A(OA>C)vOB>D)) o0(C v D)
OAAOA>B)VOADC) 0B vCO)
(O(A AB) A (O(A o C) A OB o D))) o (OC A OD)

Table 14. Theorems in TS-MO

(OA AOB)> O(AAB) 0(A > B)> (DA > PB)
(DA AOB)>P(A AB) (DAAOADB)>PB
(OA v OB)> O(AvB) 0A o (O(A >B) o PB)
(DA vOB)>P(A v B) 0O(A > B) > (FB o> —-OA)
O(AAB)D (CA A COB) (FBAO(ADB))>—-0OA
O(A AB) o (PA A PB) FB o (O(A>B)>—-0A)
0(A >B) > (0OA > OB) 0(A o B) o (¥B > —-0A)
(OAAOADB) OB (B A O(A o B)) o —-0A
OA>(OA>B) o $B) <B o (O(A 2 B) o =0A)

Table 15. Theorems in TS-OC

0(A o B) o (OA o PB)
(OAAOADB))oPB
0O(A o B) o (FB o> =0A)
(FB A O(A o B)) o —-0OA
—(O(A v B) A (©A A$B))
(A v B)>C) o ((OA v OB) o PC)
O(A vB)>C) o (FC o (=0OA A —=0OB))
OA > (B vC)>(0A>(PBVPC)
OA>BvEC) o ((FBAFC) o -0A)
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O(A AB)>C) o ((OA AOB) > PC)
O(A AB) > C) o (FC o (—0OA v —-0OB))
O(A AB)>C) o (FC o (P-A v P—B))

(A > (B AC)>(0A D (PBAPQC)

OA >B AC) D ((FB v FC)>-0A)

(A > (B AC)) o ((—PB v =PC) > =0A)
OAvB)A(OAD>OAOBDC))>PC
(O(AvB)A(OA>C)A OB >D))) o (PC v PD)
(OAA(OAD>B)AOA oC)) o (PB APC)
(O(AAB)A(OA >C)vOB>D))) o (PCvPD)
(OAA(OA>B)vOA 2 C) o (PBv PO
(O(A AB) A (O(A > C) A OB o D))) o (PC A PD)

Table 16. Theorems in TS-OC

Theorem 5. (i) All sentences in tables 8 — 16 except the “dD”, “OC” and
“MOP”-sentences are theorems in Strong alethic-deontic logic (T{(Eq)). (ii)
All sentences in tables 8 — 16 except the “MOP”-sentences are theorems in
Full alethic-deontic logic (Ts(Eq, adD)).

Proof. Left to the reader.

Theorem 6. (i) In Full alethic-deontic logic (Ty(Eq, adD)) the set of all
sentences can be partitioned into the following, mutually exclusive,
exhaustive subsets: (JA A OA, OA A —JA, PA A P—A, FA A —<$A, and FA
A <€A, (i1) In Full alethic-deontic logic (Ty(Eq, adD)) the following is true:
— O(A =B) o (*A = *B), where * = O, P, F, K and N. (iii) In Full alethic-
deontic logic (T4(Eq, adD)) there are exactly ten distinct modalities: A, —A,
OA, OA, PA, OA, -OCA/SA, -A, —PA/FA and —OA.

Proof. See Ronnedal (2015).

5.2 Examples of arguments

In this section we will illustrate how the systems we describe in this essay
can be used to analyze some arguments formulated in English. Then we will
show how we can prove that an argument is valid or invalid.

In every system that includes T-OC, Op o> <p is a theorem. This is one
version of the so-called ought-implies-can principle (Kant’s law), which says
that if it ought to be the case that p then it is possible that p, i.e. only
something possible is obligatory. The contraposition of this theorem, <p o
—Op, is also provable. This theorem says that nothing impossible is
obligatory.
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Consider the following argument.

Argument 1

It is not possible that you stop and help this injured man and keep your
promise to your friend.

Hence, it is not the case that you (all-things considered) ought to stop
and help this injured man and that you (all-things considered) ought to
keep your promise to your friend.

This argument seems valid, it seems impossible that the premise could be true
and the conclusion false, or — in other words — that it is necessary that the
conclusion is true if the premise is true. And, in fact, we can prove that it is
(syntactically) valid in every alethic-deontic system that includes the tableau
rule T-OC. Argument 1 can be formalized in our systems in the following
way: =<(h A k) : =(Oh A Ok), where h = You stop and help this man, and k
= you keep your promise to your friend.

(1) =O(h AK), 0
(2) =—=(Oh A OK), 0
(3) Oh A OK, 0 [2, ——]
(4) Oh, 0 [3, A]
(5) Ok, 0 [3, A]
(6) O—(h A K), 0 [1, =]
(7) 0s1 [T-OC]
(8) Ol [T-OC]

) h, 14,7, O]
(10)k, 1[5, 7, O]
(11) =(h AK), 1 [6, 8, O]
4 N
(14) * 9, 12] (15) * [10, 13]

Both branches in this tree are closed. Hence, the tree is closed. It follows that
the tableau constitutes a derivation of the conclusion from the premise in
every system that includes T-OC. Since, these systems are sound with respect
to the class of all frames that satisfies C-OC, the conclusion is a consequence
of the premise in the class of all frames that satisfies this condition.
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Systems of this kind rule out moral dilemmas of the following form: OA
A OB A =G (A AB). =((Op A Oq) A =O(p A Q) is a theorem. This seems to
me to be a plausible view. (See Ronnedal (2012b, pp. 75-96) for more on
moral dilemmas.)

Now, consider the following argument.

Argument 2

You ought to be completely honest.

It is necessary that if you are completely honest, then you do not lie.
Hence, it is forbidden that you lie.

Argument 2 is also intuitively valid; it seems necessary that if the premises
are true then the conclusion is true too. We can show that the conclusion is
derivable from the premises in every tableau system that includes the tableau
rule T-MO. Here is a symbolization of argument 2: Oh, CI(h o —l) : F1, where
h = You are completely honest, and 1 = You lie.

(1) Oh, 0
(2) Oth> —1), 0
(3) —FL, 0
(4) PL, 0 [3, —F]
(5) 0s1 [4, P]
6)1,1[4, P]
(Hh,1[1,5,0]
(8) Orl [5, T-MO]
(9)ho—l, 12,8, 0]
v N
(10) —=h, 1 [9, o] (11) =, 19, o]
(12) * 7, 10] (13) * [6, 11]

Both branches in this tree are closed. So, the tree itself is closed. This shows
that the conclusion is derivable from the premises in every tableau system
that includes T-MO. Since systems of this kind are sound with respect to the
class of all frames that satisfies C-MO, the conclusion follows from the
premises in all C-MO-frames.

This seems to be intuitively reasonable. It is a kind of means-end
reasoning. In fact, (OA A (A o B)) o OB is derivable in every system that

21



Daniel Ronnedal

includes T-MO. This is a version of the so-called, means-end principle that
says that every necessary consequence of an obligation is obligatory.

We will now show how our systems can be used to establish that an
argument is not valid. Consider the following argument.

Argument 3

You should give money to some charity.

It is necessary that if you give money to Oxfam, then you give money
to some charity.

Hence, you ought to give money to Oxfam.

This argument is similar to argument 2, and it might seem to be valid.
Doesn’t it involve a kind of means-end reasoning that is plausible? However,
on closer examination, we see that the second premise says that giving money
to Oxfam is a sufficient condition for giving money to some charity, not a
necessary means or consequence. There are many ways of giving money to
some charity and perhaps some other way is better. Therefore, we cannot
exclude the possibility that the premises are true while the conclusion is false.
Of course, it might be true that you ought to give money to some charity and
also true that you ought to give money to Oxfam, but this doesn’t entail that
the conclusion follows from the premises.

Argument 3 can be symbolized in our systems in the following way: Og,
O(o > g) : Oo, where g = You give money to some charity, and o = You give
money to Oxfam. We can show that this deduction isn’t derivable in any of
our systems and that the conclusion doesn’t follow from the premises in any
class of frames we have described. First we will show that the conclusion
isn’t derivable from the premises in the weakest system T.

(1) Og, 0
(2)O(0>g), 0
(3) =00, 0
(4) P—|O, 0 [3, —|O]
(5) 0s1 [4, P]
(6) —o, 1 [4, P]
(Mg 111,5,0]

At this stage the tableau is complete and open, i.e. we have applied every T-
rule we can. We can use the open branch to read off a countermodel. W =
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{wo, W1}, S = {<wy, w;>}, R is empty and g is true and o false in w;. Since g
is true in w; and w, is the only deontically accessible world from wy, Og is
true in wy. (o D g) is vacuously true in w, since no possible world is
alethically accessible from w,. However, Oo is false in w,. For o is false in
w; and w; is deontically accessible from wy. So, all premises are true in wy,
while the conclusion is false. Hence, this model shows that the argument isn’t
valid in the class of all alethic-deontic frames. However, it doesn’t establish
that the conclusion doesn’t follow from the premises in some subset of this
class. Nevertheless, we can show that the conclusion doesn’t follow from the
premises in any class of frames we describe in this essay. To do this we
extend our countermodel with the following information: Sw;w;, Rwywy,
Rw;wi, Rwowi, Rw;wy, o is false in wy. It follows that the conclusion isn’t
derivable from the premises in any tableau system we consider in this paper.
These examples illustrate the usefulness of our alethic-deontic systems.

6. Deductively equivalent systems

We have mentioned two special alethic-deontic systems: Strong alethic-
deontic logic and Full alethic-deontic logic. Full alethic-deontic logic is the
system aTDB45dDT'B'45adMOOCMO’'OC'450MPPMP, and Strong alethic-
deontic logic is the system aTDB45dT'B'45adMOMO’OC'450MPPMP. So,
FADL includes all tableau rules we have introduced in this essay except T-
MOP, and StADL includes all tableau rules except T-dD, T-OC and T-MOP.
For our purposes, FADL and StADL are especially interesting since they
correspond to the class of all frames where the deontic accessibility relation
is defined in terms of the alethic accessibility relation (according to Def(S)),
and where the alethic accessibility relation is an equivalence relation. In the
case of FADL, we also assume condition C-adD (Vx3Jy(Rxy A My)). There
are many “weaker” systems, i.e. systems with fewer tableau rules, that are
deductively equivalent, i.e. contain exactly the same theorems, with FADL or
StADL. The following theorem mentions some of these.

Theorem 7. (i) The following systems are deductively equivalent with
FADL: aB4dDadMO4, aB4dDadMOS5, aB5dDadMO4, aB5dDadMOS5,
aT5dDadMO4, aT5dDadMOS5, aB4dadMOOC4, aB4dadMOOCS,
aB5dadMOOC4, aB5dadMOOCS, aT5dadMOOC4, and aT5dadMOOCS. (ii)
The following systems are deductively equivalent with StADL: aTB4adMO4,
and aTB4adMO5.

Proof. Left to the reader. The appendix in Ronnedal (2012b) may be
useful.
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7. Soundness and completeness theorems
Let S = aA,...A,dB,...B,adC,...C, be a normal alethic-deontic tableau
system, where A;...A, is some subclass of our (non-basic) a-Rules, B;...B, is
some subclass of our (non-basic) d-Rules and C;...C, is some subclass of our
(non-basic) ad-Rules. Then we shall say that the class of frames, F,
corresponds to S just in case F = F(C-Ay, ..., C-A,, C-By, ..., C-B,, C-Cy, ...,
C-C,).

S is strongly sound with respect to F iff ' — A entails ' |— A. S is
strongly complete with respect to F just in case I' | A entails " |— A.

Theorem 8 (Soundness theorem). Let S be any of our normal alethic-
deontic tableau systems and let F be the class of frames that corresponds to S.
Then S is strongly sound with respect to F.

Proof. See Ronnedal (2012) and/or Rénnedal (2012b). B

Theorem 9 (Completeness theorem). Let S be any of our normal alethic-
deontic tableau systems and let F be the class of frames that corresponds to S.
Then S is strongly complete with respect to F.

Proof. See Ronnedal (2012) and/or Rénnedal (2012b). B
From the soundness and completeness theorems and theorems 1-3 it follows
that Strong alethic-deontic logic is the system that is appropriate for Fy(Eq)
and that Full alethic-deontic logic is the system that is appropriate for Fy(Eq,
C-adD).
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Alethic-Deontic Logic
and the Alethic-Deontic Octagon

Daniel Ronnedal

Abstract

This paper will introduce and explore a set of alethic-deontic systems.
Alethic-deontic logic is a form of logic that combines ordinary (alethic)
modal logic, which deals with modal concepts such as necessity, possibility
and impossibility, and deontic logic, which investigates normative
expressions such as “ought”, “right” and “wrong”. I describe all the systems
axiomatically. I say something about their properties and prove some
theorems in and about them. We will be especially interested in how the
different deontic and modal concepts are related to each other in various
systems. We will map these relationships in an alethic-deontic octagon, a
figure similar to the classical so-called square of opposition.

1. Introduction

In this paper I introduce and explore a set of alethic-deontic systems. Alethic-
deontic logic is a kind of bimodal logic that combines ordinary (alethic)
modal logic and deontic logic. Introductions to ordinary (alethic) modal logic
can be found in e.g. Chellas (1980), Blackburn, de Rijke, & Venema (2001),
Blackburn, van Benthem & Wolter (eds.) (2007), Fitting & Mendelsohn
(1998), Gabbay (1976), Gabbay & Guenthner (2001), Kracht (1999), Garson
(2006), Girle (2000), Lewis & Langford (1932), Popkorn (1994), Segerberg
(1971), and Zeman (1973). This branch of logic deals with modal concepts,
such as necessity, possibility and impossibility, modal sentences, arguments
and systems. Introductions to deontic logic can be found in e.g. Gabbay,
Horty, Parent, van der Meyden & van der Torre (eds.) (2013), Hilpinen
(1971), (1981), Ronnedal (2010), and Aqvist (1987), (2002). Deontic logic
deals with normative words, such as “ought”, “right” and “wrong”, normative
sentences, arguments and systems. For more information about bimodal
systems in general and alethic-deontic logics in particular, see e.g. Rénnedal
(2012), (2012b), (2015), (2015b). Alethic-deontic logic combines ordinary
alethic modal logic and deontic logic. Every axiomatic system in this paper is
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sound and complete with respect to its semantics (see Ronnedal (2012) and
(2012b) for a proof). The present paper includes more information about
these systems; I prove several theorems in and about them. We will be
especially interested in the relationships between the different modal and
normative concepts in various systems. We will use an alethic-deontic
octagon, a figure similar to the classical so-called square of opposition, to
map these relationships.’

The paper is divided into five sections. Section 2 is about syntax and
semantics and section 3 about proof theory. Section 4 is the main part of the
paper, in which I describe a set of normal alethic-deontic systems. Finally,
section 5 includes information about the relationships between the systems I
describe.

2. Syntax and semantics

We use the same kind of syntax and semantics as in Ronnedal (2015).
However, we introduce a new deontic operator, U (unobligatory), defined in
the following way: Up <> —Op. Furthermore, we use slightly different
symbols and treat O and [ as primitive in this essay; all other operators are
defined in terms of O and O in a standard way. Vp (alethic contingency) =
—Op A—=0O—p; Ap (alethic non-contingency) = Op v O—p; Hp (unnecessary)
=—0p. T (Verum) = e.g. pv—p, L (Falsum) =e.g. —T.

Without further ado, let us turn to proof theory.

3. Proof theory

3.1 Systems of alethic-deontic logic

In this paper a system is usually identified with a set of sentences, not a set of
theorems together with a deductive apparatus. The concept of a theorem is
defined in the standard way (see e.g. Ronnedal (2010)).

Definition 1 (Alethic-deontic system). A set of sentences S is a system of
alethic-deontic logic or simply an alethic-deontic logic or an alethic-deontic
system (“ad” for short) if and only if:

@) it contains all propositional tautologies,

" Anderson was perhaps the first philosopher to combine alethic and deontic logic (see Anderson
(1956)). Fine & Schurz (1996), Gabbay & Guenthner (2001), Gabbay, Kurucz, Wolter &
Zakharyaschev (2003), Kracht (1999), and Kracht & Wolter (1991) offer more information about
how to combine various logical systems.
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(il))  itis closed under modus ponens (MP) (if A isin S and A — B is in
S, then so is B), and

(iii) it is closed under uniform substitution (if A belongs to S, then
every (immediate) substitution instance of A is in S).

The concept of a substitution instance of A is defined in the usual way
(see e.g. Ronnedal (2010)). “PL” (as in “propositional logic’’) contains every
sentence that is valid due to its truth-functional nature. When we are talking
about ad systems we presuppose that we are using a language that includes
both deontic and alethic operators and not just alethic or just deontic terms.
So, PL will include sentences that are not theorems in ordinary propositional
logic or in pure deontic or alethic systems. For example PL contains not just
—(pA—p) and pv—p, but also for instance —-(CJOpA—=Op) and CPpv—CPp.
In a proof, “PL” may also indicate that the step is propositionally correct.

If it is clear from the context that we are speaking of alethic-deontic
systems and alethic-deontic logics we will sometimes drop the word “alethic-
deontic” and speak only of logics and of systems.

Example 2 (ad systems). (i) The inconsistent system, i.e. the set of all
sentences is an alethic-deontic logic. This system is the largest alethic-deontic
system, since every logic is included in it. (ii) Let L be a collection of alethic-
deontic systems. Then the intersection of L is an alethic-deontic system too,
where the intersection of L is defined in the standard way. (iii) The logic of
any alethic-deontic frame is an alethic-deontic system. (iv) This is also true
for logics of classes of alethic-deontic frames. (iv) PL (“propositional logic™)
is an alethic-deontic system. Since PL is a subset of every alethic-deontic
logic, PL is the smallest alethic-deontic system.

We shall say that an alethic-deontic system S is generated by a set of
sentences G iff S is the smallest alethic-deontic logic containing every
sentence in G. PL, the set of all “tautologies” is generated by the empty set.

Definition 3 (Normal alethic-deontic system). An alethic-deontic
system is normal if and only if:

(i) it contains the sentences C(p — q) — (Op — Oq), Cp <> =O—p, <p

< O—p, Bp <> —0p, Vp & (=0Op A =0O-p), Ap < (Op v O—p),
O(p — q) = (Op — 0q), Pp &> =0—p, Fp <> O—p, Up <> —Op, Kp
< (=0p A =O—p), Np <> (Op v O—p), and

(i) it is closed under the rules of O-necessitation and O-necessitation (i.e

if — A, then |— A, and if |— A, then |— OA).

Example 4 (Normal ad systems). (i) The inconsistent system is a normal
aletic-deontic logic. (ii) PL is not a normal ad system. However, PL is
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included in every normal ad system. (iii) Let L. be a collection of normal
alethic-deontic systems. Then the intersection of L is a normal alethic-deontic
system too. (iv) The logic of any alethic-deontic frame is a normal alethic-
deontic system. (v) This is true also for the logic of every class of alethic-
deontic frames. (vi) The pure deontic system dK (= OK) (Rénnedal (2010))
is not a normal alethic-deontic logic. Neither is the pure alethic system aK
(Chellas (1980)). However, it follows from the definition that every normal
ad system includes the minimal normal alethic logic aK and the minimal
normal deontic logic dK.

The smallest normal ad system will be called “minimal alethic-deontic
logic” (MADL) or aKdK.

When we speak of alethic-deontic systems in this essay, it is usually
normal alethic-deontic systems we mean.

3.2 Normal alethic-deontic systems

3.2.1 Axioms
A normal alethic-deontic system can be represented by adding axioms to the
minimal alethic-deontic logic MADL. We will consider three different kinds
of axioms in this essay: pure deontic axioms, pure (alethic) modal axioms and
bimodal (alethic) modal deontic axioms. And we will use these axioms to
construct some normal alethic-deontic systems. The (alethic) modal axioms
include aK, aT, aD, a4, aB and a5 (see table 1), well known from ordinary
modal logic. The deontic axioms include dK, dD, d4, dT’, dB’ and d5 (see
table 2), well know from pure deontic logic. We also consider nine bimodal
axioms, i.e. axioms that contain both deontic and (alethic) modal operators,
namely, MO, OC, OC’, MO', ad4, ad5, PMP, OMP, MOP (see table 3). aK
and dK are theorems in every normal alethic-deontic system. However, no
other axiom is a theorem in MADL. Accordingly, we obtain a whole range of
normal alethic-deontic systems by adding any subset of these to MADL. A
system that fuses two monomodal systems, without any bimodal axioms, will
be called an alethic-deontic combination (fusion) or ad combination (fusion)
for short. See section 3.2.3 below.

All in all we describe 21 different axioms, 19 besides aK and dK. Every
ad system we consider will contain aK and dK and zero or more of the other

2 All systems in this paper are generated from various axioms, rules of inference and the rule of
substitution. An alternative is to use axiom schemas and dispense with the substitution rule. Both
“methods” generate the same systems.
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19 axioms. In fact, we will focus on the 16 systems that can be constructed
from the axioms aD, dD, OC and MO. Some of these are deductively
equivalent (see section 5).

3.2.1.1 Pure a-axioms

a-axiom Corresponding condition on R
aK  Op—-»9—->Cp—->0q -
aT Op-p VxxRx
aD  Op—><Cp Vx3JyxRy
aB  p—0OCp VxVy(xRy — yRx)
a4 Op—0O0Op VxVyVz((xRy AyRz) - xRz)
ad Op—0OCp VxVyVz((xRyAxRz) > yRz)

3.2.1.2 Pure d-axioms

Table 1

d-axiom Corresponding condition on S
dk  O(p—>q9—>Op—0q) -
dD Op—Pp Vx3JyxSy
d4 Op—O0Op VxVyVz((xSy AySz)—xSz)
ds Pp—OPp VxVyVz((xSy AxSz)— ySz)
dT" O(Op—p) VxVy(xSy—ySy)
dB’ O(POp—p) VxVyVz((xSyAySz) = zSy)

3.2.1.3 Mixed ad-axioms

Table 2

ad-axiom Corresponding semantic condition
MO Op—Op VxVy(xSy—xRy)
oC Op—<p Vx3Jy(xSy AxRy)
oc’ O(Op—<p) VxVy(xSy— 3z(yRzAySz))
MO’ O(Op—Op) VxVyVz((xSyAySz) - yRz)
ad4 Op—0Op VxVyVz((xRy AySz) - xSz)
ad5 Pp—OPp VxVyVz((xRy AxSz) - ySz)
PMP POp—OPp VxVyVz((xSy AxRz) — Iw(yRw A zSw))
OMP OOp—0OOp VxVyVz((xRy AySz) = Iw(xSwAWwRZz))
MOP [OOp—OCp VxVyVz((xSyAyRz) - Iw(xRw AwSz))

Table 3
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3.2.2 Axiomatic systems
We are now in a position to say something more systematic about alethic-
deontic systems.

We have seen that MADL is the smallest normal alethic-deontic logic.
This means that MADL is included in every other normal ad system. By
adding axioms to the axiomatic basis it is possible to extend this logic.

As usual, we shall say that the normal alethic-deontic logic generated or
represented by a set of sentences I' is the smallest normal alethic-deontic
logic that includes all sentences in I'. MADL is represented by the empty set,
extensions of this system by some non-empty set.

Let “S” be the name of a normal alethic-deontic system and “I"” the name
of a set of axioms. Then S + T  is the smallest normal ad system that includes
both S and every sentence in I". A special type of ad systems is called ad
combinations (fusions). The name of an ad combination will often have the
following form: “aXdY”, where X is a set of alethic axioms and Y is a set of
deontic axioms (see below). More generally, we shall often write aXdYadZ
for a normal ad system that can be represented by a set X of alethic axioms, a
set Y of deontic axioms and a set Z of bimodal axioms (axioms that include
both alethic and deontic operators). The ad combination aXdY = aXdYadd.
Sometimes we will replace X, Y and Z by names of alethic, deontic or
alethic-deontic axioms or systems, respectively.

Example 5. add@add = MADL. Let X = {aT}, Y = {dD} and Z =
{MO, OC}. Then aXdYadZ = aTdDadMOOC = MADL + {aT}uU {dD} U
{MO, OC} = MADL + {aT, dD, MO, OC} = MADL + {COp—p, Op— Pp,
Op — Op, Op — <p}. Let X = {aT, aB, a4}, Y = {} and Z = {OC'}. Then
aXdYadZ = aTB4dDadOC’' = MADL + {aT, aB, a4} U {} U {OC'} =
MADL + {aT, aB, a4, OC'} = MADL + {Op — p, p— O<p, Op — O0p,
O(Op — <p)}. addSDLadd = MADL + {dD} = MADL + {Op — Pp}.
aS5d0S5+adMOOC = MADL + {aT, aD, aB, a4, a5, dD, dT’, dB’, d4, d5,
MO, OC}. Since aK and dK are included in every normal ad system, it is not
necessary to mention them in the name of a system. E.g. the following
identities hold: aKdKadd = adddadd, aKTdK5adOC = aTd5adOC and
aK45dKadd = a45dJadd.

3.2.3 ad combinations (fusions)

Let us say something more about ad combinations (fusions). A (normal)
alethic-deontic system adS is called the combination (fusion) of a (normal)
alethic modal system aS and a (normal) deontic system dS, written aS—+dS, if
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and only if adS is the smallest (normal) ad system that includes both aS and
dS. If aS is representable as aX and dS as dY, then aS+dS is representable
as aXdY, where X and Y is a set of alethic and a set of deontic axioms,
respectively. Hence, aX+dY = aXdY.

Note that aXdY # aXudY, i.c. the ad combination of aX and dY is not
identical to the union of the pure alethic system aX and the pure deontic
system dY. For aXdY contains sentences that are not included in aXu dY.
Every normal ad system contains O-nec and (-nec. So, both JO(p — p) and
OO(p — p) are, for instance, elements in aXdY, but not in aX U dY. Other
examples are the following sentences: CJO(p — q) — (OOp — 00q), CO(p A
q) <> >(0OpAOq) and (OFr AOO((p v q) = 1)) = (OFp A OFq). Furthermore,
additional axioms together with one or more rules of inference may generate
sentences that are theorems of the combination of aS and dS that are not
theorems in the union of aS and dS. E.g. suppose that Clp — p € X, then CIPp
— Pq eaXdY but not OPp — PqeaX U dY (since OPp — Pq is neither an
element in aX nor in dY), or that Op—PpeY, then OJOp — OPpeaXdy, but
not OOp — OPp eaX u dY (since OOp — OPp is neither an element in aX
nor in dY). However, the union of the pure alethic system aX and the pure
deontic system dY is of course a subset of the combination of aX and dY, aX
vdYcaXdy, i.e. everything included in aXudY is also included in aXdY.
It follows that aXudY caXdyY.

4. Some normal alethic-deontic systems
I will now consider some normal alethic-deontic systems and I will prove
some theorems in and about these systems.

4.1 Minimal alethic-deontic logic

Minimal alethic-deontic logic (MADL, aKdK, aKdKadd or adddadd) is
the smallest normal alethic-deontic logic. We will also call this system S1.
Since it is a normal alethic-deontic system MADL includes PL, the axioms
aK and dK, the usual definitions of the alethic and deontic operators, modus
ponens, [J-necessitation and O-necessitation. Since it is the smallest normal
alethic-deontic logic it contains no other axioms or rules of inference. A
normal aKdKad@-system is any normal alethic-deontic extension of
aKdKadd, i.e. every normal alethic-deontic system is a normal aKdKadd-
system, or, in other words, every normal ad system is an extension of
MADL. This is true by definition and trivial.
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MADL is an ad combination of the purely deontic system dK (= OK) and
the purely alethic system aK. Hence, we can also call this system aKdK or
simply a@dd. Recall that an ad combination of two systems is not the same
as the union of these systems (section 3.2.3). So, aKdK # aK U dK. aKdK
has theorems that are not elements in aK U dK (e.g. JO(p — q) > O(Pp —
Pq)). On the other hand, every sentence that belongs to either aK or dK is an
element in aKdK, i.e. if s € aK U dK, then s € aKdK, for any sentence s. It
follows that if any formula is a theorem in either aK or dK it is also a
theorem in every normal alethic-deontic logic.

I will now prove some theorems in and about MADL. Since MADL is
included in every normal ad logic, these theorems hold in every ad system we
consider in this essay.
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Figure 1. The Alethic-Deontic Octagon, MADL (S1).
4.1.1 The alethic-deontic octagon

It is possible to display some important logical relationships between O-, P-,
F- and U-sentences in various deontic systems in a deontic square of
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opposition (see Ronnedal (2010)) and some important logical relationships
between -, -, <~ and H-sentences in various alethic systems in a similar
alethic square of opposition. If we combine these figures we get something I
will call the alethic-deontic octagon. This is a figure that can be used to
represent some of the most important logical relationships between all
primary deontic and alethic sentences, i.e. all of the following formulas: Op,
Pp, Fp, Up, Op, Op, <p and Bp. These relationships will vary from one ad
system to another.

Figure 1 shows what the ad octagon looks like in MADL. All sentences
that occur at a “node” in the figure are equivalent (e.g. Op <> F—p and &—p
<> —[p). Sentences that are connected via dashed lines are contradictories
(e.g. =(Op > O—=p), Op > —=C—=p, =(Pp > Fp) and Pp <> —Fp are theorems).
Since MADL is the smallest ad system, these relationships hold in every ad
system. However, all of the relationships displayed in this figure also hold in
the union of aK and dK. So, the figure is perhaps more important for what it
does not, than for what it does contain. The ad octagon will become more
interesting in extensions of MADL.

4.1.2 The rule of replacement

The rule of replacement and the rule of simultaneous replacement hold in
every normal ad system. The following section proves this. In our proofs we
use the following derived rules: (OEQ) If — A <> B, then |— OA < OB,
and (CJEQ) If }— A < B, then |— A <> OB (see Ronnedal (2010) for a
proof of the first, the second can be established in a similar way). These rules
are derivable in every normal ad system.

The rule of replacement (Rep). (i) If}— A <> B, then |— C &
[B//A](C) (if A is equivalent to B is a theorem, then C is equivalent to
[B//A](C) is a theorem), where [B//A](C) is like C except that zero or more
occurrences of A are replaced by B (see Ronnedal (2010) for more
information about the concept of replacement).

(i) If — A<>Band |— C, then |— [B//A](C) (if A is equivalent to B is
a theorem and C is a theorem, then [B//A](C) is a theorem), where C and
[B//A](C) are as in part (i).

(iii) If }— A <> B and |— [B//A](C), then |— C (if A is equivalent to B
is a theorem and [B//A](C) is a theorem, then C is a theorem), where C and
[B//A](C) are as in part (i).

Proof: Part (i). Suppose that the replacement of B for A is at zero places.
Then [B//A](C) and C are identical and the result is trivial ((— C <
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[B//A](C), where [B//A](C) = C). Suppose that A and C is the same sentence
and that C i.e. A is replaced by B. Then [B//A](C) is B. Hence (i) holds in
this case too (— C <« [B//A](C), where C = A and [B//A](C) = B). So, from
now on we assume that A and C are distinct and that at least one occurrence
of A is replaced by B in C. The rest of the proof is by induction on the length
of A. Given — A< B.

Basis: C is atomic. Since C and A are distinct and C is atomic [B//A](C) =
C. Hence, — C < [B/A](C), where [B//A](C) = C. Consequently the
theorem holds when C is atomic.

Induction step. We want to show that if it is the case that if |— A < B,
then |— C«>[B//A](C) for C of any complexity, then it is the case that if |—
A & B, then |— f(C) < f([B//A](C)), where f(C) is =C, DAC, CAD, DvC, C
vD,D—>C,C—-D, D& C, Ce D, OC, PC, FC, UC, KC, NC, OC, <¢C,
<C, 8C, VC or AC, and likewise for [B//A](C). Since conjunction,
disjunction and equivalence are commutative, since equivalence, implication
and conjunction can be expressed in terms of negation and disjunction, since
P, F, U, K and N are definable in terms of O, and since ©C, ©C, 8C, VC
and AC are definable in terms of [, it is sufficient to consider four cases.

Case (i). =C. Suppose that if |— A <> B, then |— C <> [B//A](C). From
the hypothesis — A <> B. Hence, |— C < [B//A](C). (C < [B//A](C)) &
(—C & —[B//A](C)) is a tautology. Accordingly, — —C <> —[B//A](C) by
PL. It follows that if it is the case that if — A <> B, then }— C« [B//A](C),
then it is the case that if — A <> B, then }— —C <> —[B//A](C).

Case (ii). Cv D. Assume that if |— A <> B, then |— C < [B//A](C). By
the hypothesis — A <> B. Thus, }— C<«[B//A](C). (C< [B//A](C))<>((Cv
D)« ([B//A](C)v D)) is logically true in propositional logic. Hence, — (Cv
D) < ([B//A](C)v D) by PL. Consequently, if it is the case that if —A <> B,
then — C<«<>[B//A](C), then it is the case that if — A <> B, then |— (CvD)
< ([B//A](C)vD).

Case (iii). OC. Suppose that if |— A <> B, then |— C <> [B//A](C). By
the hypothesis |— A <> B. Hence, |— C < [B//A](C) and so, |— OC <
O[B//A](C) by (OEQ). In consequence, if it is the case that if |— A <> B,
then — C«[B//A](C), then it is the case that if — A<> B, then |— OC«<
O[B//A](C).

Case (iv). OC. As in case (iii).

Conclusion. We have now shown that the rule of replacement holds where
there are no connectives or operators outside A and B and that if it holds
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where there are n such logical connectives or operators it holds for n + 1. We
conclude that the theorem holds in general.

Part (ii). Assume that (1) — A<>B and |— C (A is equivalent to B is a
theorem and C is a theorem) and that C and [B//A](C) are as in part (i). Then
both (2) — A< B and (3) }— C [from (1)]. From (2) we obtain (4) }|— C<
[B//A](C) [by PL and part (i)]. Hence, (5) }— [B//A](C) [from 3 and 4 by
PL]. Consequently, (6) if — A <> B and }— C, then |— [B//A](C) (if A is
equivalent to B is a theorem and C is a theorem, then [B//A](C) is a theorem),
where C and [B//A](C) are as in part (i) [from 1-5 by conditional proof
discharging the assumption].

Part (iii). As in part (ii). Details are left to the reader.

The rule of simultaneous replacement. (i) If — A; <> B, and ... and
— A, B, then |— C < [Bi//Ay, ..., B//A,](C) (if A is equivalent to B,
and ... and A, is equivalent to B, are theorems, then C is equivalent to
[Bi//A,, ..., BJ//AL](C) is a theorem), where [B//A4, ..., B)//A,](C) is the
result of replacing zero or more occurrences of A; in C by B; and ... and
replacing zero or more occurrences of A, in C by B,.

(ii)) If— Aj<B;and ... and |— A,<> B, and |— C, then |— [B//A,,
.., B//AL](C) (if A, is equivalent to B, and ... and A, is equivalent to B, are
theorems and C is a theorem, then [Bi//A;, ..., B/A,](C) is a theorem),
where C and [B,//A, ..., By//A, ](C) are as in part (i).

@iii) If — A< By and ... and — A, < B, and — C < [B/Ay, ...,
B.//A, 1(C), then |— C (if A, is equivalent to B, and ... and A, is equivalent
to B, are theorems and [B,//A,, ..., B//A,](C) is a theorem, then C is a
theorem), where C and [B,//Ay, ..., By//A,;](C) are as in part (i).

Proof. The proof is more or less obvious, simply use the rule of replace-
ment repeatedly in crucial steps. B

4.1.3 Interchange and duality theorems
Let us prove some interchange and duality theorems that can be used to
quickly prove and recognize new theorems in MADL and other ad systems.
Theorem 6 (The ad interchange theorem (adIT)). Let ®; ... ®, be a
sequence of deontic and alethic operators in a sentence such that each ®; is O,
P,F, U O O, or B If ® =0, let ®’ =P, and vice versa, if ® =F, let ®’
= U and vice versa, if ® = [, let ® = & and vice versa and if ® = <, let ®’
= H and vice versa, for every ®;. Then, (i) —®; ... ®,A & =®, ... ®,’—A,
(ll) |—ﬂ®1 ®nA — ®1, ®n,—|A, and (111) |—®1 ®n—|A 4 —|®1’
®,’A, for any A.
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Proof. Part (i). Let ®, ... ®, be a sequence of deontic and alethic
operators of the kind mentioned in the theorem. By PL }—®, ... ®,A < ®,
... ®,A, for any A. Now replace O by —P—, P by =O—, F by —=U—, U by
—F—, O by ==, & by =0, < by —H— and & by —<— throughout in the
right hand side of this equivalence. Then we get the following theorem |—®;
®nA 4 —|®1,—|—|®2’—| _‘®n-1’_‘_‘®n’_‘Aa for any A. Use PL and
replacement to delete all double negations. It follows that |—®; ... ®,A <>
—®;’ ... ®,’=A, for any A. This proves part (i).

Part (ii). PL and part (i) gives us }— —=®; ... ®,A & ——®;" ... ®, A,
which again by PL immediately proves that |— —®; ... ®,A < & ...
®,’—A, for any A.

Part (iii). By replacing A by —A in part (i) we obtain |—®; ... ®,—=A <
—®,’ ... ®,’—A. By PL and replacement it follows that —®, ... ®,—A <
—®," ... ®,A, forany A. B

Example 7. When n = 0 part (i) reduces to —A <> ——A, part (ii) to |—
—A <> —A and part (iii) to |— —A <> —A. Let n = 1. Then the following
schemas are examples of instances of the theorem }— OA <> —P—A, |— PA
0—-A & —PA, |— P—=A & —OA [part (iii)]. In fact, many equivalences in
figure 1 can be seen as special cases of adIT. Here are some more complex
examples: |— OO(p — p) <> —=COP=(p—p), ——-0OP(pArq) > CO=(pAQ),
—B&<SF=(p— (PqAPr)) <> —<82U(p— (PqAPr)).

Theorem 8 (The ad interchange rule (adIR)). All of the following rules
are derived in MADL. Let ® and ®’ be as in adIT. Then, (i) —®; ... ®,A iff
|——|®1, ®n’—|A, (11) |——|®1 ®nA iff |—®1’ ®n,—|A, and (lll) |—®1

- @A Iff F——®,” ... ®,A, for any A.

Proof. The proofs are easy and are left to the reader (use the interchange
theorem). B

We can in fact prove something slightly stronger. The interchange
theorem does not hold for modalities that include embedded negation signs.
But our next theorem does.

Before turning to the duality theorem, we must first introduce the concept
of duality.

Definition 9 (Duality). (i) Let L be a language that contains —, A and v as
the only propositional connectives. In addition, let L contain Verum and
Falsum, and all normal alethic and deontic operators, i.e. O, P, F, U, O, &,
<>, and 8. Then the dual of a sentence A (in L), in symbols d(A), is defined

38



Alethic-Deontic Logic and the Alethic-Deontic Octagon

as the result of replacing every atomic sentence by its negation and
interchanging all occurrences of Verum and Falsum, A and v, OO0 and <, O
and P, < and 55, and F and U in A. (ii) Let L by a language that contains —,
A, V, =, <>, Verum, Falsum and every normal alethic and deontic operator.
Then if A is a sentence (in L), then the dual of A, in symbols d(A), is defined
in the following manner.

1 d(p) = —p, when p 6 d(AvB) = (d(A)Ad(B)) 11 d(OA) = Pd(A)
is atomic 7d(A—B) = (—d(A)Ad(B)) 12 d(PA) = Od(A)
2 d(Verum) = Falsum 8 d(AoB) 13 d(©A) = Bd(A)
3 d(Falsum) = Verum = (d(A) & —d(B)) 14 d(EA) = ©d(A)
4 d(—A) = —d(A) 9 d(dA) = Od(A) 15 d(FA) = Ud(A)
5 d(AAB) = (d(A)vd(B)) 10 d(OA) = Od(A) 16 d(UA) = Fd(A)

Example 10. (i) d(OT) = P, (ii)) d(pAq) = (—p Vv —q) (iii) d(Op — Pp) =
(=P=pAO-p), (iv) d(Op — Cp) = (=P—p AT—-p), (v) d(Pp <> —Fp) = (O—p
& ——U=p), (vi) d(@(p — q) = (Op = 0g)) = (=O(——p A =) A (=P=p A
P—q)), (vii) d(P(p A q) = O(p v @) = (=O(=p v —q) A T(=p A =), (vii)
d(FQAFR) AT(p— (qv1)) = Fp) = (=(U=qv U=)v O(—pA (g A—D)) A
U=p), (ix) d(Up — Hp) = (=F—p A ©=p), (x) d((O(p v q) A <p) = Pq) =
(=(P(=pA—=q)vE-p)AO—q).

Proof. We prove part (vi) and (vii) and leave the rest to the reader.

Part (vi). d((p— q) = (Op— 0q)) = (=d(T(p — @) Ad(Op — Og)) [part
7] = (=< d(p— q)Ad(Op — 09)) [part 9] = (=O(—d(p) Ad(@)) A d(Op — Og))
[part 7] = (=(—d(p) Ad(@)) A (=d(Op) Ad(Oq)) [part 7] = (—~O(—d(p)Ad(q)
A(=Pd(p)APd(q))) [part 11] = (=O(—=—pA—q) A(=P—pAP—q)) [part 1].

Part (vii). d(P(pAq) > O(pv Q) = (~d(P(pA ) Ad(O(pv @) [part 7] =
(—0d(pAq) Ad(O(pv Q) [part 12] = (=O(d(p)v d(@) A d(S(pvq) [part 5]
= (=O(d(p) v d(@)) A Od(p v )) [part 10] = (=O(d(p) v d(@) A T(d(p) A d(Q))
[part 6] = (—O(—pVv—q)AL(—pA—q)) [part 1]. B

Theorem 11 (The duality theorem (DUAL)). Let S be a normal alethic-
deontic system. Then S has the following theorems and rules of inference.

D) F=sAo—dA).

(i) F—s—A e dA).

(i)  if —g A, then }—g —d(A).

(iv) iff—g—A, then |—g d(A).

(v)  if—s A — B, then }—g d(B) — d(A).
(vi) if—gs A <> B, then |—g d(A) < d(B).
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Proof. Assume throughout that S is a normal alethic-deontic system.

Part (i) —s A < —d(A). Part (i) says that A and the negation of the
duality of A are equivalent in S. We want to show that the theorem holds for
any sentence regardless of complexity. We prove this by induction on the
lenght of A.

Basis. A is atomic. (1) — p <> —p, for every atomic sentence p [by
PL]. Hence, (2) |— p <> —d(p), for every atomic sentence p [from 1 and the
definition of duality part 1]. Consequently, the theorem holds when A is
atomic.

Induction step. We want to show that if the theorem holds for a sentence
A of given complexity, it holds for every sentence of next higher degree of
complexity. Induction hypotheses: the theorem holds for every sentence B
and C shorter than A, i.e. — B <> —d(B) and — C <> —d(C). A=BAC, A
=B —>C,A=B & C, A=HB, and A = UB. Left as exercise.

A = —B. — —B <& ——d(B) [by the induction hypothesis and PL].
Consequently, |— —B <> —d(—B) [by the definition of duality part 4].

A=BvC.(1)}— BvC) ¢ (=d(B) v —d(C)) [induction hypothesis and
replacement]. (2) — (—=d(B) v —d(C)) <> —=(d(B) A d(C)) [by PL]. 3) I—
—(d(B) A d(C)) <> —=d(B v C) [by the definition of duality part 6 and
replacement]. (4) — (B v C) & —d(B v C) [from 1, 2 and 3 by PL].

A = OB. This is exactly as in the case A = OB (see below), just replace
every occurrence of O by O throughout and replace the justification for step
(3) by “the definition of duality part 9.

A =3B, (1) = OB <> &—d(B) [induction hypothesis, replacement]. (2)
f— O—d(B) <> —0Od(B) [definition of <> and replacement]. (3) |— —Od(B)
<> —d(<$B) [by the definition of duality part 10]. It follows that |— OB <
—d(<$B) [from 1, 2 and 3 by PL].

A =<B. Similar to the case where A = FB (see below).

A = OB. (1) —0B < 0—d(B) [induction hypothesis, replacement]. (2)
— O—d(B) <> —Pd(B) [definition of P, PL]. (3) — —Pd(B) <> —d(OB) [by
the definition of duality part 11]. Thus, (4) — OB <> —=d(OB) [from 1, 2 and
3 by PL].

A = PB. This is exactly as in the case A = OB (see above), just replace
every occurrence of & by P throughout and replace the justification for step
(3) by “the definition of duality part 9.

A = FB. (1) —FB < F—d(B) [induction hypothesis, replacement]. (2)
— F—=d(B) < —Ud(B) [interchange]. (3) — —Ud(B) <> —d(FB) [the
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definition of duality part 15]. Thus, (4) |— FB <> —d(FB) [from 1, 2 and 3
by PL].

Part (ii) —s —A <> d(A). Part (ii) follows immediately from part (i) by
PL. The interpretation is similar.

Part (iii) if |—g A, then }—g —d(A). According to part (iii) the negation
of the duality of A is a theorem in S, if A is a theorem in S. Suppose that }—
A. Then by part (i) and (MP) it follows that }— —d(A). So, if |— A, then |—
—d(A) [by conditional proof].

Part (iv) if |—s —A, then |—g d(A). This part is proved as part (iii), but
use part (ii) instead of part (i) in the proof. It is interpreted similarly.

Part (v) if —s A — B, then }—g d(B) — d(A). Part (v) says that if A
implies B is a theorem, then the duality of B implies the duality of A is a
theorem. Suppose (1) — A — B. Then by part (i) and replacement we get
(2) — —d(A) = —d(B) [from 1]. Accordingly, (3) }— d(B) — d(A) [from 2
by PL]. It follows that if — A — B, then |— d(B) — d(A) [by conditional
proof from 1 — 3].

Part (vi) if |— A <> B, then |— d(A) <> d(B). If it is a theorem that A is
equivalent to B, then it is a theorem that the duality of A is equivalent to the
duality of B, according to this part. Suppose }— A <> B. Then 2) — A — B
and (3) — B — A [from 1 by PL]. (4) |— d(B) — d(A) [from 2 and part
W] (5) — d(A) — d(B) [from 3 and part (v)]. Hence, (6) |— d(A) <> d(B)
[from 4 and 5 by PL]. It follows that if — A <> B, then }— d(A) <> d(B) [by
conditional proof from 1 —5]. &

Theorem 12 (The duality corollary (Dual)). The dual of an alethic-
deontic modality M, D(M), is the modality that is obtained from M by
interchanging O and P, F and U, O and <, and & and <, respectively,
throughout. Let M and N be alethic-deontic OPFULIOH< modalities and
D(M) and D(N) be the dual of M and N respectively. Then:

Part (i) — MA<—-DM)—-A.

Part (ii) |— MA iff |— -D(M)—-A.

Part (iii)) — MA—>NA iff — DIN)A—>DM)A.
Part (iv) — MA & NAiff }— D(M)A < D(N)A.

Proof. Part (i). — MA < —-DM)—-A. (1) |— MA & —d(MA) [Dual]. (2)
— —d(MA) <> =D(M)dA [PL, the definition of duality]. (3) — —D(M)dA
<> —-D(M)—-A [PL, Dual, replacement]. (4) }— MA <> —D(M)—-A [from 1, 2
and 3 by PL].

Part (ii). (1) — MA — —D(M)—A [from (i) and PL]. Suppose (2) —
MA. Then (3) }— —=D(M)—A [from 1 and 2 by (MP)]. Hence, (4) if }|— MA,
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then |— —D(M)—A [from 2 — 3 by conditional proof]. (5) |— -D(M)—A —
MA [from (i) and PL]. Suppose (6) — —D(M)—A. Then (7) }— MA [from 5
and 6 by (MP)]. So, (8) if |— —D(M)—A, then — MA [from 6 — 7 by
conditional proof]. It follows that |— MA iff — —D(M)—A [from 4 and 8 by
classical logic].

Part (iii). (1) — MA — NA iff 2) — =D(M)—A — —=D(N)—-A [from 1
by replacement] iff (3) |— D(N)—=A — D(M)—-A [from 2 by PL] iff (4) |—
D(N)A —-D(M)A [from 3 by PL and replacement]; in conclusion, (5) }— MA
— NA iff — D(N)A —>D(M)A [from 1 — 4 by classical logic].

Part (iv). Suppose (1) }— MA < NA. Then (2) — MA —NA [from 1 by
PL] and (3) — NA — MA [from 1 by PL]. (4) — D(N)A > D(M)A [from 2
and part (iii)]. (5) — D(M)A —-D(N)A [from 3 and part (iii)]. (6) — D(M)A
<> D(N)A [from 4 and 5 by PL]. Consequently, (7) if }— MA <> NA then }—
D(M)A <> D(N)A [by conditional proof from 1 — 6]. Suppose (8) — D(M)A
< D(N)A. Then (9) — D(M)A — D(N)A [from 8 by PL] and (10) }—
D(N)A —->D(M)A [from 8 by PL]. (11) |— NA — MA [from 9 and part (iii)].
(12) — MA —NA [from 10 and part (iii)]. (13) }— MA«<NA [11, 12, PL].
Consequently, (14) if — D(M)A <> D(N)A, then |— MA <> NA [from 8 — 13
by conditional proof]. It follows that (15) — MA < NA iff }|— D(IM)A &
D(N)A [from 7 and 14 by classical logic]. B

Comment 13. Note that both the duality theorem and the duality
corollary are abbreviated “Dual”. When any theorem or any rule that is part
of one of these propositions is used, we will indicate this by writing “Dual” in
the justificatory entry.

The following theorem illustrates how the duality corollary can be used.

Theorem “Dual” theorem Theorem “Dual” theorem

1 Op—OO0p T(1) PPp—Pp 70p—Op T(7) Pp— Op

2 Pp—OPp T(2) POp— Op 80p—Sp T(8) Op—Pp
30p—p T3)p—><Cp 9 Op—0OOp T(9) OGPp—Pp

4 Op—O0p T@4) OCp— Op 10 Pp— OPp T(10) GOp— Op
Sp—0OCp T(5) COp—p 11 OOp—OOp T(11) OPp—>P<Op
6 Cp—=0OCp T(6) SOp— Op 12 OOp — OOp T(12) POp— OPp

Table 4

Theorem 14. Let S be a normal alethic-deontic system. Then n is a theorem
in S if and only if T(n) is a theorem in S (for 1<n<12 in table 4).

Proof. This follows immediately from the duality corollary part (iii). In
every case n has the form MA — NA and T(n) the form D(N)A—>D(M)A. &
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Comment 15. In the table 4 I have called T(n) “dual” theorems since T(n)
may be derived from n (for 1 <n<12) by Dual. However, in a strict sense
T(n) is of course not the dual of n.

4.1.4 More rules of inference in MADL

I will end this section by proving a set of new derived rules that are
admissible in every ad system (theorem 16). First, we will introduce some
new concepts.

All rules that can be derived in dK and in aK also hold in MADL. Some
of these rules have a similar form as is easy to see. Let ® be any of the
following operators: O, P, 00 or &. Then every rule of the following kind
holds in MADL: if — A — B, then |— ®A — ®B. Let us call a rule of this
kind a monotic rule of type I (a MI rule). Let ® be any of the following
operators: F, U, © or 8. Then every rule of the following kind holds in
MADL: if |— A— B, then | — ®B — ®A. We shall say that a rule of this kind
is a monotonic rule of type II (or a converse monotonic rule) (a MII rule).
Both type I and type I rules are called monotonic.

Theorem 16 (The inference rule theorem I). Let S be a normal ad
system and let M and N be affirmative OPOJ<> modalities. By an affirmative
OPO< modality we mean a modality, i.e. a finite sequence, possibly empty,
of the operators —, O, P, 0 and <, in which — occurs an even number of
times (including zero). Then the following sentence is a theorem in S: A =
MA — NA if and only if S has any of the following theorems or rules of
inference: A’ = D(N) > D(M)A, (R1) if }—s A — B then |—g MA — NB, or
(R2) if —s A—B, then |—s D(N)A — D(M)B.

Proof. We assume throughout that S is a normal ad system. To prove this
theorem it is sufficient to establish how to obtain (i) A’ from A, (ii) A from
A’, (iii) (R1) from A, (iv) A from (R1), (v) (R2) from (R1), and (vi) (R1)
from (R2), in S. (ConP = Conditional Proof.)

Part (i) and part (ii) follow directly from the duality corollary.

Part (iii). From A to (R1). We assume that S includes MA — NA and
then show (R1): if — s A—B, then }|— s MA — NB.

1. —sA—B [Assumption]

2. —sNA—NB [1, Repeated applications of MI rules]
3. —s MA—NA [Given]

4. —s MA—NB [2,3,PL]

5. If — s A—>B, then }— s MA— NB. [ConP 1-4]
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Part (iv). From (R1) to A. We assume that (R1), if — g A— B then |— g
MA —NB, is a rule of inference in S and then prove A: MA—NA.
1. F—sA—>A [PL]
2. —s MA—NA [1,R1]

Part (v). From (R1) to (R2). Suppose that (R1), if — ¢ A— B then |— ¢
MA —NB, is a rule of inference in S. We must prove that (R2), if —s A—B
then —g D(N)A — D(M)B, is a rule of inference in S too.

1. —sA—B [Assumption]

2. F—sA—>A [PL]

3. —s MA—NA [2,R1]

4. — s DON)A—->D(M)A [3, Dual corollary]
5. — s DOIM)A —-D(M)B [1, Repeated applications of MI rules]
6. — s DOIN)A—D(M)B [4,5,PL]

7. If }— s A— B, then }— s D(IN)A—D(M)B [1-6, ConP]

Part (vi). From (R2) to (R1). We suppose that S includes (R2), if —g A
— B then }—g D(N)A — D(M)B, and then show that (R1), if — ¢ A— B then
— s MA —NB, is included in S too.

1. —sA—B [Assumption]

2. F—sA—>A [PL]

3. — s DON)A—->D(M)A [2, R2]

4. —s MA—NA [3, Dual corollary]
5. —sNA—NB [1, Repeated applications of MI rules]
6. — s MA—>NB [4,5,PL]

7. If — s A—>B, then }— s MA—NB [1-6, ConP] W

Example 17. The following examples are consequences or instances of
theorem 16. (i) If S includes OA — OA, then: if |— s A— B, then }— s OA—
OB. (i) If S includes (JA — OA, then: if — s A— B, then |— s (JA — OB.
(iii) If S includes OA — OA, then: if |— s A— B, then |— ¢ A —PB. (iv) If
S includes (JA — OA, then: if |— ¢ A — B, then |— ¢ PA — OB. (See
sections 4.4.3 and 4.5.3.) (v) If S includes OA — JOA, then: if — s A—B,
then — § OA — OJOB. (vi) If S includes PA — [(OPA, then: if — s A— B,
then |— ¢ PA— [PB.

We will now begin to consider some extensions of MADL.

4.2 aKDdKad<

aKDdKadd, the smallest normal alethic-deontic logic that includes the
axiom aD (i.e. the sentence Op — <p), is the same system as MADL +
{aD}. We will also call this system S2. Like every normal alethic-deontic
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system aKDdKadd includes PL, the axioms aK and dK, the usual
definitions of the alethic and deontic operators, modus ponens, [I-
necessitation and O-necessitation. Every normal alethic-deontic system that
includes aD is a normal aKDdKadd-system. In other words, any normal
alethic-deontic system that is an extension of aKDdKadd is a normal
aKDdKadJ-system. Since aKDdKadd does not contain any mixed axioms,
any axioms that contain both alethic and deontic operators, it is an ad
combination. More precisely, it is an ad combination of the purely alethic
system aKD and the smallest normal deontic system OK.
We will now consider what the ad octagon looks like in this system.

4.2.1 The alethic-deontic octagon
Figure 2 is a picture of the alethic-deontic octagon in aKDdKadd. It is
interpreted in the same way as the ad octagon in section 4.1.

N T T T
\ /
\ /
\ /
\ /
OP, —|P—|p \ / Fp, —|U—|p
F_|p,_\Up \\\\ \\ II //’/ 0—|p, —|Pp
SR

-7 VA S
Pp, —|Oﬂp ,’/ / \ \\\ Up, —|F—|p
—|Fp, U—|p // \\ —|0p, P—|p
/ \
Y/ \Yy
/ \

Figure 2. The Alethic-Deontic Octagon, MADL + {aD} (S2).
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A dashed line connects sentences that are contradictories, e.g. Op and P—p,
and ©p and Op. An arrow from a sentence, A, to another sentence, B,
indicates that A implies B; e.g. Op — ——p and Sp — O—p are theorems in
MADL + {aD}. A dotted line between two sentences, A and B, represents
the fact that A and B are subcontraries, e.g. we can prove that Opv O—p and
—<p v —p are theorems in the current system. Finally, a dotted line with
long dots between two sentences, A and B, indicates that A and B are
contraries, for instance (p and <p, and ©—p and —=<Cp; i.e. =(OpA<p) and
—(<—p A —=<p) are theorems in MADL + {aD} (see Ronnedal (2010) for
more on these concepts). We state this result formally.

Theorem 18. A/l of the relationships displayed in figure 2 hold in every
normal alethic-deontic aKDdKad@-system.

Proof. This follows immediately from the fact that aKDdKad< includes
OK and aKD. ®

Remark 19. Note that a aKDdKadJ-system that is a proper extension of
aKDdKadd may contain more relations than those displayed in figure 2.
The system aKDdKDadd is, for instance, a proper extension of
aKDdKadd. The ad octagon for this system is displayed in figure 7. As can
be seen, this system includes e.g. the sentences Op — Pp and Fp — P—p,
which are not theorems in aKDdKad@. However, no aKDdKadd-system
lacks any of the theorems indicated in figure 2. Similar remarks apply to
several other theorems involving the ad octagon stated in this paper.

4.3 aKdKDad<

aKdKDadd is another example of an ad combination. It is identical to
aKdSDLadd, i.e. to the ad combination of the purely alethic system aK (see
Chellas (1980)) and the purely deontic system Standard deontic logic (SDL)
(see Ronnedal (2010)). In other words, aKdKDadd is the smallest normal
alethic-deontic logic that includes the axiom dD, i.e. the sentence Op — Pp.
Accordingly, aKdKDad<d = MADL + {dD}. We will also call this system
S3. Since it is a normal alethic-deontic system aKdKDadd includes PL, the
axioms aK and dK, the usual definitions of the alethic and deontic operators,
modus ponens, [I-necessitation and O-necessitation. A normal aKdKDadd-
system is any normal alethic-deontic system that includes dD, or in other
words, any normal alethic-deontic system that is an extension of
aKdKDadd.
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Let us consider some properties of this system.

4.3.1 The alethic-deontic octagon
The alethic-deontic octagon in aKdKDad® is similar to the ad octagon in
aKDdKadd. The differences are due to the fact that aKdKDadd includes
dD while aKDdKad@ includes aD. The similarities depend upon the formal
similarities between these axioms.

Theorem 20. A/l of the relationships displayed in figure 3 hold in every
normal alethic-deontic aKdKDadQD-system.

Proof. This follows immediately from the fact that aKdKDad@ includes
SDL and aK. ®

\ /
\ /
\ /
\ /
\ /
F—p,-Up S~ \\ II _-" O—p, —Pp
Ssa_ v 77

-~ !/ \ RN
-7 Y S
Pp, =O-p T e ey L N T Up, —~F—p
—|Fp, U—|p // \\ —|0p, P—|p
/ \
/ \
/ \
/ \

Figure 3. The Alethic-Deontic Octagon, MADL + {dD} (S3).
Next we turn to two ad systems that include mixed axioms: aKdKadOC and

aKdKadMO. OC and MO are two of the most interesting mixed axioms we
will consider.
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4.4 aKdKadOC

aKdKadOC is the smallest normal alethic-deontic logic that contains the
axiom OC, i.e. the sentence Op — Op. Therefore, aKdKadOC = MADL +
{OC}. We will also call this system S7. Since it is a normal alethic-deontic
system aKdKadOC includes PL, the axioms aK and dK, the usual
definitions of the alethic and deontic operators, modus ponens, [I-
necessitation and O-necessitation. A normal aKdKadOC-system is any
normal alethic-deontic system that includes OC, or in other words, any
normal alethic-deontic system that is an extension of aKdKadOC.

Let us consider some properties of this system.

First of all we note that O(Op — <p) is a theorem in aKdKadOC. OC’
follows immediately from OC by O-necessitation. Accordingly, OC' is a
theorem in every aKdKadOC-system.

Next we turn to the alethic-deontic octagon in aKdKadOC.

4.4.1 The alethic-deontic octagon in aKdKadOC
Every system considered so far has been an ad combination, i.e. a
combination of a purely alethic and a purely deontic system (see above).
However, aKdKadOC is not a system of this kind, since OC includes both
alethic and deontic operators. This is an example of a mixed axiom. When
OC is added to MADL several interesting theorems follow. Figure 4 displays
the relationships between primary alethic and deontic sentences in
aKdKadOC.

Theorem 21. All of the relationships displayed in figure 4 hold in every
normal alethic-deontic aKdKadOC-system.

Proof. Most of the proofs are quite easy and are left to the reader. (Table
5 includes a list of some of the theorems that are displayed in figure 4.) B

Theorems

Op — Pp —(Op A Fp) Ppv O—p
Fp— O—p —(Op A <p) P—pv <p
Fp — —=0Op —(Op A O—p) Pp v =Op
<p — —=0p —(O—p A Op) —Op vV Op
<p — P—p —(O=p A ©—p) —O0—p v O—p

Fp—Bp —(F=p A O—p) —Fpv O—p
<p — Up —(Fp A ©—p) —F—pv Op

Table 5
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Pp, -O—p Up, =F—p
—Fp, U=p —Op, P—p

Figure 4. The Alethic-Deontic Octagon, MADL + {OC} (S7).

Note that all of the sentences in table 5 are equivalent in the system
aKdKadOC. So, MADL + any sentence in table 5 is deductively equivalent
with aKdKadOC. All sentences in table 5 stand or fall together. If we accept
one of them we should accept all the others and if we reject one, we should
reject all the others.

Since OC is one interpretation of the so-called ought-can principle,
aKdKadOC tells us something about what follows by accepting this
principle.

4.4.2 Some theorems including necessary implications
I will soon establish some derived rules in aKdKadOC. But first I will
consider some theorems that include necessary implications.

Theorem Intuitive reading
@) Op—q — Op—<q)  Ifitis necessary that p implies g, then it is possible that q
if it is obligatory that p.
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(i) (OpAOp—q)— <q If it is obligatory that p and it is necessary that p implies
q, then it is possible that q.

@iii) Op— @ —>q)—> <q)  Ifit is obligatory that p, then it is possible that q if it is
necessary that p implies q.

(iv) Op—q) — (dOp—Pq) If it is necessary that p implies q, then it is permitted that
q if it is necessary that p.

v) (OpaO@p-—-q)—Pq If it is necessary that p and it is necessary that p implies
q, then it is permitted that q.

vi) Op— p—q) —Pq) If it is necessary that p, then it is permitted that q if it is
necessary that p implies q.

(vii) O(p— q) = (Fq—> Hp) If it is necessary that p implies g, then it is unnecessary
that p if it is forbidden that q.

(viii) (FqA O(p — q)) > Hp If it is forbidden that q and it is necessary that p implies
q, then it is unnecessary that p.

(ix) Fq—->O@p-q) —Hp) If it is forbidden that g, then it is unecessary that p if it is
necessary that p implies q.

(x) Op—q —> (q—>Up) Ifitis necessary that p implies g, then it is unobligatory
that p if it is impossible that q.

xi) (qA0@—q)—>Up If it is impossible that q and it is necessary that p implies
q, then it is unobligatory that p.

xi)) <©q— (O@ —>q — Up) Ifitis impossible that g, then it is unobligatory that p if it
is necessary that p implies q.

Table 6
Theorem 22. All sentences in table 6 are theorems in aKdKadOC.

Proof. Part (ii) and part (iii) follow immediately from part (i) by PL.
Likewise part (v) and part (vi) follow from part (iv), part (viii) and part (ix)
from part (vii), and part (xi) and part (xii) from part (x), all by PL. So, we
only have to show part (i), part (iv), part (vii) and part (x). I will leave part
(vii) and part (x) to the reader and prove the rest.

Part (i). O(p— q) — (Op = <Oq)

1. Op—q) — (Op— <q) [aK]
2. Op - $p [0C]
3. O(p — q) = (Op — <q) [1,2,PL]

Step (1) is a theorem in the minimal alethic modal system aK. So, it is a
theorem in every normal alethic and alethic-deontic system. We have
indicated this by writing aK in the justificatory entry. Part (i) says that if it is
necessary that p implies q, then if it is obligatory that p then it is possible that
q.

Part (iv). O@p — q) — (0p —»Pq)

50



Alethic-Deontic Logic and the Alethic-Deontic Octagon

1. O — q) — (Op —»0q) [aK]
2. Oq — Pq [T21 q/p]
3. O — q) = (Op —»Pq) [1,2, PL]

Part (iv) claims that if it is necessary that p implies q, then if it is necessary
that p then it is permitted that q. Step (1) is the axiom aK, step (2) is obtained
from theorem 21 by substituting q for p and step (3) is deduced from (1) and
(2)byPL. H

We are now in a position to prove some derived rules.

4.4.3 Some derived rules in aKdKadOC

Derived Rules Intuitive reading
(i) If — A — B, then — OA —» OB If A implies B is a theorem, then OA implies
OB is a theorem.
(ii) If — A — B, then — OA — PB If A implies B is a theorem, then CJA implies
PB is a theorem.
(iii) If — A — B, then — FB — 8A If A implies B is a theorem, then FB implies
BB is a theorem.
(iv) If — A — B, then |— ©B —» UA If A implies B is a theorem, then <B implies

UA is a theorem.
Table 7

Theorem 23. All rules in table 7 are derived rules in aKdKadOC.

Proof. 1 will prove part (i) and part (ii), part (iii) and part (iv) are left to
the reader.

Derived rule (i). If — A — B, then — OA — OB. If A implies B is a
theorem, then OA implies OB is a theorem.

Proof. Suppose (1) — A — B. Then, (2) — O(A — B) [from 1 by OI-
necessitation]. Hence, (3) — OA — B [from 2 and theorem 22]. It follows
that (4) if — A — B, then |— OA — B [by conditional proof from 1-3
discharging the assumption].

Derived rule (ii). If— A — B, then — OA — PB. If A implies Bis a
theorem, then CJA implies PB.

Proof. Suppose (1) — A — B. Then (2) }— O(A — B) [from 1 by [I-
necessitation]. (3) — O(A — B) — (A — PB) [by theorem 22]. So, (4)
— OA — PB [from 2 and 3 by MP]. Consequently, (5) if — A — B, then
— OA — PB [by conditional proof from 1-4 discharging the assumption]. ®
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4.4.4 Conjunctive and disjunctive

obligations, permissions, necessities and possibilities

Let us consider some theorems that include conjunctive and disjunctive
obligations, permissions, necessities and possibilities.

Theorem Informal reading
@) (OpAOq)— O(paq) Ifitis obligatory that p and it is obligatory that g, then it is
possible that p and q.

(i1) (OpAaOq) —>P(paq) Ifbothpand q are necessary, then it is permitted that p and
q.
(iii) (OpvOq)— <C(pvq) Ifitis obligatory that p or it is obligatory that g, then it is
possible that p or q.
(iv) (Opv0Oq)—> P(pvq) Ifeither p or q is necessary, then it is permitted that p or q.
) O(pAq)— (Opa<$q) Ifitis obligatory that p and g, then both p and q are
possible.
(vi) O(pAaq) — (PpAPq)  Ifitis necessary that p and q, then it is permitted that p and
it is permitted that q.
Table 8
Theorem 24. Every sentences in table 8 is a theorem in aKdKadOC.
Proof. Straightforward. Ronnedal (2010) may be helpful. B
In section 4.4.6 we will see how to generalise this theorem.

4.4.5 More rules
Let us consider some more derived rules.

Derived Rule
(i) If — (A;Vv..v A,) > A, then |— (OA; v...v OA,) > CA (forn > 0)
(i1) If — (A;Vv..v A,) > A, then |— A — (UA| A...A UA,) (forn>0)
(iii) If— (A;Vv..vA,)) — A, then |— (A, v..vJA,) > PA (forn > 0)
(iv) If— (A;Vv..vA,) — A, then — FA — (BA| A.ABA,) (forn>0)
) If — (A A..A Ap) = A, then |— (OA; A...A OA,) > OA (forn>0)
(vi) If — (A A...A Ap) = A, then |— A — (UA, v...v UA,) (forn > 0)
(vii) If — (A) A..A Ay) > A, then — (OA| A..A TOA,) —» PA (forn>0)
(viii) If — (A; A..A Ay) > A, then |— FA — (BA, v..v BA,) (forn>0)
(ix) If — A = (A V..V A,), then |— OA — (OA; v..v OA,) (forn>0)
(x) If — A = (A V..V A,), then |— (GA| A..A A, > UA (forn>0)
(xi) If— A— (A Vv..vA,), then |— OOA — (PA; v...v PA),) (forn>0)
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(xii) If— A > (A v...v A,), then |— (FA, A..A FA,) > BA (forn>0)

(xiii) If— A > (A A..A Ay), then f— OA — (OA| A..A OAY) (forn > 0)

(xiv) Ifl— A = (A A..A A)), then |— (A, v..v ©A,) » UA (forn=>0)

(xv) If— A = (A| A..A Ay), then |— JA — (PA| A...A PA,) (forn=>0)

(xvi) If— A = (A| A...A Ay), then |— (FA, v...v FA,) - BA (forn=>0)
Table 9

Theorem 25. All rules in table 9 are derived rules in aKdKadOC.
Proof. Left to the reader. Ronnedal (2010) may be helpful. B

4.4.6 Generalisations of distribution theorems

Theorem Theorem

@) (Op1 A...A Opy) = O(P1 Ao.A Pr) (@iv) (Op1 Vv...v Opn) = P(p1 V...V pn)

(ii) (Opi A...A Opy) = P(p1 A-..A D) W) O(p1 A-e.A Do) = (Op1 A OPa)

(i)  (Op; V...v Opy) = O(pr V...V pa) Takgl\;i?o O(p1 A-..A pn) = (Pp1 A...A Ppn)
Theorem 26. All sentences of the forms in table 10 are theorems in
aKdKadOC.

Proof. Part (i). (Op; A...A Op,) = O(P1 A-oA Po)-
L. (p1 AeeeA Pn) = (P1 AveA Dr) [PL]
2. (Op;1 A...A Opp) = O(P1 AveeA Pr) [1, T25(v)]
Part (i) says that if it is obligatory that p; and ... and it is obligatory that p,,
then it is possible that p; and ... and p,. So, a conjunction is possible if each
conjunct is obligatory. The proof uses T25(v): if }— (A; A..A A,) = A, then
— (OA A...AOA,) — OA. Note that the sentence on line (1) is of the form
(A; A...A Ap) = AL An alternative proof uses O-distribution and OC like this.
1. O(p1 A-e.A Pn) = O(P1 A-.A D) [OC, p1 A...A Po/P]
2. (Op; A..A Opn) = O(P1 AveeA Do) [1, Dist]
See Ronnedal (2010) for more on how various deontic operators distribute.

Part (ii). (Op; A...A Opn) = P(p1 A-..A Po).
Part (ii) claims that a conjunction is permitted if each conjunct is necessary.
In other words, if it is necessary that p; and ... and it is necessary that p,, then
it is permitted that p; and ... and p,. The proof is similar to the proof of part
(1), but this time use T25(vii): if F— (A; A...A Ap) = A, then |— (OA| A.A
0A,)—>PA.

Part (iii). (Op; v...v Op,) = O(pi V...V po).
According to part (iii) a disjunction is possible if any disjunct is obligatory.
That is, if it is obligatory that p, or ... or it is obligatory that p,, then it is
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possible that p; or ... or p,. The proof is similar to the proof of part (i) but
uses T25(i): if — (A Vv..vA,) > A, then |— (OA;Vv...vOA,) = CA.

Part (iv). (Cp; v...v Op,) = P(p; V...V po)-
Part (iv) asserts that if it is necessary that p; or ... or it is necessary that p,,
then it is permitted that p; or ... or p,. So, a disjunction is permitted if any
disjunct is necessary. The sentence follows directly from PL and T25(iii):
if — (A;v..vA,)—>A, then |— (OA,v..vOA,) > PA.

Part (v). O(p; A...A pn) = (Op1 A-eA Op).
Part (v) follows immediately from PL and T25(xiii): if — A = (A A...AAY),
then |— OA — (CAjA..A OA,). According to the sentence each conjunct is
possible if a conjunction is obligatory. I.e. if it is obligatory that p; and ...
and p,, then it is possible that p; and ... and it is possible that p,.

Part (vi). O(p; A...A Pn) = (Pp1 A...A Ppy).
Part (vi) says that it is permitted that p; and ... and it is permitted that p, if it
is necessary that p; and ... and p,. So, if a conjunction is necessary, then each
conjunct is permitted. The proof is similar to the proof of part (i) but uses
T25(xv): if F—m A—> (A A...AA)), then |— OOA — (PA|A...APA,). B

Theorem 27. (i) MADL + OC includes OC', Op — <p and Op — Pp. (i)
All of the following systems are deductively equivalent: aKdKadOC,
aKDdKadOC, aKdKDadOC and aKDdKDadOC.

Proof. Left to the reader. B

4.5 aKdKadMO

The smallest normal alethic-deontic logic that includes the axiom MO, i.e.
the sentence Clp — Op, is aKdKadMO. Accordingly, aKdKadMO =
MADL + {MO}. We will also call this system S4. Since it is a normal
alethic-deontic system aKdKadMO includes PL, the axioms aK and dK, the
usual definitions of the alethic and deontic operators, modus ponens, [I-
necessitation and O-necessitation. A normal aKdKadMO-system is any
normal alethic-deontic system that includes MO, or in other words, any
normal alethic-deontic system that is an extension of aKdKadMO.

Let us consider some properties of this system.

4.5.1 The alethic-deontic octagon

Figure 5 displays the alethic-deontic octagon in the system aKdKadMO. The
octagon is interpreted as usual.
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Figure 5. The Alethic-Deontic Octagon, MADL + {MO} (S4).

Theorem 28. All of the relationships displayed in figure 5 hold in every
normal alethic-deontic aKdKadMO-system.

Proof. Most of the proofs are quite easy and are left to the reader. Table
11 includes a list of some theorems displayed in figure 5. Note that all
sentences in this table are equivalent in aKdKadMO. MADL + any sentence
in table 11 is deductively equivalent with MADL + {MO}. B

Theorems
Pp—><Cp —(OpA—Op) FpVv <op

<p—Fp —(PpAO—p) OpV O—p
—Op ——p —(OpAP—p) O—pV Op
<p——Pp —(PpA<p) OpV—Op
Op— F—=p —(©—=pA—0p) F—pV O—p
Pp—>—<p —(=FpA<p) FpVv—-0O-p
Up—Bp —(Op A—F—p) —PpV Op

Table 11
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4.5.2 The means-end principle

Perhaps the most interesting feature of the system aKdKadMaO is that the so-
called means-end principle is a theorem in it. According to the means-end
principle every necessary consequence of what ought to be ought to be. Table
12 includes this principle and several similar theorems.

(@

(i)

(iii)

(iv)

™)

i)

(vi)

(viii)

(ix)

x)

(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

Theorem

O — @ — (Op = Oq)

(OpAO@P—q)— Oq

Op — (d(p - @ = Oq)

O —q — (Pp > Pq)

(PpAO(p—q) > Pq

Pp— (O( — 9 - Pg)

O — q@ — (Fq— Fp)

(FqA O — q) - Fp

Fq— (0@ — 9 — Fp)

O — g9 — (Op - Og)

(@OpA 0@ — q) - O0q

Op — (@@ - 9 — Og)

Op—>9 - Pp—> <9

PpAOpP—q) > <q

Pp— (0@ — 9 - <9

O — 9 - (©q—> Fp)

Informal reading

If it is necessary that p implies g, then if it ought to be that
p then it ought to be that q.

If it ought to be that p and it is necessary that if p then q,
then it ought to be that q.

If it ought to be that p, then if it is necessary that p implies
q then it ought to be that q.

If it is necessary that p implies q, then if it is permitted
that p it is permitted that q.

If it is permitted that p and it is necessary that p implies q,
then q is permitted.

If it is permitted that p, then if it is necessary that p
implies q then q is permitted.

If it is necessary that p implies q, then if it is forbidden
that q then it is forbidden that p.

If it is forbidden that q and it is necessary that p implies q,
then it is forbidden that p.

If it is forbidden that g, then if it is necessary that p
implies q then it is forbidden that p.

If it is necessary that p implies q, then it is obligatory that
q if it is necessary that p.

If it is necessary that p and it is necessary that p implies q,
then it is obligatory that q.

If it is necessary that p, then if it is necessary that p
implies q it is obligatory that q.

If it is necessary that p implies q, then it is possible that q
if it is permitted that p.

If it is permitted that p and it is necessary that p implies q,
then it is possible that q.

If it is permitted that p, then if it is necessary that p
implies q it is possible that q.

If it is necessary that p implies q, then it is forbidden that
p if it is impossible that q.
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(xvil) (©qA 0@ —q) — Fp If it is impossible that q and it is necessary that p implies
q, then it is forbidden that p.

(xviil) ©q— (O(p —» q) = Fp)  Ifitis impossible that q, then if it is necessary that p
implies q it is forbiden that p.

(xix) O —q) — (Uq—>H8p) Ifitis necessary that p implies q, then it is unnecessary
that p if it is unobligatory that q.

xx) (UgqaO(p—q)—Ep If it is unobligatory that q and it is necessary that p
implies q, then it is unnecessary that p.

(xxi) Uq— (d(@p—>q)—>8p) Ifitis unobligatory that q, then if it is necessary that p
implies q it is unnecessary that p.

Table 12
Theorem 29. All sentences in table 12 are theorems in aKdKadMO.

Proof. 1 will prove part (i), part (vii), part (xiii) and part (xvi) to illustrate
the method, and leave the rest to the reader. The philosophically most
interesting parts are perhaps part (i) — (ix). These theorems can be used to
derive obligations from obligations, permissions from permissions and
prohibitions from prohibitions, with the help of necessary implications.

Part (i). O(p—>q)— (Op—0q)

1. O(p—q9) —(0Op—0q) [dK]
2. Op—q9—->0(p—q) [MO, p—q/p]
3. Op—>q9)—>(Op—>0q) [1,2,PL]

Part (i) is one version of the means-end principle. Part (ii) and (iii) are similar
versions of this principle. It is easy to derive part (ii) and part (iii) from part
(i). The means-end principle is intuitively plausible and can be very useful
when deriving “new” obligations from “old” obligations. Suppose for
instance that it ought to be that everyone is honest. Then it follows that you
ought to be honest. For it is necessary that if everyone is honest then you are
honest.
Part (vii). J(p—q)—>(Fq—Fp)

1. O(p—q)— (Fq—Fp) [OK]
2. Op—q9—>0(p—q) [MO, p—q/p]
3. O(p—>q)—(Fq—Fp) [1,2,PL]

Note that the sentence at step (1) is provable in the deontic system OK; and
since every normal ad system includes OK, this sentence is a theorem in
MADL + MO too. Part (vii) is also a quite useful principle. Suppose it is
forbidden that you smoke in this restaurant. Then it follows that it is
forbidden that you smoke a cigar in this restaurant. For it is necessary that if
you smoke a cigar in this restaurant you smoke in this restaurant.
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Part (xiii). O(p—q)— (Pp— <q)

1. Op—->9—>0p—9 [MO, p—q/p]
2. O(p—q) —(Pp—Pq) [OK]

3. Pqg—><q [T28, q/p]

4. O(p—q)—>Pp—><q) [1,2,3,PL]

Note that the sentence at step (2) is provable in the deontic system OK; and
since every normal ad system includes OK, this sentence is a theorem in
MADL + MO too.

Part (xvi). J(p—q)— (<>q—Fp)

1. Op—q9)—>Pp—><q) [(xiii)]
2. Pp—> <) (©q—Fp) [PL, adIT etc.]
3. Op—q)—>(q—Fp) [1,2,PL] W

4.5.3 Some derived rules in aKdKadMO

Derived Rules Informal reading

@) If }— A — B, then |— OA — OB If A implies B is a theorem, then CJA
implies OB is a theorem.

(ii) If }— A — B, then |— PA —» OB If A implies B is a theorem, then PA
implies OB is a theorem.

(iii) If}— A — B, then |— ©B — FA If A implies B is a theorem, then <B
implies FA is a theorem.

(iv) If}— A — B, then |— UB — BA If A implies B is a theorem, then UB
implies HA is a theorem.

Table 13
Theorem 30. All rules in table 13 are derived rules in aKdKadMO.
Proof.

Derived rule (i). If — A — B, then }|— OA — OB. If A implies B is a
theorem, then CJA implies OB is a theorem.

Proof. Suppose that (1) — A — B. Then (2) — O(A — B) [by O-
necessitation from 1]. (3) — O(A — B) —» (OA — OB) [by theorem 29(x)].
Hence, (4) — OA — OB [from 2 and 3 by modus ponens]. It follows that
(5) iff— A — B, then — OA — OB [by conditional proof from 1-4
discharging the assumption].

Derived rule (ii). If — A — B, then |— PA — OB. If A implies B is a
theorem, then PA implies B is a theorem.

Proof. Suppose (1) —A — B. Then (2) — O(A — B) [from 1 by OI-
necessitation]. Hence, (3) — PA — OB [from 2 and theorem 29(xiii)]. It
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follows that (4) if — A — B, then |— PA — OB [by conditional proof from
1-3 discharging the assumption].

Derived rule (iii). If — A — B, then }|— $&B — FA. If A implies Bis a
theorem, then <-B implies FA is a theorem.

Proof. Suppose that (1) —A — B. Then (2) |— O(A — B) [from 1 by
O-necessitation]. Hence, (3) |— <B — FA [from 2 and theorem 29(xvi)]. It
follows that (4) if |— A — B, then }— <$B — FA [by conditional proof from
1-3 discharging the assumption].

Derived rule (iv). If — A — B, then |— UB — 8A. If A implies B is a
theorem, then UB implies A is a theorem. Proof is left to the reader. B

4.5.4 Conjunctive and disjunctive

obligations, permissions, necessities and possibilities

Let us consider some theorems that include conjunctive and disjunctive
obligations, permissions, necessities and possibilities.

Theorem Intuitive reading
@) (OpAOq)—> O(Aq) Ifbothpand qare necessary, then it is obligatory that p
and q.

(ii) O(pAq)— (OpAOq) Ifitisnecessary that p and g, then it is obligatory that p
and it is obligatory that q.
(iii) PlpAq) = (OpAa<q) Ifitis permitted that p and g, then it is possible that p and it

is possible that q.

(iv) (©pv<q) > F(paq) Ifitisimpossible that p or it is impossible that g, then it is
fobidden that p and q.

) <(pvq —> FpaFq) Ifitisimpossible that p or q, then both p and q are
forbidden.

(vi) (Opv0Oq)— O(pvq) Ifitisnecessary that p or it is necessary that g, then it is
obligatory that p or q.

(vii) (PpvPq) > O(pvq) Ifitis permitted that p or it is permitted that g, then it is
possible that p or q.

(viii)  P(pvq) — (Cpv <&q)  Ifitis permitted that p or g, then either p or q is possible.

(ix) (©pAr<q) — F(pvq) Ifitisimpossible that p and it is impossible that g, then it is
forbidden that p or q.

Table 14
Theorem 31. Every sentence in table 14 is a theorem in aKdKadMO.
Proof. Straightforward. B
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4.5.5 The contingency octagon in aKdKadMO

It is possible to construct an alethic-deontic contingency octagon that
displays the relationships between the alethic and deontic “contingency”
operators. Figure 6 shows us how these concepts are related in aKdKadMO.

NA

Figure 6. The Contingency Octagon in aKdKadMO.

4.5.6 More rules in aKdKadMO

Derived Rules

@) If— (AiVv..vA,)) > A, then |— (OA, v...v JA,)) - OA (forn>0)
(i1) If— (A;v..vA,) — A, then |— (PA; v..v PA,)) - OA (forn=>0)
(iii) Iff— (A;v..vA,) > A, then |— ©A — (FA| A...A FA,) (forn>0)
(iv) If — (A1 v..v Ay = A, then — UA — (BA| A..A BA,) (forn>0)
) If — (A1 A..A An) = A, then — (OA| A...A OA,) - OA (forn>0)
(vi) If — (A1 A..A Ap) = A, then |— UA — (BA, v...v BA,) (forn>0)
(vii) If — A = (A, v..v A,), then |— PA — (CA, v..v OAY) (forn > 0)
(viii) Iff— A > (A1 V...V A,), then |— ($A| A..A OA,) = FA (forn>0)
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(ix) If— A — (A; AvA A, then — TIA — (OA; A...A OA,) (forn > 0)

x) If— A — (A AnA Ay, then f— PA — (OA; A.n OAY) (forn > 0)

(xi) Ifl— A — (A AA A, then — (OA, v..v SA,) — FA (forn > 0)

(xii) If— A — (A AA Ay), then 'rbl (IIJSAl v.vUA,) — BA (forn > 0)
able

Theorem 32. All rules in table 15 are derived rules in aKdKadMO.
Proof. Left to the reader. B

Theorem Theorem

(@ (@pi A...A Bpn) = O(p1 A-..A Pr) (v) <(p1 V...V pu) = (Fpi A...A Fpy)
(i) O A-.Aps) = (Op1 A...A Opy) (vi)  (Opi V...vOpn) = O(p1 V...V pr)
i)  P(pi AccA Pn) = (Op1 AA Opn) (vii) (Ppi Vv...v Pp,) = O(pr V...V P)
@iv)  (©pi V..vSpn) = F(pi A..A DY) (viii)  P(p1 V...V pn) = (Op1 V...V Opn)

(ix)  (©piA..ASpy) = F(pi V...V py)

Table 16
Theorem 33. Every sentence in table 16 is a theorem in aKdKadMO.
Proof. Straightforward. B

4.6 aKDdKDadJ

The smallest normal alethic-deontic logic that includes the axioms aD and
dD, i.e. the sentences Op — Pp and Op — <Op, is aKDdKDadd.
Consequently, aKDdKDadd = MADL + {aD, dDj}. It is our first example of
an ad system that contains more than one additional axiom. Nevertheless, the
system is an ad combination of the pure alethic logic aKD and the pure
deontic logic dKD (SDL), since it doesn’t contain any mixed axioms, in
contrast to our two previous systems aKdKadOC and aKdKadMO. We will
also call this system S5. aKDdKDadd includes PL, the axioms aK and dK,
the ordinary definitions of the alethic and deontic operators, modus ponens,
O-necessitation and O-necessitation, like every normal alethic-deontic
system. We shall say that any normal alethic-deontic system that is an
extension of aKDdKDadd, i.e. any normal alethic-deontic system that
includes aD and dD, is a normal aKDdKDadJ-system.

Let us consider some properties of this system.

4.6.1 The alethic-deontic octagon

Figure 7 displays the alethic-deontic octagon in the system aKDdKDadd.
The octagon is interpreted as usual.
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Figure 7. The Alethic-Deontic Octagon, MADL + {aD, dD} (S5).

Note that the figure essentially is a combination of the ad octagon for the
system aKDdKadd and the ad octagon for the system aKdKDadd. Now,
this should come as no surprise, since aAKDdKDadd includes every sentence
in aKDdKadd and in aKdKDadd. Furthermore, since MADL + {aD, dD}
contains these systems, it is a aKDdKadJ-system, as well as a aKdKDadJ-
and a aKDdKDad@-system. No mixed axioms are included in the system.
Hence, no interesting relationships between deontic and alethic propositions
are forthcoming.

The next system we consider includes both a pure additional alethic
axiom and a mixed axiom.

4.7 aKDdKadMO

The smallest normal alethic-deontic logic that includes the axiom aD and
MO, i.e. the sentences [p — <p and Op — Op, is aKDdKadMO.
Accordingly, aKDdKadMO = MADL + {aD, MO}. We will also call this
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system S6. Since it is a normal alethic-deontic system aKDdKadMO
includes PL, the axioms aK and dK, the usual definitions of the alethic and
deontic operators, modus ponens, [J-necessitation and O-necessitation. A
normal aKDdKadMO-system is any normal alethic-deontic system that
includes aD and MO, or in other words, any normal alethic-deontic system

that is an extension of aKDdKadMO.
Let us consider the alethic-deontic octagon in aKDdKadMO.

4.7.1 The alethic-deontic octagon

Op, —|P—|p
Fﬂp, —|Up

Pp, —|0—|p
—le, Uﬁp

Ne 7]
\\\ //I
\ /
v X
\/ \/

S~ VANEEEAN -
. \\( \\ // > - L
RV BRSNS
/. /,’/'\\\\ AN
Ve e /I \ S AN
/,/’ / \ \\\\
- / \ ~
/AN
/N
/TN
Y/ AR
/ -\
Y

Fp, —|U—|p
O—|p, —|Pp

Up, —|F—|p

Figure 8. The Alethic-Deontic Octagon, MADL + {aD, MO} (S6).

4.8 SADL, aKdKadOCMO

aKdKadOCMO is the smallest normal alethic-deontic logic that includes the
axioms OC and MO, i.e. the sentences Op — <p and Op — Op. Accordingly,
aKdKadOCMO = MADL + {OC, MO}. We will also call this system S8 or
Standard alethic-deontic logic (SADL). Since it is a normal alethic-deontic
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system aKdKadOCMO includes PL, the axioms aK and dK, the usual

definitions of the alethic and deontic operators, modus ponens, [I-

necessitation and O-necessitation. A normal aKdKadOCMO-system is any

normal alethic-deontic system that includes OC and MO, or in other words,

any normal alethic-deontic system that is an extension of aKdKadOCMO.
Let us consider some properties of this system.

4.8.1 The alethic-deontic octagon

Figure 9. The Alethic-Deontic Octagon, aKdKadOCMO, SADL (S8).

4.8.2 Deductively equivalent systems

It is easy to see that all systems above are included in aKdKadOCMO.
MADL is included since it is included in every normal ad system. Every
extension of minimal alethic-deontic logic discussed so far in this paper is
constructed by adding one or several of the axioms aD, dD, OC and MO to
this system. The sentences aD and dD are theorems already in aKdKadOC.
So, it is obvious that these sentences are provable also in aKdKadOCMO.
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Hence, aKdKadOCMO includes aKDdKadd, aKdKDadd and
aKDdKDadd. Furthermore, it is also obvious that aKdKadOC,
aKdKadMO, and aKDdKadMO are included in aKdKadOCMO since dD,
OC and MO are theorems in aKdKadOCMO. Section 5 includes
information about the relationships between all logics mentioned in this
essay.

This completes our discussion of various alethic-deontic systems in this
paper. We will end this article with some information about how the systems
in this essay are related to each other.

5. Relationships between systems

Figure 10 displays the relationships between the systems we have discussed
in this paper. Systems higher up in the diagram are stronger than systems
lower down. So, S8 is the strongest system and S1 the weakest system. All
other systems are included in S8 and S1 is included in all other systems.

{dD, MO}, {MO, OC},
{aD, dD, MO}, {aD, MO, OC},
{aD, MO, OC}, {aD, dD, MO, OC}

{OC}, {aD, OC},
{dD, OC}, {aD, OC, dD}

Figure 10. Relationships between some ad systems.
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Nr Systematic name | Extensions of MADL | Equivalent Systems

S1 aKdKadd MADL

S2 aKDdKadd MADL + {aD}

S3 aKdKDadd MADL + {dD}

S4 aKdKadMO MADL + {MO}

S5 aKDdKDadd MADL + {aD, dD}

S6 aKDdKadMO MADL + {aD, MO}

S7 aKdKadOC MADL + {OC} MADL + {aD, OC}, MADL + {dD,

OC}, MADL + {aD, dD, OC}
S8 aKdKadOCMO | MADL + {OC, MO} | MADL + {aD, MO}, MADL + {aD,
dD, MO}, MADL + {aD, OC, MO},
MADL + {aD, OC, MO}, MADL +
{aD, dD, OC, MO}

Comment 34. In this paper I have described a set of alethic-deontic systems
that include alethic and deontic operators that are used to symbolize various
deontic and alethic modal concepts. But all systems have many possible
informal readings. In Roénnedal (2012) I mention some interpretations of
various bimodal systems. If we interpret [J as an epistemic operator and O as
a doxastic operator, we obtain a set of epistemic-doxastic systems. If [J is
read as “It is always the case that” or “It is and it is always going to be the
case that” and O as “It is always going to be the case that”, we obtain a set of
bimodal temporal systems, etc. So, the results in this paper should be
interesting not only to alethic-deontic logicians, but to any logician who
wants to develop some kind of bimodal system.
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Allmidnna Normer och Strukturen hos Normativa
System: En Logisk Analys

Daniel Ronnedal

Abstrakt

Den hér uppsatsen handlar om allmdnna eller generella eller universella
normer och strukturen hos normativa system. Allménna normer ar normer
som uttalar sig om alla entiteter eller individer eller fenomen av ett visst slag.
Men vilken logisk form har de? Kan de anvindas for att hirleda andra
generella normer och normer som handlar om enskilda individer? Det tycks
forekomma atminstone tva olika typer av foreskrifter av denna typ: normer
dir vi kvantifierar 6ver handlingar eller beteenden och normer dir vi
kvantifierar 6ver personer, ménniskor eller levande eller medvetna varelser. 1
den hér uppsatsen undersdker jag den logiska formen hos dessa. Jag
koncentrerar mig pd den senare typen och visar hur det dr naturligt att
anvinda en kvantifierad deontisk logik for att symbolisera foreskrifter av
detta slag och forstd deras logiska form. Jag beskriver hur det d4r mojligt att
anvénda allménna normer for att hérleda andra allménna eller partikuldra
normer och hur man med hjélp av en eller flera allménna foreskrifter kan
bygga upp ett helt normativt system.

1. Introduktion

Den hir uppsatsen handlar om allmdnna eller generella eller universella
normer och strukturen hos normativa system. Allménna normer ar normer
som uttalar sig om alla entiteter eller individer eller fenomen av ett visst slag.
Det tycks forekomma atminstone tva olika typer av allmidnna normer: normer
dir vi kvantifierar 6ver handlingar eller beteenden och normer dir vi
kvantifierar dver personer, mdnniskor eller levande eller medvetna varelser.

Har foljer ndgra exempel pé den forsta typen.

1. Alla 16gner ar forbjudna.

2. Inga l6ftesbrott ar tillatna.
3. Alla drép é&r otillatna.
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Satser som dessa tycks tala om handlingar av olika slag: 16gner, 16ftesbrott
och drép. De sdger ndgot om vilka normativa egenskaper dessa handlingar
har. (1) uttrycker t.ex. att alla 16gner har egenskapen att vara férbjudna; eller
med andra ord, varje handling som har egenskapen att vara en l6gn har
egenskapen att vara forbjuden. Enskilda, partikuldra handlingar kan tillhora
olika kategorier och olika kategorier av handlingar kan ha olika normativa
egenskaper. For att symbolisera normativa satser av detta slag kan vi anvidnda
oss av vanlig predikatlogik. Vi kan t.ex. formalisera (1) — (3) pa f6ljande sétt:
(1) Vx(Lx — Fx), (2) =3x(Bx A Tx), och (3) Vx(Dx — —Tx), dir Lx ldses ”x
ar en 16gn”, Fx ”x ar forbjuden”, Bx ”x &r ett 16ftesbrott”, Dx ”x ir ett drép”,
och Tx ”x ér tilldten”.

Har f6ljer ndgra exempel pa allménna normer av det andra slaget, dir vi
kvantifierar 6ver personer, manniskor eller levande eller medvetna varelser.

4. Alla bor vara érliga.

5. Ingen far utsédttas for tortyr eller oméansklig bestraffning.
6. Alla bor hélla sina 16ften.

7. Ingen far véldta nagon.

8. Alla bor gora nagot for att hjdlpa ménniskor i ndd.

9. Det ar fel om ndgon utsdtts for mobbning.

Niér vi talar om “alla” och “ingen” 1 dessa satser, sé tycks vi kvantifiera 6ver
méinniskor, personer eller levande eller medvetna varelser. Det &r naturligt att
tolka “alla” som “alla manniskor (personer, levande eller medvetna varelser)”
och ”ingen” som ”ingen ménniska (person, levande eller medveten varelse)”;
detsamma giller interpretationen av nagon”. Om man vill vara noggrann nér
man formulerar olika allménna normer av detta slag, bor man explicit ange
vad man kvantifierar 6ver, om det ir alla ménniskor, personer, levande eller
medvetna varelser eller nagot annat. Ofta framgér det av kontexten vad en
viss talare, forfattare eller avsédndare avser. Vissa generella normer kan vara
begransade pa olika satt. Betrakta t.ex. foljande tillatelse:

10. Alla svenska medborgare far rosta i valet.

Denna norm ger inte alla ménniskor rétt att rosta i valet utan endast alla
svenska medborgare. Satsen uttrycker likvél en allmén norm, eftersom den
talar om alla individer av ett visst slag.

I den hér uppsatsen undersoker jag den logiska formen hos allménna
normer. Jag koncentrerar mig pa den senare typen och visar hur det ar
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naturligt att anvinda en kvantifierad deontisk logik for att symbolisera sddana
normer och forsta deras logiska form.

Allminna normer kan ocksa kallas for ”moraliska regler” eller ”moraliska
principer”. Dessa begrepp kan dock nyttjas i flera olika betydelser. Sa, 14t
mig séga lite mer om hur uttrycken ifraga anvinds i den hir uppsatsen.'

Ibland antas moraliska regler vara nédvandiga och gélla for alltid, vid alla
tidpunkter. Vi skall inte gora nagra sddana antaganden i den hér uppsatsen.
Den allménna normen att ingen far roka pa offentliga platser kan t.ex. gélla
vid en viss tidpunkt &ven om den inte géller vid alla tidpunkter. P4 samma
sitt kan man ténka sig att det 4r sant att ingen far roka pa offentliga platser i
nagon mojlig vérld, &ven om det inte &r sant i alla mojliga vérldar. (Se avsnitt
2, for mer om detta.)

Vi skall inte heller anta att allmdnna normer behdver vara sanna. Vi kan
tala om falska allmdnna normer. Vi kan t.ex. sdga att foljande sats dr eller
uttrycker en allmdn norm: “Ingen far borsta tinderna”, &ven om vél ingen
nagonsin har argumenterat for en sadan norm eller tror att den &r sann. Vi dr
inte 1 den hdr uppsatsen intresserade av sanningsvdrdena hos olika allménna
normer, utan av den logiska formen hos foreskrifter av detta slag.

Vi antar inte heller att en moralisk regel maste vara undantagslos. Det kan
finnas allménna regler som har undantag. Vi kan kalla en sadan princip for en
tumregel. En tumregel &r, enligt detta sprakbruk, en allmén norm som kan ha
undantag. Om denna regel har undantag, s& innebér det att inte alla instanser
av principen dr sanna. Att det 4ndd handlar om en tumregel innebér att
atminstone manga eller de flesta instanser &r sanna. “Ingen far ljuga”
uttrycker kanske en sadan tumregel. Oavsett om det finns instanser av regeln
att ingen far ljuga som é&r falska eller inte, sd betraktar vi denna sats som en
allmédn norm i den hidr uppsatsen. Allmdnna normer kan &dven explicit
innehélla olika undantag eller villkor, som i f6ljande fall: Ingen som inte har
korkort far kora bil”.

Inte séllan backas allménna normer upp av olika sanktioner. Man kan t.ex.
fa straff for olika brott mot lagen. Vi skall dock inte anta att brott mot
allménna normer nédvandigtvis méste ha nagra péafoljder. Inte heller skall vi
anta att allménna normer i regel efterlevs. En allmén norm kan vara sann
dven om ingen nagonsin foljer den.

Vi ér i den hér uppsatsen framforallt intresserade av den logiska formen
hos allmdnna normer och strukturen hos normativa system. Moralfilosofer

2 9

' For mer information om olika betydelser av “moraliska regler”, “standarder” och “principer”,
se Goldman (2013).
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talar ofta om moraliska regler och principer, men férvanansvirt lite har sagts
om den hir artikelns huvudtema i den filosofiska litteraturen. Foljande
uppsats ar darfor mer dn vil motiverad.

Uppsatsen dr indelad i fem avsnitt. I avsnitt 2 séger jag mer om den
logiska formen hos allménna och partikuléra normer och jag visar hur det ar
mojligt att hdrleda enskilda normer ur generella normer. Avsnitt 3 handlar om
hur det dr mo6jligt att hédrleda allménna normer ur allménna normer, med eller
utan information om olika nédvéandiga samband. I avsnitt 4 visar jag hur man
med hjélp av en eller flera allmdnna normer kan bygga upp ett helt normativt
system. Jag tar ocksd upp frdgan om hur man mojligtvis kan berittiga de
forsta principerna eller de mest grundliggande normerna i sddana system.
Avsnitt 5 innehéller en kort sammanfattning och slutsats.

2. Hirledning av partikulira normer ur allméinna normer

Det dr viktigt att klargéra skillnaden mellan allmidnna och partikulira,
enskilda eller singuldra normer. Enskilda normer uttalar sig inte om alla
entiteter av ett visst slag, utan handlar om enskilda individer. Foljande satser
ar exempel pa partikuldra normer.

11. Lisa bor tala sanning.
12. Det dr forbjudet att Johan misshandlar Erik.
13. Det ér tillatet att Sandra rostar i valet.

(11) handlar t.ex. om vad Lisa bor gora, inte om vad ndgon annan bdr gora.
Normer av detta slag kan generaliseras med avseende pa flera olika faktorer:
tid, plats, situation/mdjlig vérld, individ etc. Betrakta sats (11). Den allmédnna
norm som svarar mot denna enskilda norm uttrycks bést av foljande sats:

14. Alla bor tala sanning.
Har &r ett par andra allminna normer som paminner om (14).

15. Du bor tala sanning.
16. Alla 16gner é&r fel.

Om vi antar att “du” inte refererar till ndgon speciell person, sa tycks (15)
vara ekvivalent med (14). Om du” déremot refererar till en enskild individ,
s& dr (15) en partikuldr norm. Ibland tycks det som om satser av detta slag
anvénds for att uttrycka normer som ar nddvéandiga, omnitemporalt sanna och
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sanna Gverallt. ”Alla logner dr fel” antas d4 handla om absolut alla 16gner,
overallt, vid alla tidpunkter och i alla mdjliga vérldar. P4 samma sitt kan
”Alla” i (14) antas handla om a/la mdjliga personer i alla mojliga situationer,
vid alla tidpunkter och platser. Det dr mojligt att tolka satserna pa detta sitt,
men vill man vara mer noggrann ir det bittre att uttrycka sig mer precist.
”Alla” behover inte forstas sa generellt. Uttryckets rackvidd kan begriansas av
kontexten.

Lat oss betrakta ett exempel som inte handlar om normer. Om négon tittar
ut dver en parkeringsplats dér alla bilar &r blda och hévdar att alla bilar ar
blda, sa ar det rimligt att tolka detta pdstdende pd ett saddant sétt att det
handlar om alla bilar som star p& parkeringsplatsen vid just detta tillfalle.
Péstaendet &r inte nodvandigtvis falskt om det finns bilar pad ndgon annan
plats som inte &r blaa, eller om inte alla bilar pa parkeringsplatsen ar blda vid
nagon annan tidpunkt, t.ex. om en vecka eller for en manad sedan, eller om
det i ndgon annan mojlig situation (vdrld) &r fallet att inte alla bilar pa
parkeringsplatsen &r blda. Pa liknande sitt kan det forhalla sig med normer.

Pastaendet att alla bor tala sanning medfor inte att det &r nodvindigt att
alla bor tala sanning, eller att det &r sant vid alla tidpunkter, eller pa alla
platser. Det dr mojligt att det &r sant att alla bor tala sanning dven om det inte
ar ndodvéndigt sant. Det dr mojligt att det &r sant att alla bor tala sanning dven
om det inte dr sant vid alla tidpunkter. Det dr mojligt att det &r sant att alla
bor tala sanning dven om det inte dr sant pa alla platser. Nér jag talar om
allmdnna eller generella eller universella normer i den hér uppsatsen menar
jag normer som handlar om alla personer, mdnniskor, individer, eller levande
eller medvetna varelser. Sddana normer behover inte vara nddvéndiga, sanna
vid alla tidpunkter, platser osv., &ven om de kan vara det. Om man menar att
en norm dr nddvéandig osv. bor man explicit uttrycka detta, t.ex. pd foljande
sdtt: ”Det ar nédvdndigt att alla bor tala sanning”.

Med hjélp av en kvantifierad deontisk logik kan vi visa att enskilda
normer foljer ur allmdnna normer; (14) medfor tex. (11), dvs. foljande
argument ar giltigt.

Argument 1
Alla bor tala sanning.

Alltsé bor Lisa tala sanning.

Vi kan symbolisera detta argument i en kvantifierad deontisk logik pa
foljande sitt: VxOTx : OTI, dér ”Tx” lases ”x talar sanning” och ”1” refererar
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till Lisa. For att visa att ett argument &r giltigt kommer vi att anvinda s.k.
semantiska tablasystem. Den intuitiva tanken &r att en slutledning &r giltig om
och endast om det dr omojligt att slutsatsen &r falsk om alla premisser ar
sanna. For att visa att ett argument &r giltigt antar vi darfor att alla premisser
ar sanna och slutsatsen falsk. Om detta antagande leder till en motségelse,
kan vi sluta oss till att resonemanget dar giltigt. For mer information om
kvantifierad deontisk logik och de semantiska tablasystem som anvénds i den
hér uppsatsen, se Ronnedal (2012), (2012b), (2015). O, P och F é&r sats-
operatorer som tar vélformade formler som argument och ger vilformade
formler som vérde. "OA” lases ”Det &r obligatoriskt att A” eller "Det bor
vara fallet att A”, ”"PA” ldses ”Det ar tillatet att A” eller "Det far vara fallet
att A” och "FA” lases “Det dr forbjudet att A” eller ”Det ar fel att A”. I den
hér uppsatsen bortser vi dock fran att dessa system &r inbéddade i en temporal
dimension. Vi anvénder i regel possibilistiska kvantifikatorer om ingenting
annat anges. Foljande semantiska tabla bevisar att argument 1 ar giltigt.

VxOTx, 0
—0Tl1, 0
P-T1, 0

Osl
=TI, 1
OTL 0

TL 1

*

I det hér beviset har vi antagit att “Alla” i premissen varierar over alla objekt
i var domédn. Om vi antar att ”Alla” varierar 6ver alla ménniskor, méaste vi
lagga till premissen att Lisa dr en ménniska for att argumentet skall bli giltigt.
Detta argument ser ut pa foljande sétt.

Argument 2

Alla ménniskor bor tala sanning.
Lisa ar en ménniska.

Alltsé bor Lisa tala sanning.

Om det &ar uppenbart att Lisa dr en ménniska och vi begridnsar vara
kvantifikatorer till ménniskor, dr det ofta onddigt att explicit omndmna denna

74



Allménna Normer och Strukturen hos Normativa System

premiss. Hér foljer ett annat exempel pé ett giltigt argument som innehéller
en allmén norm som uttalar sig om en begrinsad méngd individer.

Argument 3

Alla svenska medborgare far rosta i valet.
Patrik ar en svensk medborgare.

Alltsa far Patrik rosta i valet.

Detta argument kan formaliseras pa foljande sitt: Vx(Sx — PRx), Sp : PRp,
dér ”Sx” ldses ”x &r en svensk medborgare”, "Rx” ”’x rostar i valet”, och "p”
refererar till Patrik.

Vx(Sx—PRx), 0
Sp, 0
O—|Rp, 0
Sp—PRp
PRp, 0
0Osl
Rp, 1
ﬂRp, 1
%

Bevisen av dessa argument &r enkla och kréver egentligen inte att vi infor en
speciell kvantifierade deontisk logik. De skulle kunna formaliseras i vanlig
predikatlogik, om vi betraktar ’bor tala sanning” och “far rosta i valet” som
monadiska predikat. Sddana formaliseringar blottldgger dock inte premisser-
nas logiska form lika fullstindigt som symboliseringarna ovan och inte alla
slutledningar ar av detta relativt enkel slag.

Lat oss undersdka nagra fler argument med premisser och slutsats som
har en nagot mer komplex form.

Argument 4

Om man &r berusad, sé ar det forbjudet att man kor bil.
Gunnar &r berusad.

Alltsé ar det inte tillatet att Gunnar kor bil.

Argument 4 kan i en kvantifierad deontisk logik symboliseras pa foljande
satt: Vx(Bx — FKx), Bg : —=PKg, dir ”Bx” ldses ”’x dr berusad”, ”Kx” ”’x kor
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bil” och ”g” refererar till Gunnar. Hela resonemanget tolkas alltsa pa foljande
vis. Premiss 1: Det géller for alla x att om x dr berusad, sa &r det forbjudet att
x kor bil. Premiss 2: Gunnar dr berusad. Slutsats: Det ar inte tillitet att
Gunnar kor bil. Argumentet ar intuitivt giltigt. Foéljande semantiska tabla
visar att slutsatsen foljer ur premisserna.

Vx(Bx—FKx), 0
Bg, 0
—PKg, 0
PKg, 0
Bg—FKg, 0
FKg, 0
O—|Kg, 0
0s1
Kg, 1
—|Kg, 1
%

Argument 5 nedan dr ocksa giltigt och kan bevisas pa liknande sdtt. Har ar en
symbolisering av premisser och slutsats: Vx(PKx — —Bx), Bg : FKg.
Predikat och termer tolkas som ovan. Beviset lamnas till ldsaren.

Argument 5

Det ar tillatet att man kor bil endast om man inte ar berusad.
Gunnar &r berusad.

Alltsa ar det forbjudet att Gunnar kor bil.

Lat oss avluta det hér avsnittet med ytterligare ett exempel pa ett giltigt
argument med en partikuldr norm som slutsats.

Argument 6

Ingen som saknar korkort far kora bil.
Alla som dr under 18 ar saknar korkort.
Karin &dr under 18 ar.

Alltsé ar det forbjudet att Karin kor bil.

Argument 6 kan symboliseras pa foljande sitt: —3x(Sx A PKx), Vx(Ux — Sx),
Uk : FKk, dar ”Sx” ldases ”’x saknar korkort”, ”Kx” ”x kor bil”, ”Ux” ”x ar
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under 18 &r” och ”k” refererar till Karin. Argument 6 &r intuitivt giltigt och
med hjélp av en kvantifierad deontisk logik kan vi bevisa detta.

—3x(SxAPKx), 0
Vx(Ux— Sx), 0
Uk, 0
—FKk, 0
Vx—=(SxAPKx), 0
PKk, 0
Uk—Sk, 0
Sk, 0
—(SkAPKk), 0
v N
—Sk, 0 —PKk, 0
* 0—-Kk, 0
0Os1
Kk, 1
—Kk, 1
*

Vi har nu gétt igenom ett antal exempel som visar hur man kan anvidnda
allmidnna normer for att hérleda enskilda normer. I flera fall krdvs &ven
“faktiska” premisser for att slutsatsen skall folja. Argumenten ovan &r
intuitivt giltiga och kan enkelt bevisas med hjilp av en kvantifierad deontisk
logik. Men allménna normer kan ocksd anvindas for att hirleda (andra)
allménna normer. I nésta avsnitt skall vi se nagra exempel pa detta.

3. Hiirledning av allménna normer ur allméinna normer

I det hér avsnittet visar vi hur man kan anvénda allmédnna normer for att
hérleda (andra) allmdnna normer. Vi borjar med ett par exempel som inte
kréver nagra extra premisser. Sedan skall vi ta upp nigra argument som
anvinder nddvéndiga implikationer.

Argument 7
Om nagon ménniska ar oskyldig, sa &r det forbjudet att hon straffas.
Det foljer att ingen oskyldig ménniska far straffas.

Argument 7 &r intuitivt giltigt. Bade premissen och slutsatsen &r generella

normer, de uttalar sig om a/la oskyldiga minniskor respektive ingen oskyldig
ménniska. Argumentet kan symbolisera pa foljande sétt i en kvantifierad
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deontisk logik: Vx(Ox—FSx) : =3x(OxAPSx), dar "Ox” ldses ’x &r en oskyldig
ménniska” och ”Sx” ldses 7x straffas”. Foljande semantiska tabla bevisar att
detta argument ar giltigt.
Vx(0x—FSx), 0
——3Ix(OxAPSx), 0
Ix(OxAPSx), 0
OcAPSc, 0
Oc, 0
PSc, 0
Oc—FSc, 0
FSc, 0
0-Sc, 0
0s1
Sc, 1
—|SC, 1
*

Argument 8 nedan kan bevisas pa liknande sitt. Har dr en symbolisering:
—3Ix(OxAPSx) : Vx(Ox— 0—-Sx). Symbolerna tolkas som ovan.

Argument 8
Ingen oskyldig ménniska far straffas.
Det foljer att om ndgon ménniska ar oskyldig, sa &r det obligatoriskt
att hon inte straffas.
—3x(OxAPSx), 0
—Vx(0Ox— 0—-Sx), 0
Vx—(0OxAPSx), 0
Ix—(0x—>0-=Sx), 0
—(0Oc—0-Sc), 0
Oc, 0
—|O—|SC, 0
PﬂﬁSC, 0
—(OcAPSc), 0
v N
—|OC, 0 —|PSC, 0
* 0O—Sc, 0
0s1
—|ﬂSC, 1
—|SC, 1
%
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Aven argument 8 ir intuitivt giltigt och innehaller en generell norm som
premiss och en generell norm som slutsats. Det &r ett positivt besked att vi
kan anvinda en kvantifierad deontisk logik for att bevisa detta. Att argument-
en ovan ar giltiga dr kanske inte s& forvdnande. Faktum &ir att premissen i
argument 7 ar logiskt ekvivalent med slutsatsen bade i argument 7 och 8. Alla
de allménna normerna (17) — (19) nedan &r alltsé logiskt ekvivalenta.

17. Ingen oskyldig ménniska far straffas.

18. Om nagon ménniska ar oskyldig, sa &r det forbjudet att hon
straffas.

19. Om nédgon ménniska &r oskyldig, sa dr det obligatoriskt att hon
inte straffas.

Vi skall nu undersdka hur man kan hérleda allminna normer fran allmédnna
normer med hjélp av nddvéndiga implikationer. I alla bevis nedan antar vi att
vart tablasystem innehaller regeln T-MO (Rénnedal (2012)). Denna regel
svarar mot det semantiska villkoret att den deontiska tillgénglighetsrelationen
ar inkluderad i den aletiska tillgdnglighetsrelationen. I alla system som
innehéller T-MO kan man bevisa att den s.k. mél-medel principen &r giltig.
Enligt denna princip foljer det att varje nddvindig konsekvens av ndgot som
ar obligatoriskt ocksa dr obligatorisk, eller — med andra ord — om det bor vara
fallet att A och det dr nodvéndigt att om A sa B, sé bor det vara fallet att B.
Detta dr en intuitivt rimlig princip, som &r mycket anvandbar.
Betrakta foljande allménna norm.

20. Ingen far mdrda nagon.

Denna norm, eller atminstone nagon norm som liknar denna norm véldigt
mycket, tycks forekomma i alla kéinda normativa (juridiska och moraliska)
system. Vi skall se hur man kan anvinda (20) for att harleda en méngd andra
generella normer. Forst skall vi emellertid sdga nagot om den logiska formen
hos denna foreskrift. Lat ”"Mxy” vara ett tva-stélligt predikat som ldses ”x
mordar y”. D4 kan (20) symboliseras pa foljande sitt i en kvantifierad
deontisk logik: —3xIyPMxy. Denna sats sdger: ”Det ar inte fallet att det finns
ett x sadant att det finns ett y sddant att det ar tillatet att x mordar y”.
—3IxdyPMxy é&r ekvivalent med (20b) —3xP3IyMxy, (20c) —P3IxIyMxy, (20d)
Fax3dyMxy, (20e) Vx—IyPMxy, (20f) Vx—PIyMxy, och (20g) VxF3IyMxy.
(20b) lédses: “Det &r inte fallet att det finns ett x sadant att det ar tillatet att det
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finns ett y sadant att x mordar y”. (20c) lases: ”Det ar inte tillatet att det finns
ett x sadant att det finns ett y sddant att x mordar y”. (20d) ldses: “Det ar
forbjudet att det finns ett x sédant att det finns ett y sddant att x mdrdar y”.
(20e) lases: ”Det giller for alla x att det inte ar fallet att det finns ett y sddant
att det &r tillatet att x mordar y”. (20f) lases: ”Det giller for alla x att det inte
ar tillatet att det finns ett y sddant att x mordar y”. Och (20g) lases: “Det
giller for alla x att det dr forbjudet att det finns ett y sddant att x mordar y”.
Dessa ekvivalenser visar pa ett tydligt sitt att (20) &r en allmén norm. (20)
handlar inte om enskilda personer, utan om a/la individer. Daremot kan man
givetvis anvéinda (20) for att hdrleda en méngd enskilda normer, t.ex. att det
ar forbjudet att Bjorn mordar Harald, att det inte &r tillatet att Conny mordar
Mark, och att det ar forbjudet att Anna mordar sig sjélv (dvs. det foljer att det
ar forbjudet att Anna begar sjalvmord). (20) séger darfor inte samma sak som
foljande norm.

21. Ingen far morda ndgon annan (&n sig sjalv).

(20) utesluter att det ar tillatet att Anna begar sjalvmord, men det gor inte
(21). (21) é&r forenlig med att det &r tillatet att Anna tar sitt liv, dvs. mordar
sig sjilv. Det tycks finnas tva mojliga ldsningar av (21). Enligt den forsta
medfor (21) att det &r tillatet att begd sjdlvmord; enligt den andra medfor (21)
inte detta. Givet den forsta ldsningen kan (21) symboliseras pa foljande sétt:
—IxPIy(—y = x A Mxy) A VxPMxx; givet den andra pa foljande sitt:
—3xPIy(—y =x A Mxy). Om (21) tolkas pé det andra sittet, sa foljer (21) ur
(20), men inte tvartom. Dvs. om ingen far mérda nigon, sé foljer det att ingen
far morda nigon annan (4n sig sjilv). Nar det kommer till kritan, kan man
dock fréga sig om inte den andra tolkningen &r béttre. I sa fall kan man hivda
att (21) pragmatiskt implicerar att det &r tillatet att begé sjdlvmord, men att
(21) inte medfor detta. Foljande yttrande tycks inte vara inkonsistent: ’Ingen
far morda nagon annan (4n sig sjilv). Faktum ér att ingen far morda nagon.”
(21) utesluter da inte att det &r tillatet att ta sitt liv, men medfor det inte.
Oavsett hur det forhéller sig med detta, skall vi koncentrera oss pé (20).
Betrakta foljande argument.

Argument 9

Ingen far morda nagon.

Det dr nddvéndigt att om x drénker y, s& mordar x y.
Alltsa far ingen dranka nagon.
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Den andra premissen skall tolkas pé ett sidant sétt att den géller for alla x och
y. Argument 9 dr intuitivt giltigt. Det tycks vara omdjligt att premisserna ar
sanna och slutsatsen falsk. Hur skulle det kunna vara sant att ingen far morda
nagon och att det ar nodvéndigt att om x drinker y, s& mordar x y, samtidigt
som det dr falskt att ingen far drinka nagon, dvs. samtidigt som det &r sant att
nagon far dranka ndgon? Anvénder vi klassisk logik eller deontisk logik utan
predikatlogik, tycks vi inte kunna symbolisera detta argument pa ett sddant
satt att slutsatsen foljer ur premisserna. Med hjdlp av en kvantifierad deontisk
logik kan vi dock bevisa att argument 9 ar giltigt. Detta talar for behovet av
en logik av den typ som anvénds i den hdr uppsatsen. Argument 9 kan
symboliseras pa foljande sitt i en kvantifierad deontisk logik: —3xJyPMxy,
VxVyO(Dxy — Mxy) : —3x3dyPDxy, ddr "Mxy” tolkas som ovan, "Dxy”
lases: ’x drénker y”, och "JA” ldses: ”Det ar (historiskt) nddvandigt att A”.
Foljande semantiska tabld bevisar att argument 9 ar giltigt.

—3x3dyPMxy, 0
VxVyO(Dxy — Mxy), 0
——3x3JyPDxy, 0
Ix3yPDxy, 0
JyPDcy, 0
PDcd, 0
Vx—3yPMxy, 0
—JdyPMcy, 0
Vy—PMcy, 0
ﬁPMCd, 0
0O-Mcd, 0
VyO(Dcy — Mcy), 0
O(Dcd — Mcd), 0
0Os1
Dcd, 1
—|MCd, 1
Orl
Dcd —» Mcd, 1
Mcd, 1
*

Vi har i symboliseringen av argument 9 anvint historisk ndodvandighet.
Argumentet gar dven igenom om vi anvénder t.ex. s.k. absolut nddvindighet
(Ronnedal (2012c¢)). Det &r latt att se att sd dr fallet. For om nadgonting &r
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absolut nodvéndigt, sd &r det historiskt nddvandigt. Premissen tycks vara
rimlig, om vi talar om historisk nddviandighet. Men kanske 4r det t.o.m.
absolut nddvindigt att om x drénker y, s& mordar x y. Oavsett hur det
forhaller sig med detta, sa ar vi hér intresserade av argumentets giltighet, inte
av deduktionens hdllbarhet. Och ett argument kan, som bekant, vara giltigt
dven om premisserna inte ér sanna.

Vi skall nu se hur den allmdnna normen (20), Ingen far mérda nagon, kan
anvéndas for att hdrleda en méngd andra allmidnna normer. Alla nddvéndiga
implikationer (22) — (25) nedan tycks vara sanna.

22. Det dr nddvindigt att om x skjuter ihjil y, s& mordar x y.

23. Det dr nodviandigt att om x stryper y till dods, sd mordar x y.

24. Det 4r nddvindigt att om x halshugger y, s& mordar x y.

25. Det dr nodvéndigt att om x ger y en dodlig dos gift, sd mordar x y.

Nagon kanske vill invidnda att det inte &r nddvéindigt att x mordar y om x
skjuter ihjél y, eftersom det dr mgjligt att x skjuter ihjél y av misstag. Lét oss
déarfor anta att ”x skjuter ihjal y” i detta sammanhang innebér att x skjuter
ihjal y med uppsat att doda y; Ovriga implikationer ovan skall tolkas pa
samma sdtt. Dessa nodvéindiga samband tillsammans med den allménna
normen (20) kan t.ex. anvédndas for att harleda de allmédnna normerna (26) —
(29) nedan.

26. Ingen far skjuta ihjal ndgon.

27. Ingen fér strypa ndgon till dods.

28. Ingen fér halshugga nagon.

29. Ingen fér ge ndgon en dodlig dos gift.

(20) och (22) medfor (26); (20) och (23) medfor (27) osv. Bevisen ser
likadana ut som beviset for argument 9 ovan. Faktum &r att man med samma
metod kan bevisa att alla sitt att morda nagon ar forbjudna.

Vi skall ga igenom ytterligare nagra giltiga argument som innehaller
allménna normer. Betrakta argument 10.

Argument 10

Ingen fér utsittas for tortyr.

Varje individ som utsétts for skendriankning utsétts nodvandigtvis for
tortyr.

Alltsa far ingen utsittas for skendrinkning.
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Argument 10 dr intuitivt giltigt. Skendrankning betraktas ofta som en form av
tortyr. Om detta &r riktigt, &r den andra premissen rimlig. Den forsta
premissen dr intuitivt mycket plausibel. FN:s allmidnna forklaring om de
minskliga réttigheterna innehéller t.ex. ett forbud mot tortyr (se ocksa
Ronnedal (2014)). Foljande semantiska tabld bevisar att argument 10 ar
giltigt. Slutledningen symboliseras pa foljande sétt: —3IxPTx, VxO(Dx — Tx)
: —3IxPDx, dér ”Tx” ldses ’x utsitts for tortyr” och ”Dx” ldses ”x utsitts for
skendrankning”.

—3IxPTx, 0
VxO(Dx — Tx), 0
—|—|3XPDX, 0
Vx—PTx, 0
IxPDx, 0
PDc, 0
—PTc, 0
OﬁTC, 0
O(Dc — Tc), 0
0s1
Dc, 1
—|TC, 1
Orl
Dc—Tc, 1
v N

—Dc, 1 Tc, 1

* *

Den allmédnna normen att ingen far utséttas for tortyr kan pé liknande sétt
anvindas for att visa att ingen far utséttas for ndgon form av tortyr. Men den
kan ocksa anvéndas for att harleda andra allmdnna normer, t.ex. den allmdnna
normen att ingen far tortera ndgon.

Argument 11

Ingen fér utsittas far tortyr.

Det giller for alla x och y att det &r nddvéndigt att om x torterar y, sa
utsitts y for tortyr.

Det foljer att ingen far tortera ndgon.
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Argument 11 kan i en kvantifierad deontisk logik symboliseras pa foljande
satt: —3IxPTx, VxVyO(Txy — Ty) : =3IxIyPTxy, dir "Txy” ldses ”x torterar
y” och ”Ty” lases "y utsitts for tortyr”. Foljande semantiska tabla bevisar att
denna slutledning ar giltig.

—3IxPTx, 0
VxVyO(Txy — Ty), 0
——3x3JyPTxy, 0
IxIyPTxy, 0
JyPTcy, 0
PTed, 0
Vx—PTx, 0
—PTd, 0
0—-Td, 0
0s1
Ted, 1
—Td, 1
VyO(Tey — Ty), 0
O(Ted — Td), 0

Orl
Ted — Td, 1
v N
—Ted, 1 Td, 1
* *

Notera att hdrledda allmidnna normer i sin tur kan anvéndas for att hirleda
enskilda normer. Péstaendet att ingen far utsdttas for skendrankning medfor
t.ex. att Lena inte far utséttas for skendridnkning, att det &r forbjudet att
Joakim utsitts for skendrankning och att det dr obligatoriskt att Oskar inte
utsitts for skendrankning osv.

Inte bara allménna normer som uttalar sig om vad som &r forbjudet eller
otillatet kan medfora andra allmédnna normer, utan dven generella foreskrifter
som talar om vad som bor vara fallet. Hér foljer ett par intuitivt giltiga
argument som innehaller den allménna normen att alla bor vara érliga.

Argument 12

Alla bor vara drliga.

Alla som ar drliga haller nédvandigtvis sina 16ften.
Alltsa bor alla hélla sina 16ften.
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Argument 12 kan i en kvantifierad deontisk logik symboliseras pa foljande
sitt: VXOAx, VxO(Ax — Lx) : VxOLx, dir ”Ax” ldses ”x ir drlig” och ”Lx”
lases ”x haller sina 16ften”. Foljande semantiska tabld visar att slutsatsen
foljer ur premisserna.

VxO0Ax, 0
VxO(Ax — Lx), 0
—VxOLx, 0
Ix—OLx, 0
—|OLC, 0
P—|LC, 0
OAc, 0
O(Ac — Lc), 0
Osl
—|LC, 1
Ac, 1
Orl
Ac—Lc, 1
Le, 1

*

Det tycks s.a.s. ligga i drlighetens vésen att alla som é&r drliga nodvéndigtvis
haller sina 16ften. Detta medfér inte att det alltid ar sant att alla &rliga
personer haller sina 16ften eller att detta &r nodvdindigt. Men det &r inte vad
véara premisser sdger. Premiss 2 séger bara att det géller for alla x att det ar
nddvéndigt att om x dr &rlig sa haller x sina 16ften. Detta kan vara sant vid en
viss tidpunkt och falskt vid en annan tidpunkt eller sant i en mojlig vérld och
falskt i ndgon annan mojlig virld. Argumentets giltighet innebér bara att det
ar nodvandigt att om premisserna dr sanna, sa dr ocksé slutsatsen sann.

Pa samma sitt tycks det ligga i drlighetens vésen att det dr nodvandigt att
om nagon #r #rlig, si ljuger hon inte. Arliga minniskor talar sanning.
Betrakta nu f6ljande argument.

Argument 13

Alla bor vara érliga.

Det dr nodvéndigt att om x ar drlig, sé ljuger hon inte.
Det foljer att ingen far ljuga.
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Argument 13 kan i en kvantifierad deontisk logik symboliseras pa foljande
sitt: VxOAx, VxO(Ax — —Lx) : —3IxPLx, dir "Ax” tolkas som ovan och
”Lx” lises “x ljuger”. Aven detta argument #r intuitivt giltigt. Hir ir ett
semantiskt tablabevis.

VxOAx, 0
VxO(Ax — —Lx), 0
—|—|3XPLX, 0
IxPLx, 0
PLc, 0
OAc, 0
O(Ac = —Lc), 0
Os1

Vi har nu gétt igenom ett antal exempel pa hur bade enskilda och allminna
normer kan hérledas ur allmidnna normer. Det borde vara timligen uppenbart
hur den grundlidggande analysen kan utvidgas och tillimpas p& andra
generella normer. I nésta avsnitt skall vi se hur man kan konstruera hela
normativa system med hjélp av en eller flera allménna normer.

4. Normativa system

I det hir avsnittet skall vi se hur man kan konstruera hela normativa system
med hjélp av en eller flera allménna normer. Forst skall vi emellertid ta upp
nagra epistemologiska eller kunskapsteoretiska fragor. Vi har visat hur man
kan hirleda bade enskilda och allminna normer ur allménna normer. Det
tycks darfor som om vi skulle kunna anvdnda generella normer for att
berittiga véra partikuldra normer eller enskilda moraliska omddémen, samt
dven atminstone nagra icke-grundldggande normer. Betrakta t.ex. foljande
konversation.

Moralfilosofen.  Det ar forbjudet att Mats drénker Stefan.
Skeptikern. Varfor det? (Hur vet du det?)
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Moralfilosofen.  Dérfor att ingen far drinka ndgon. Och om ingen far
drinka nagon, s foljer det att Mats inte far drinka Stefan.

Skeptikern. Varfor far ingen drinka nagon? (Hur vet du att ingen far
drinka nagon?)

Moralfilosofen.  Dérfor att ingen far morda ndgon och det dr nddviandigt att
om x drénker y, s& mordar x y. Frdn dessa péstdenden
foljer det att ingen far drénka négon.

Skeptikern. Varfor far ingen morda nadgon? (Hur vet du att ingen fér
morda nadgon?) ...

Moralfilosofens svar pd skeptikerns fragor &r i varje fall relevant och
berittigat. Det dr nddviandigt att om ingen far drénka nagon, sé far Mats inte
drinka Stefan. Vi har ovan bevisat att detta argument &r giltigt. S& om
premissen &r sann, dr ocksa slutsatsen sann. Det dr nddvéndigt att om ingen
far morda nagon och det dr nodviandigt att om x drénker y sa mordar x y, sa
far ingen drénka ndgon. Vi har ovan bevisat att detta argument ar giltigt. S&
om premisserna r sanna, ar ocksa slutsatsen sann.

Vi har dock inte sagt ndgonting om sanningsvdrdena hos de olika
premisserna och slutsatserna i vara argument. Det &r létt att se att om
skeptikern fortsdtter sina fragor, s& kommer vi forr eller senare fram till
nagon allmidn norm som inte kan hédrledas fran ndgon annan mer
grundldggande allmédn norm pé detta sitt. De enda alternativen tycks vara att
vi dtminstone i princip kan fortsdtta i odndlighet och berittiga generella
principer med mer generella principer eller att det &r tillatet att vi ror oss i en
cirkel och att en allmidn norm kan beréttiga sig sjalv (direkt eller indirekt via
andra normer, virden och/eller faktapastienden)>. Om vi bortser ifrin dessa
alternativ, tycks det som om vi maste anta att det finns vissa allménna normer
som inte ir beréttigade genom att vara hérledbara ur andra allmidnna normer,
om vi nagonsin &r berittigade att tro pa ndgra normer verhuvud taget. Men
vad har vi for skil att tro pd en allmén norm som inte hérleds ur en annan mer
allmén norm? Finns det ndgra allménna normer av detta slag som &r sanna?
Och hur vet vi i sa fall att de &r sanna? Dessa fragor &r epistemologiska och
metaetiska snarare dn logiska. Det tycks i regel vara fallet att vi inte kan
bevisa sddana normer. Normen att ingen far morda nagon é&r t.ex. inte logiskt

% Varje sats medfor sig sjilv. Men det ér inte rimligt att anta att varje sats som medfor sig sjélv &r
berittigad. For i sa fall skulle alla satser 6verhuvudtaget vara berittigade, dven t.ex. satser som &r
uppenbart falska och logiskt motségelsefulla.

87



Daniel Ronnedal

sann. Men hur kan vi di berittiga sddana allméinna normer? Ar det nigonsin
fornuftigt att tro pé en grundldggande generell moralisk princip?

Det finns inte utrymme att i den hir uppsatsen diskutera dessa
epistemologiska och metaetiska fragor i detalj. Men jag vill &ndd nidmna
nigra mojliga svar.’

Enligt nihilisten och errorteoretikern dr inga normativa satser sanna.* Om
kunskap implicerar sanning, vilket ménga anser, kan vi d& inte ha kunskap
om nagra fundamentala allminna normer.

Skeptikern fornekar i regel inte att vissa normativa satser kanske &r sanna.
Men hon “hévdar” att vi inte kan ha ndgon moralisk kunskap eller att vi
atminstone faktiskt inte har nadgon sddan kunskap. Vi vet dérfor inte om det
finns nigra grundliggande allminna normer som &r sanna.’

Den fundamentistiska generalisten menar att det finns atminstone nagon
allmén norm som &r fundamental och beréttigad oberoende av sina logiska
relationer till andra normer.® Vi kan t.ex. omedelbart inse att de fundamentala
normerna ar sanna med hjilp av en intuition (intuitionisten)’, eller vart
fornuft (rationalisten)®. Eller ocks kan vi pa ett eller annat sitt sluta oss till
de allminna normerna fran partikulira normer som vi t.ex. kan ha kunskap
om tack vare att vi har ett moralisk ”sinne” eller moraliska perceptioner
(moral sense-teoretikern och teoretikern som tror att det finns moralisk

* For en allmén inledning till kunskapsteorin, se t.ex. Dancy (1985), Dancy och Sosa (red.).
(1992), och Sosa och Kim (red.). (2000). For en introduktion till moralisk epistemologi, se
Sayre-McCord (2013), Sinnott-Armstrong och Timmons (red.) (1996), och Zimmerman (2010).
Se ocksa Acton (1939), Brink (2014), Justin (2013), Machan (1982), McPherson (2013), och
Mothersill (1959).

* Joyce (2001), Mackie (1977), Olson (2014).

* Fér en allmin introduktion till skepticismen, se t.ex. Hookway (1990). Mer information om den
moraliska skepticismen hittar man bl.a. i Copp (1991), Sinnott-Armstrong (1996), (2006),
(2008), Walker (1996), och Zimmerman (2013).

® Fundamentismen &r en av de #ldsta teorierna inom epistemologin. Ett antal historiskt
inflytelserika moralfilosofer tycks ha varit fundamentister, t.ex. Sidgwick (1907) och Moore
(1902). For en allmén inledning, se Hare (1996), Timmons (1987).

7 En rad filosofer brukar klassificeras som intuitionister, t.ex. Samuel Clarke, John Balguy,
Richard Price, William Whewell, Henry Sidgwick, G. E. Moore, W. D. Ross, C. D. Broad, H. A.
Prichard, A. C. Ewing, Robert Audi (2004), Michael Huemer (2005), Derek Parfit, och Russ
Shafer-Landau (2003) (se Russell (2013)). For mer information om etiska intuitioner och etisk
intuitionism, se Audi (1993), (2004), Brody (1979), Bruce (2013), Dancy (2014), Huemer
(2005), Ross (1930), Sandberg och Juth (2011), Shafer-Landau (2003), Shaw (1980), Singer
(2005), Sinnott-Armstrong (2002), van Thiel och van Delden (2009), Véyrynen (2008).

8 Bl.a. R. Cudworth, S. Clarke, J. Balguy. och I. Kant brukar klassificeras som rationalister (se
Birondo (2013)). Se ocksa Gill (2007), Kant (1785), och Peacocke (2004).

88



Allménna Normer och Strukturen hos Normativa System

observation eller perception)’, ett samvete, eller sirskilda “moraliska”
erfarenheter, kinslor, emotioner eller begir (t.ex. vissa fenomenologer)'’.
Induktivisten hévdar att vi kan hirleda de grundlidggande allméinna
normerna med hjilp av observation, eller partikuldra intuitioner eller kénslor
med hjélp av enkel induktion. Hur vet vi t.ex. att alla bor vara arliga?
Induktivisten kan anvénda ett induktivt argument av foljande slag.

a bor vara arlig

b bor vara arlig,

¢ bor vara arlig. ..

Alltsé bor alla vara arliga.

Enligt induktivisten har vi forst kunskap om enskilda fall och sluter oss
induktivt till den allmdnna normen. Denna allmidnna norm kan sedan
anvindas for att hiarleda enskilda normer som kan testas mot vara moraliska
observationer, intuitioner, kénslor e.dyl.

Enligt abduktivisten eller anhdngaren av den hypotetisk-deduktiva
metoden, kan de grundliggande allmdnna normerna beréttigas abduktivt. Vi
antar dem hypotetiskt som forklaring till vdra moraliska observationer,
intuitioner, kénslor e.dyl. Har foljer ett exempel pa en abduktiv slutledning.

a bor vara arlig

b bor vara arlig,

¢ bor vara arlig. ..

Den bésta forklaringen till att a bor vara arlig, och att b bor vara érlig,
och att ¢ bor vara érlig... ar att alla bor vara drliga. (Om det vore sant
att alla bor vara érliga, sa skulle det vara sant att a bor vara érlig...)
Alltsa bor alla vara arliga.

Varken induktiva eller abduktiva argument ar logiskt giltiga; det 4r mojligt att
premisserna i ett induktivt eller abduktivt argument ar sanna och slutsatsen
falsk. Men premisserna antas likvdl ge stdod &t slutsatsen. Om vi vet att
premisserna &dr sanna, kan vi veta att slutsatsen ar sann. Men vér kunskap ar
inte ofelbar.

° For mer information om moralisk observation, se t.ex. Cuneo (2003), McBrayer (2010a),
(2010b), McGrath (2004), Prinz (2007), Savigny (1983). For ndgra olika tolkningar av “moralisk
perception”, se t.ex. Blum (1991), (1994), Jacobson (2005), och Starkey (2006).

' Brentano (1889), Lemos (1989), Oddie (2005), Scheler (1913—1916). Se ocksa Audi (1998).
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Enligt den intuitiva induktivisten, kan vi & kunskap om de grundldggande
allménna normerna genom en intuitiv induktion. En intuitiv induktion &r
nagonting annat &n en enkel induktion. Enligt den intuitiva induktivisten
reflekterar vi forst 6ver enskilda fall, t.ex. 6ver att det &r fel att a mordar b, att
det &r fel att c mordar d, att det &r fel att e mordar f osv. Nér vi har gjort detta
tillrdckligt manga génger inser vi att dessa enskilda exempel endast ar
instanser av en mer generell regel, ndmligen att ingen far morda ndgon. Detta
bor jamforas med hur vi kan f& kunskap om logiska lagar. Vi kan t.ex. inse att
den s.k. motsdgelselagen (det ar inte fallet att A och inte-A) 4r sann generellt
genom att forst reflektera Gver enskilda instanser. Detta innebdr inte att
motsdgelselagen dr en empirisk och kontingent lag. Motségelselagen ar inte
beridttigad genom enkel induktion, utan med hjilp av intuitiv induktion. Pa
samma sétt forhéller det sig enligt den intuitiva induktivisten med vissa
allmdnna normer.

Enligt konstruktivisten eller kontraktualisten har vi kommit dverens om
att acceptera de grundldggande allmidnna normerna eller skulle komma
Overens om att acceptera dem om vi vore fullstdndigt rationella eller skulle
vélja grundldggande moraliska principer bakom en slja av okunnighet eller
liknande."'

Enligt reliabilisten ar de fundamentala allmidnna normerna beréttigade om
de har sitt upphov i en tillforlitlig kunskapskilla (t.ex. fornuftet).'*

Enligt koherentisten ér de grundliggande generella normerna beréttigade
om de ingér i ett koherent, sammanhéngande system, dér de olika normerna
ger stod &t varandra. Enligt koherentisten ar det hela systemet som beddms.
Om de grundldggande normerna medfor andra allmédnna normer och enskilda
normer som stdmmer bra dverens med vara moraliska intuitioner och bildar
ett koherent, konsistent, system, s ar de berittigade. 13

Vi skall inte hédr ta stillning till om nigot av dessa svar &r
tillfredsstéllande. Jag skall inte heller sdga ndgot om vilka grundlidggande

" Milo (1993), Morris (1996). Se ocksd Korsgaard (1995) och Rawls (1971). For en allmin
introduktion till den moraliska konstruktivismen, se James (2013).

"2 Shafer-Landau (2003) inkorporerar tex. vissa reliabilistiska element i sin moraliska
epistemologi.

' For mer information om koherensteorin i allménhet, se t.ex. BonJour (1985), Ewing (1934),
och Lehrer (1990). For mer specifik information om teorin inom den moraliska epistemologin, se
t.ex. Brink (1989), kap. 5, DePaul (2013), Tersman (1993), och Sayre-McCord (1996).
Begreppet reflektivt ekvilibrium 4dr i sammanhanget relevant, se t.ex. Brandt (1990), Daniels
(1979), DePaul (1986), (1987), (1988), (2013b), Ebertz (1993), Holmgren (1989), Kappel
(2006), Rawls (1971), Schroeter (2004). Se ocksa Tannsjo (1995).
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allménna normer som mdjligtvis &r berattigade. L4t oss istéllet undersoka hur
man i princip kan anvidnda allmidnna normer for att konstruera ett helt
normativt system. Ett sddant system kan vara monistiskt eller pluralistiskt.
Om ett system innehéller exakt en grundldggande allmén norm, sé ar det ett
monistiskt system. Om det innehaller flera grundldggande normer som inte
kan hérledas frén varandra, sa &r det ett pluralistiskt system.

Har foljer ett exempel pa ett monistiskt system.

Monistiskt system (exempel)
GA1 Ingen far skada nagon.
HA1.1 Ingen far skada nagon fysiskt.
HA1.1.1 Ingen far hugga nagon med en kniv i magen.
HE1.1.1.1 Det ar forbjudet att Conny hugger Johny med en kniv i
magen.
HA1.1.2 Ingen far sparka ndgon i huvudet.
HE1.1.2.1 Det &r inte tilldtet att Marika sparkar Mathilda i
huvudet.
HE1.1.2.2 Det &r forbjudet att Esbjorn sparkar Karl i huvudet.
HA1.2 Ingen far skada nagon psykiskt.
HA1.2.1 Ingen far sprida 16gner om nagon i sociala medier.
HE1.2.1.1 Elin far inte sprida 16gner om Astrid i sociala medier.
HE1.1.1.2 Det &r obligatoriskt att Magnus inte sprider 16gner om
Emma i sociala medier.
HA1.2.1 Ingen far skicka krinkande SMS till ndgon.
HE1.2.1.1 Mia fér inte skicka krankande SMS till Thomas.
HA1.3 Ingen far stjdla ndgons egendom.
HA1.3.1 Ingen far stjdla nagons bil.
HE1.3.1.1 Det &r forbjudet att Tim stjdl ndgons bil.
HAT1.4 Ingen far forstéra ndgons egendom.
HA1.4.1 Ingen far bridnna ner nagons hus.
HE1.4.1.1 Det ar inte tillatet att Kim branner ner nadgons hus.

Det hiar monistiska systemet bestar av en grundldggande allmidn norm: ingen
far skada nagon. GA lédses “grundlaggande allmédn norm (regel)”’, HA ldses
”hérledd allmén norm (regel)”, och HE lédses "hérledd enskild norm”. Vi har
hir ndmnt 4 hirledda regler pa niva 1, 6 hérledda regler pa niva 2, och 8
enskilda regler. "7HA1.1” &r namnet pd en allmén norm som ar hérledbar ur
den allmidnna normen GAl tillsammans med relevanta nddvéndiga
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implikationer, "HA1.1.1” 4r namnet pa en allmin norm som ar hérledbar ur
den allmidnna normen HAIL.l tillsammans med relevanta nddvindiga
implikationer, ’HE1.1.1.1” &r namnet pa en enskild norm som ar hérledbar ur
den allmédnna normen HA1.1.1 osv. Notera att om HAI.1 &r hérledbar ur
{GAl, P1}, och HA1.1.1 dr hérledbar ur {HA1.1, P2}, sa & HAI.1.1 (direkt)
hérledbar ur {GA, P1, P2}. Hérledda allménna normer p& samma niva &r i
regel inte hérledbara ur varandra. HA1.2 dr t.ex. inte hérledbar ur HA1.1, och
HA1.1 é&r inte hérledbar ur HA1.2. Systemet innehaller i princip &ven manga
andra hérledbara allménna och partikuldra normer. Men det &r inte mojligt,

atminstone inte praktiskt, att explicit ange alla dessa.
Lét oss nu ge ett exempel pé ett mdjligt pluralistiskt system.

Pluralistiskt system (exempel)
GA1 Alla bor vara drliga.
HA1.1 Alla bér tala sanning.
HEI1.1.1 Albin bor tala sanning.
HA1.2 Ingen far ljuga.
HE1.2.1 Cecilia fér inte ljuga.
HA1.3 Alla bor héalla sina 16ften.
GA2 Ingen far moérda nagon.
HAZ2.1 Ingen far skjuta ihjdl nagon.
HE2.1.1 Det ér forbjudet att du skjuter ihjél din granne.
HAZ2.2 Ingen far strypa nagon till dods.
HAZ2.3 Ingen far drénka nagon.
HE2.3.1 Det &r forbjudet att Mats dranker Stefan.
HE2.3.2 Det &r inte tillatet att Diana drénker sitt barn.
HA2.4 Ingen far halshugga nagon.
HA2.5 Ingen far ge nagon en dodlig dos gift.
GA3 Ingen far misshandla nédgon fysiskt.
HA3.1 Ingen far sparka ndgon i huvudet.
HA3.2 Ingen far sla ndgon pé smalbenen med ett jarnror.
GA4 Ingen fa misshandla nagon psykiskt.
HA4.1 Ingen far hota nagon till livet.
HA4.2 Ingen far mobba nagon.
HE4.2.1 Det ér inte rédtt om Jenny mobbar Gunilla.
HE4.2.2 Det ér fel om Erik mobbar Fredrik.
HE4.2.3 Du bor inte mobba din arbetskamrat.
GAS Ingen far ha oldmpliga sexuella forbindelser med négon.

92



Allménna Normer och Strukturen hos Normativa System

HAS5.1 Ingen far valdta nagon.

HAS5.2 Ingen far ha sex med ndgon minderarig.

Det hér pluralistiska systemet innehéller 5 grundlidggande allmidnna normer:
alla bor vara érliga, ingen fir moérda ndgon osv. "GA”, "HA” etc. tolkas som
ovan. Vi har ndimnt 14 hérledda regler pd niva 1, och 8 hérledda enskilda
normer. Pluralister som utvecklar pluralistiska system antar i regel att de
olika grundldggande allmdnna normerna &r oberoende, dvs. att de inte kan
hérledas fran varandra. GA2 ovan tycks t.ex. inte fo6lja ur GA1l, och GA2
tycks inte medféora GAl. Om nédgon av de grundliggande reglerna kan
hérledas frdn négon annan grundliggande regel, eller om flera olika
grundldggande regler kan hérledas frén en och samma regel, kan systemet
forenklas. Mojligtvis skulle det pluralistiska systemet ovan kunna forenklas.
Man skulle t.ex. kunna hévda att bade GA3 och GA4 f6ljer ur den allménna
normen: Ingen far misshandla ndgon. Monisten hoppas att alla allménna
normer pa detta sétt skall kunna reduceras till en enda “supernorm”.
Huruvida detta dr mojligt rdder det delade meningar om. Klassiska
utilitarister och kantianer har ofta varit monister, medan t.ex. intuitionister
ofta har varit pluralister.

De normativa system som jag har ndmnt ovan dr knappast de bésta
tdnkbara och jag har inte sagt ndgot specifikt om hur de grundliggande
reglerna mojligtvis skulle kunna berdttigas. Syftet med att ta upp dessa
system 4r att visa hur man kan anvinda allménna normer for att bygga upp
hela normativa system. Hur ett sadant system bor se ut och exakt vilka
allménna normer det bor innehalla dr fragor som jag inte skall behandla i den
hér artikeln.

5. Slutsats

Vi har i den hér uppsatsen undersokt allmdnna normer och strukturen hos
normativa system. Allmidnna normer &r normer som uttalar sig om alla
entiteter eller individer eller fenomen av ett visst slag. Jag ndmnde att det
tycks forekomma &tminstone tvé olika typer av foreskrifter av denna typ:
normer dér vi kvantifierar 6ver handlingar eller beteenden och normer dér vi
kvantifierar 6ver personer, mdnniskor eller levande eller medvetna varelser.
Vi har i den hér uppsatsen koncentrerat oss pd den senare typen. Vi har sett
hur allménna normer kan anvéndas for att hirleda enskilda normer och andra
universella regler och hur de kan nyttjas for att bygga upp hela normativa
system. Det hir talar for att allmidnna normer kan anvéndas for att berdttiga
partikuldra normer och dven vissa hdrledda generella principer. Jag har inte
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forsokt besvara frdgan om och hur de mest grundliggande allminna
normerna, de som inte hirleds fran andra universella regler, sjdlva ar
berittigade, &ven om jag ndmnde ndgra mojliga alternativ. Vi har anvént oss
av en kvantifierad deontisk logik for att analysera de olika typerna av normer.
Diskussionen pekar dérfor pa nyttan av en kvantifierad deontisk logik av det
slag som jag har forsokt utveckla i bl.a. Ronnedal (2015).
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Quine and Plato’s Beard Revisited

John F. Peterson

Abstract

To the extent that it allows individuating properties, Quine’s answer to the
puzzle of saying that Pegasus is not without assuming that Pegasus is is
problematic. Alternatively, one might identify the referent of ‘Pegasus’ in
‘Pegasus is not’ with an unactualized possible. Yet, Quine’s own objection
that this compromises reductio proof seems to be decisive. So it seems that
the best answer is Russell’s. Unlike Quine’s, it shuns individuating properties
with all their attendant difficulties. Unlike Strawson’s, it covers the prima
facie truth of saying that Pegasus does not exist. And unlike Meinong’s, it
does both without recourse to non—existent particulars.

Dividing meaning and reference in singular terms is Quine’s way of blocking
commitment to an ontology containing Pegasus when we say that Pegasus is
not." For if a) ‘Pegasus’ is a name, b) ‘Pegasus is not’ is meaningful, c) the
meaningfulness of ‘Pegasus is not’ requires the meaningfulness of ‘Pegasus’,
and d) meaning and referent are identified in a name, then saying,
meaningfully, that Pegasus is not implies that Pegasus is. But it implies this
only if it is wrongly assumed in the first instance that the meaning of a
singular term like ‘Pegasus’ is identified with the entity named by that term.”
So marking off meaning and reference even in singular terms allows one to
say with consistency that Pegasus is not.”

Quine’s move translates singular terms like Pegasus into predicates. For it
allows ‘Pegasus is not’ to be glossed as, say, ‘It is not the case that there is an
x such that x is a winged horse that opened the spring of Hippocrene and for

' Quine, W.V. (1961). From a Logical Point of View. Cambridge: Harvard, p.9.

% Quine , W.V. (1961). From a Logical Point of View, p. 7.

* Meinong’s way of avoiding inconsistency in saying “Pegasus is not” is to distinguish existent
and subsistent objects. If ‘Pegasus’ names a subsistent and not an existent object, then one
consistently says that Pegasus does not exist. For a defense of this distinction see Meinong, A.
(1902). Ueber Annahmen. Leipzig: J.A. Barth, p. 74.
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all y if y is a winged horse that opened the spring of Hippocrene then y
equals x.* But to this Russellian move Quine makes an addition which he
illustrates in the case of Pegasus. For just in case Pegasus is so basic as to be
insusceptible of analysis, Quine allows that ‘Pegasus is not’ be glossed as: ‘It
is not the case that there is an x such that x is—pegasus (or pegasizes), where
‘is—pegasus’ or ‘pegasizes’ is a predicate. In any case, since under either
Russell’s or Quine’s assay the alleged name ‘Pegasus’ is analyzed out
without remainder, it is not implied that Pegasus is in saying that Pegasus is
not. Thus what Quine calls the problem of Plato’s beard is solved.

Yet Quine’s nuance is problematic. To be true, ‘It is not the case that
there is something that pegasizes’ must be meaningful. A condition of this is
that the predicate ‘pegasizes’ is meaningful. Since it is like ‘is—green’ in
being irreducible and unanalyzable, the property ‘pegasizes’ cannot be
unpacked by using descriptive phrases. But unlike ‘is—green’, ‘pegasizes’ or
‘is—pegasis’ is not an object of acquaintance. So if it is neither analyzable nor
an object of acquaintance how is ‘is—pegasus’ meaningful?

Besides, if ‘Pegasus’ is assimilated to a predicate then so too is any other
singular term. And then the whole category of subject—predicate statements is
swept away. That has the merit of economy. But for this logical elegance a
price is paid in ontology. And that is the introduction of individuating
properties. The latter go as far back as Scotus’ haeccietas. But the trouble
with them is identifying the thing of which they are the property. Properties,
individuating or otherwise, are the properties of something. But since all that
is unique and individual is absorbed by them, there is nothing left for
individuating properties to characterize but a Lockian I-know—not-what, a
totally bare particular. So by allowing names to be replaced by individuating
predicates, Quine invites something against which he himself recoils, i. e,
bare substrata. An obvious answer to this is to identify an individual with a
complex of properties one of which is individuating. Thus, being—Socrates is
analytically predicated of a cluster of properties one of which is the
individuating property of being—Socrates. And then bare particulars are
avoided.

But this has troubles of its own. For one thing, it breeds circularity in the
definition of an individual. For what under this assay is defined as being an
individual is a bundle of properties one of which is individuating. For
another, it fails to cover the unity of individuals like Socrates. The paradox is
that when properties are distinguished from individuals they stand united in

* Quine, W.V. (1961). From a Logical Point of View, pp. 7-8.
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individuals. For they are brought together by dint of inhering in the same
subject. But when that distinction is dropped, so too is the unity. Since there
is nothing to unite the properties, an individual like Socrates becomes a pile
of predicates. Nor can it be said that the individuating property of being—
Socrates unites the properties. As it is one of the properties to be united, it
cannot be said to be what unites all the properties. Otherwise something is
said to unite itself.

To avoid all this, one might try another tack. Under it, ‘Pegasus’ is a
name just as it appears to be and not a disguised predicate. But what it names
is the idea Pegasus. Then, one can say that Pegasus is not without assuming
that Pegasus is. For since the ‘is not’ in that statement signifies real being and
the referent of ‘Pegasus’ is mental being, then one consistently says that
Pegasus is not.

But Quine himself notes the confusion in this escape.” Even granting this
mental entity we call the idea of Pegasus, it is not that to which we refer
when we deny that Pegasus is. So to avoid assuming that Pegasus is in saying
that Pegasus is not, it will not do to say that ‘Pegasus’ in that statement
names the idea Pegasus. That just misidentifies what is denied when it is
denied that Pegasus is.

So what is the solution to Plato’s beard? How do you construe ‘Pegasus is
not” without either implying that Pegasus is, saying things like there’s not
something that pegasizes, with all its attendant difficulties, or misidentifying
what is denied when it is denied that Pegasus is?

A Strawsonian answer is that, if we only cease identifying meaning and
referent in a name, dropping Russell’s logically proper names, we can
construe ‘Pegasus’ as a non—naming name. And then, since it is not used to
talk about anything, the sentence ‘Pegasus does not exist’ does not make an
assertion in the first place and hence is neither true nor false.® But in that case
the problem of implying that Pegasus is in saying that Pegasus is not fails to
arise. For no assertion is in the first instance made. Thus, the supposed
problem of non—being is dissolved.

But unlike either Meinong’s, Russell’s, or Quine’s answer, Strawson’s
ploy fails to cover the prima facie truth of the utterance in question.
Typically, when one says that Pegasus does not exist one does not use that
sentence to illustrate a point in grammar, to write a line of poetry, to send a
secret message or anything like that. To all appearances, one uses it

5 Quine, W.V. (1961). From a Logical Point of View, p. 2.
¢ Strawson, P. F. (1950). On Referring. Mind 59, pp. 320-344.
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straightforwardly to make a true assertion. And Strawson himself agrees that
sentences that make assertions must be about something and hence be either
true or false. So the better course of action is to save the appearance and then
try and avoid commitment to Meinong’s non—existent Pegasus.

For example, Quine, Russell, and even Meinong would remind Strawson
that if someone said that Pegasus does not exist and asked you whether you
thought that what he said was true or false, you would answer, “true.” You
would not answer, “neither.” It seems, then, that ‘Pegasus does not exist’ can
count as an assertion. But if so, then the conundrum of non-being is not
dissolved after all and the problem of the referent of ‘Pegasus’ in ‘Pegasus is
not’ remains.

Some might favor another answer, according to Quine.” It is to identify
the referent of ‘Pegasus’ not with an idea in the sense of the mental Pegasus-
idea which is something actual. For it is evidently not this mental Pegasus-
idea that one denies when one denies that Pegasus is. Instead, this subtler
answer identifies the referent of ‘Pegasus’ with an idea in the sense of a
group of properties which has possible being only. It is an unactualized
possible.

An unactualized possible is in the same sense of ‘is’ as what is defined is.
That is a different sense of ‘is’ from that which is accorded to an actualized
possible. Following tradition, one might say that one signifies essence and the
other existence. For that reason it is neither inconsistent nor self-defeating to
say that Pegasus is not. In saying this, one says only that the possible being
that is named by the subject ‘Pegasus’ does not have actual being. True, one
does assume here that Pegasus is in denying that Pegasus is. But since the ‘is’
is different each time, the statement is innocuous. It just repeats Aristotle’s
advice that being is said in many senses. Nor does this answer risk admitting
contradictions as unactualized possibles just in case it is said, say, that the
round square window is not. Since contradictory subject-terms like ‘the
round square window’ are meaningless and genuine statements require
meaningful terms, then the round square window is not assumed to be when
it is said that it is not. For no genuine statement has in the first instance been
made.

7 Quine attributes this answer to a mind more subtle than one that would identify the referent of
‘Pegasus’ with the mental Pegasus-idea. He names this mind “Wyman’ but does not say either
that Wyman represents a real respondent or that Wyman’s answer has actually been given. See
Quine, W. V. (1961). From a Logical Point of View, pp. 2-5.

102



Quine and Plato’s Beard Revisited

But despite the prima facie appeal of this gambit, Quine, for one, rejects
it. To work, it requires the doctrine of the meaninglessness of contradictions.
Yet for two reasons Quine balks at that idea.® The first is that it threatens
proof by reductio. 1In the latter, affirming the premises and denying the
conclusion implies a contradiction. So if contradictions are meaningless, so
too is reductio proof. Either, then, contradictions are not meaningless or
proof by reductio is compromised. Second, if contradictions are meaningless,
then deciding whether or not an expression is meaningful depends on
knowing whether or not it is contradictory. But with Church Quine agrees
that there is no generally applicable test of whether an expression is
contradictory.” It follows that the contradictoriness of expressions is
ultimately undecipherable. If you have no generally applicable test of
contradictoriness and knowing whether or not expressions are meaningful
hangs on that test, then you never know whether or not expressions are
meaningful. But since that is unacceptable, says Quine, it follows that the
assumption in question, i.e. the meaninglessness of contradictions, is false.

But if it is, concludes Quine, then no one can say that ‘Pegasus’ in
‘Pegasus is not’ names an unactualized possible. If it cannot be said that the
phrase ‘round square window’ in ‘The round square window is not’ is
meaningless because it is contradictory, then defenders of the solution that
‘Pegasus’ names an unactualized possible are forced after all to count entities
like round square windows as unactualized possibles or as unactualized
impossibles when it is said that the round square window is not. And that
nullifies their solution to the problem of Plato’s beard.

Some might object that neither one of Quine’s objections to the doctrine
of the meaninglessness of contradictoriness, and hence to saying that
‘Pegasus’ names an unactualized possible, is conclusive. Taking the
objections in reverse order, even if Church is right that there is no generally
applicable test of contradictoriness, that does not mean that you cannot tell
whether or not expressions are meaningful when contradictions are
meaningless. For suppose that a test of contradictoriness is lacking not
because none can be found but because none are necessary. Then you can tell
whether expressions are contradictory or not without a test. And then the
doctrine of the meaninglessness of contradictions fails to imply that we
cannot tell whether or not expressions are meaningful. But in that case Quine

¥ Quine, W.V. (1961). From a Logical Point of View, p. 5.
° Quine, W.V. (1961). From a Logical Point of View, p. 5. See also, Church, A. (1936). A
Note on the Entschedungsproblem”. Journal of Symbolic Logic 1, p.40f,, p. 101f.
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cannot use that supposed implication as grounds for denying that Pegasus
names an unactualized possible.

But as a matter of fact, a case can be made for saying that
contradictoriness is the sort of thing for which a generally applicable test is
unnecessary. For suppose that contradictoriness is the sort of thing for which
a test T is necessary. Then since any expression’s being meaningful requires
that it pass T, then that very test T, to be meaningful, must either pass itself or
some higher—order test of contradictoriness, T1. But the first makes
something the test of itself, from which Quine himself recoils on account of
the theory of types. And the second invites an infinite regress of higher—order
tests of contradictoriness.

Thus, it seems that defenders of the view that ‘Pegasus’ names an
unactualized possible can answer Quine’s second objection. The
meaninglessness of contradictoriness, on which their view hangs, rules out
knowing whether or not a string of symbols is meaningful only if it is
conceded that a general test of contradictoriness is in the first instance
required. But if only for the reasons just given, no such concession would be
made by those who hold that ‘Pegasus’ in ‘Pegasus is not’ names an
unactualized possible.

However, Quine’s first objection to the doctrine of the meaninglessness of
contradiction is more convincing. As against it, defenders of the doctrine
might counter that his argument is question-begging. Quine rejects the
doctrine because it rules out proof by reductio. He thus uses reductio proof to
refute a view because it excludes reductio proof. By analogy, suppose I use
an argument from analogy to refute some belief of yours because it
undermines argument from analogy. You then have a right to demand that I
show your belief wrong independently of using an argument from analogy.
Otherwise you have the right to complain that I beg the question in favor of
argument from analogy.

But this objection is captious. For it simply plays on the term ‘reductio
proof.” When he rejects the meaninglessness of contradictions because it
compromises reductio proof, Quine means by the latter the narrowly logical
sense of ‘reductio proof’. Under it, you show that the joint assertion of an
argument’s premises and the denial of its conclusion as an added assumption
yields a contradiction. From this you conclude that the conclusion of the
argument must be true. But his own argument against the meaninglessness of
contradictions is a reductio proof in the broader sense of the term. This
consists in showing that P is false because it implies what is unacceptable, in
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this case, the elimination of reductio proof in the narrow sense. It follows that
there is no circle and that the objection is answered.

Even so, defenders of the meaninglessness of contradictions might
counter that Quine’s first objection fails to recognize important
meaninglessness. Wittgenstein, for example, recognized the importance of
the mystical even though putting the mystical into words was nonsensical. "’
Similarly, some nonsense might be conducive to its own disclosure and hence
be useful and to that extent important nonsense. Such is the case in reductio
proof. The combination of the premises and the negation of the conclusion is
useful nonsense because, in the context of the proof in which it figures, it is a
necessary step in its own disclosure. For as the proof proceeds, the
contradiction that was implicit in the foregoing combination is explicitly
generated in the penultimate step of the proof. And then the validity of the
argument in question is shown. Thus, practicing his own pragmatism might
have restrained Quine from concluding that the meaninglessness of
contradictoriness ruins reductio proof.

But to all of this Quine has a good answer. Even if with Wittgenstein we
recognize important nonsense and even supposing that some of this is useful
nonsense, it seems that Quine is right that nonsense of any sort has no place
in logical proofs.

Let us take stock. Suppose that Quine is right that claiming that ‘Pegasus’
names an unactualized possible threatens reductio proof. Suppose too that as
was suggested at the outset, his own solution vie individuating properties
either invites bare particulars or else both implies circularity in the definition
of individuals and excludes the unity of individuals. Then what can be done?
What is the solution to the problem of Plato’s beard?

To close, it seems that the best answer is the one that is behind Quine’s.
By many it is regarded as one of the major achievements in philosophy in the
Twentieth Century. Remarkably, it clings even closer to Ockam’s Razor than
does Quine. Moreover, it differs from Quine’s only in avoiding individuating
properties like “pegasizes.” That is its merit. For then it entirely bypasses
saying things like “There is not something that pegasizes”. Not just that but it
also sidesteps the dilemma that follows on the heels of those properties. |
refer to Russell’s answer.'' Shunning individuating properties like
“pegasizes”, Russell is not then caught between admitting bare particulars

1 Wittgenstein, L. (1961). Tractatus Logico-Philosophicus. Translation by D. F. Pears and B. F.
McGuinness. London: Routledge & Kegan Paul. 6.52-6.522, pp. 149-151.
' Russell, B. (1905). On Denoting. Mind 14, pp. 479-493.
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and both causing circularity in the definition of individuals and excluding the
unity of individuals. In ‘Pegasus is not’ ‘Pegasus’ is just translated as a
definite description such as the winged horse that opened the spring of
Hippocrene. And the resulting negative existential statement that preserves
the truth of the statement is that it is not the case that there is an x such that x
is a winged horse that opened the spring of Hippocrene, and for all y, if y is a
winged horse that opened the spring of Hippocrene then y equals x. Unlike
Strawson’s move, this allows the common sense statement, “‘Pegasus does
not exist’ is true”. Unlike Quine’s, it does this without the onus of properties
like pegasizes. And unlike Meinong’s, it covers that same truth without the
extravagance of non—existent particulars. And so it is that Russell kills three
birds with one philosophical stone.
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On the Signpost Principle of Alternate Possibilities:
Why Contemporary Frankfurt-Style Cases are
Irrelevant to the Free Will Debate

William Simkulet

Abstract

This article contends that recent attempts to construct Frankfurt-style cases
(FSCs) are irrelevant to the debate over free will. The principle of alternate
possibilities (PAP) states that moral responsibility requires indeterminism, or
multiple possible futures. Frankfurt's original case purported to demonstrate
PAP false by showing an agent can be blameworthy despite not having the
ability to choose otherwise; however he admits the agent can come to that
choice freely or by force, and thus has alternate possibilities. Neo-FSCs
attempt to show that alternate possibilities are irrelevant to explaining an
agent's moral responsibility, but a successful Neo-FSC would be consistent
with the truth of PAP, and thus is silent on the big metaphysical issues at the
center of the free will debate.

Introduction

Frankfurt-style cases (FSCs) are modeled after a case in Harry Frankfurt's
"Alternate Possibilities and Moral Responsibility," where in an agent is
purported to be uncontroversially morally responsible despite lacking the
ability to do otherwise.! If FSCs are as advertised, they would be counter-
examples to the principle of alternate possibilities (PAP), according to which
one is morally responsible for something only if she could do otherwise.
Much has been written about FSCs, but the general consensus is that they fail
to be genuine counterexamples to PAP.> The reason FSCs have garnered
such attention is that PAP is said to play a vital role in the debate over
whether free will is consistent with determinism. Contemporary proponents
of FSCs have largely abandoned the goal of constructing a counterexample to
PAP, and instead aim to show merely that alternate possibilities don't play a
role in determining an agent's degree of moral responsibility. This article

! Frankfurt 1969.
% See Fischer 2010 and Widerker and McKenna 2003/2006 for strong work on the topic.
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argues that this concession by proponents of FSCs dramatically undermines
their relevance to the free will debate.

The main goal of this article is to show that while a successful traditional
FSC would demonstrate the falsity of PAP, a successful Neo-FSC, sometimes
called a "buffer zone" FSC’, would be irrelevant to the truth or falsity of
PAP. PAP, the principle Frankfurt claims "is false" (1969, 829), is most
often interpreted as asserting that indeterminism is metaphysical prerequisite
for true moral responsibility*. Frankfurt says of PAP that "Its exact meaning
is a subject of controversy, particularly concerning whether someone who
accepts it is thereby committed to believing that moral responsibility and
determinism are incompatible." (1969, 829) While traditional FSCs are
meant to be genuine counterexamples to PAP’, Neo-FSCs attempt to show
only that alternate possibilities are irrelevant to explaining an agent's moral
responsibility for her free actions.’ The best way to illustrate the difference
between these two approaches is in terms of their implications for a specific
interpretation of PAP, known in this paper as the signpost interpretation of
the principle of alternate possibilities (SPAP):

SPAP - A necessary, but not sufficient, condition for agent 4's being
morally responsible for something s is that 4 could have done
otherwise.

This article is divided into three sections. In the first, I discuss the virtues
of traditional FSCs as purported counterexamples to PAP, but demonstrate
why these cases fail.” In the second section, I show that Neo-FSCs are

? Franklin 2009.

* By "true moral responsibility" here I mean to capture, roughly, what Galen Strawson discusses
in "The Impossibility of Moral Responsibility." See Strawson 1994/2002. For the purposes of
this paper, "moral responsibility" is to be understood as "true moral responsibility."

5 See Fischer 1992; Mele, Robb 1998.

¢ See Hunt 200, 2005; Pereboom 2001, 2005, 2008.

7 0ddly, this approach is largely indifferent to Frankfurt's original goal of undermining PAP by
undermining its appeal. Initially Frankfurt argued that PAP was appealing because of its
relationship to a different commonsense moral principle, the coercion principle, which is
sometimes said to leave an agent no alternative to doing as their coercer desires. (1969)
Frankfurt's initial versions of the case were meant to provide a counterexample to coercion
principle; his case, he says, called attention to an important distinction, "that making an action
unavoidable is not the same thing as bringing it about that the action is performed." (2003/2006,
340) He says "Appreciating this distinction tends to liberate us from the natural but nonetheless
erroneous supposition that it is proper to regard people as morally responsible for what they have
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concerned with demonstrating the falsity of a robust principle of alternate
possibilities (RPAP):

RPAP - A necessary and sufficient condition for agent A's being
morally responsible for something s is that 4 had robust alternate
possibilities to s, where a robust alternate possibility is relevant to
explaining A's degree of moral responsibility for s.

I argue Neo-FSCs fail to demonstrate the falsity of RPAP, and instead
illustrate its truth, that an agent's genuine alternate possibilities play a vital
role in determining her degree of moral responsibility in both traditional and
Neo-FSC. In the third section, I argue that a hypothetically successful Neo-
FSC that demonstrates the falsity of RPAP would fail to demonstrate the
falsity of SPAP. Furthermore, such a case is consistent with SPAP and
would be insufficient to undermine our commonsense commitment to SPAP.
While a successful Neo-FSC would break significant ground in the study of
how one's degree of moral responsibility is determined, it would be silent
about the metaphysical prerequisites of moral responsibility that are at the
heart of the debate between compatibilists and incompatibilists about free
will.

I. On Frankfurt Style Cases

Prior to Frankfurt's attack, there was little doubt about our commitment to
PAP. Frankfurt says of the principle, "Practically no one... seems inclined to
deny or even to question that the principle of alternate possibilities (construed
in some way or other) is true." (1969, 829) Frankfurt sought to convince the
reader of the principle's falsity by tying it to another supposedly
commonsense moral principle, the coercion principle. On Frankfurt's
interpretation, both principles offered sufficient conditions to absolve an
agent of moral responsibility; in PAP's case if the agent lacked the ability to
do otherwise; in the coercion principle's case if the agent was coerced.
Frankfurt believed that our commitment to PAP was contingent on the truth
of the coercion principle, and by demonstrating the falsity of the coercion

done only if they could have done otherwise." The problem is that this distinction is largely
irrelevant, as the supposition in question just is the supposition that moral responsibility and
determinism are incompatible. In all cases where an agent is determined to act, the thing that
makes it unavoidable just is that which causally determined the agent to act; the intuition in
question just is the intuition that it would be inappropriate to blame someone in such a case. See
Ginet 1996.
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principle he would undermine the appeal of PAP.* He argued that when an
agent acted indifferently to a coercive threat, and freely chose to do the same
actions he might otherwise have been coerced into, that agent would be
uncontroversially morally responsible for her actions despite the coercive
threat.’ After this, Frankfurt shifts to presenting a case meant to be a direct
counterexample to PAP. Here is an updated version of this case:

Neuroscientist Black wants Jones to kill Smith at time ¢. Black is
fairly certain that Jones will do this freely, however he doesn't want to
take any chances. Black secretly installs a device in Jones's brain that
is designed to causally determine him to choose to kill Smith at time ¢.
Unbeknownst to Black the device will remain dormant if Jones were
to freely choose to kill Smith at time ¢, however if Jones would have
freely chose not to kill Smith, the device would activate causing him
to kill Smith.'” As it so happens, Jones freely chooses to kill Smith
and the device remains dormant.

The appeal of Frankfurt's case is that it attempts to sidestep the more thorny
metaethical and metaphysical issues that have become the calling card of the
free will debate, and is designed to be an open-ended counterexample to any
reasonable interpretation of PAP, regardless of what kind of alternate
possibilities one interprets PAP as requiring. Frankfurt stipulates that Jones's
choice is free, allowing the reader to fill in whatever metaphysical

¥ Frankfurt contends our intuitions about PAP are related to our commitment to the truth of the
coercion principle but offers no explanation for this being the case. Although it sometimes
makes sense to say that coerced agents can't do otherwise; Frankfurt contends that this isn't
"strictly speaking" true. (1969, 834) Rather, when faced with some threats, one shouldn't do
otherwise, and would be blameworthy if they tried. To act to avoid the bad consequences of a
sufficiently horrible threat, then, is not responsibility absolving; rather it is prima facie
praiseworthy. Not only is the coercion principle not implied by PAP, it doesn't even have the
same kind of implications as PAP. The coercion principle is about how we ought to calculate
one's degree of moral responsibility; where as a thief might be prima facie blameworthy, where
we to learn the thief acted under a coercive threat to save her children's life it would become
clear that she acted in a praiseworthy manner. In contrast, according to PAP, if we were to learn
that a thief was actually a complicated robot wholly causally determined by its programming to
steal, PAP offers a quick explanation why that thing is not morally responsible like a person
would be; because it had no say, no alternatives.

° Frankfurt worries that it doesn't make sense to say that such an agent is coerced; however he
expands upon this view later to great effect. See Frankfurt 1973.

' This case is partially based one found in Alfred Mele and David Robb's 1998 article "Rescuing
Frankfurt-Style Cases."
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prerequisites they believe are necessary for moral responsibility. For
incompatibilist readers, this means Jones inhabits a world where there are
multiple possible futures at any given time. Jones is said to be both uncontro-
versially morally responsible for his free choice to kill Smith, and to be
unable to do otherwise. Frankfurt says "Of course it is in a way up to him
whether he acts on his own or as a result of Black's intervention. That
depends upon what action he himself is inclined to perform." (1969, 836)

The problem with Frankfurt's original case, and traditional attempts to
build upon it, is that either it is unable to effectively cut off alternate
possibilities, or it is such that the agent is not uncontroversially morally
responsible. This argument against FSCs is known as the Kane-Widerker
objection, sometimes called the "dilemma defense."'' In order for Black's
device to interfere only when Jones would choose otherwise, critics contend
that it must pick up upon some prior state of affairs that is causally related to
Jones's choice, such that either his choice is wholly causally determined, and
as such he isn't morally responsible for his action according to the
incompatibilist, or there are some situations where in the device will fail to
prevent Jones from choosing otherwise. Alfred Mele and David Robb
propose that the device could be triggered by some step within Jones's natural
decision making process, and thus only activate if he would choose
otherwise. While there is some concern that such a device wouldn't be
consistent with the kind of libertarian agency incompatibilists believe is
necessary for moral responsibility; the question is largely beside the point as
Frankfurt, Mele, and Robb seem to agree that Jones can either act freely, or
be forced to act, and that these are distinct possibilities.

Compatibilist John Martin Fischer has argued that FSCs can still be
persuasive even if one needs to assume determinism in order to ensure that
Jones cannot do otherwise and that it doesn't even matter if Jones is
uncontroversially morally responsible.'> The problem with this approach is
that it ignores and abandons the open-endedness and persuasiveness of
Frankfurt's original case. Fischer contends "... it is not alleged by the
Frankfurt-style compatibilist that the strategy is knockdown or decisive."
(2007, 470) However, this seems to miss the point of FSCs; if Jones's action
is wholly causally determined by events that occurred long before he was
born, Black's machinations are irrelevant to the explanation of why Jones

' See Kane 1985, 1996; Widerker 1995; Ginet 1996; Wyma 1997; Goetz 2005; Simkulet 2012,
2014a.
2 See Fischer 2000, 2007, 2010.
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can't do otherwise. Fischer-style interpretations of FSCs might convince
compatibilists of the falsity of PAP, but compatibilists already widely reject
PAP.

Frankfurt's own account is inconsistent with Fischer's; Frankfurt
volunteers that Jones has alternate possibilities, and that he can act either
virtuously or viciously (1969, 826; 2003/2006 , 343); he stipulates that there
are two possible futures open to Jones; Jones can either freely choose to kill
Smith, or be forced by Black to choose to kill Smith. The former is vicious
and blameworthy; the latter is virtuous, perhaps even praiseworthy!"> On
Frankfurt's view it seems Jones would be praiseworthy for trying to make his
choice in such a manner that would trigger Black's device; but because the
device ultimately determines Jones's choice, it would be inappropriate to hold
him morally accountable for the outcome of that deliberation.

Frankfurt's case is said to be a counterexample to SPAP because Black's
device prevents Jones from choosing anything but to kill Smith, and
intuitively he's morally responsible for that choice because he freely chose to
do so. The problem is that Jones is only morally responsible for his choice if
he freely chooses it; had he been forced to make the choice by Black's device,
although his deliberation would have the same outcome, he wouldn't be
morally responsible for its outcome. Jones has alternatives; he can freely
choose to kill Smith, or freely choose to act in a way that, sans Black's
device, would result in him choosing something else, but that thanks to
Black's device instead results in him being (unfreely) caused to choose to kill
Smith.

SPAP is agnostic on the role that one's alternate possibilities play in
determining how morally responsible one is; it merely states that alternate
possibilities are a necessary condition for moral responsibility; because Jones
can act in either of two ways, Frankfurt's case fails to cut off alternate
possibilities of the kind relevant to this principle, and thus fails to constitute a
counterexample to the principle.

II. On Neo-Frankfurt-Style Cases
Recent attempts to construct FSCs have moved away from trying to construct
scenarios in which an agent completely lacks alternate possibility. Instead

"* Michael Otsuka similarly argues that the morally relevant kind of alternate possibilities in
question are the alternate manner in which Jones can act; either freely (viciously) or be forced to
act by Black (in such a way that makes it absurd to hold him accountable for his action). See
Otsuka 1998.
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these Neo-FSCs are meant to restrict an agent's alternate possibilities to
possibilities that don't seem to be morally relevant. David Hunt and Derk
Pereboom have each constructed cases of this kind, designed to show that the
alternate possibilities open to the agents in question are insufficient to explain
their moral responsibility.'* Here are concise versions of these cases:

Hunt's Revenge case

Smith humiliates Jones, which causally determines Jones to have a
strong desire to kill Smith. If Jones does not rid himself of this desire
soon, it will causally determine him to choose to try to kill Smith.
Jones knows acting on this desire would be wrong, and knows that to
rid himself of this desire he must first consider his alternatives, then
he must choose not to kill Smith. Black is monitoring Smith's
thoughts, and if Jones considers not killing Smith, Black will
intervene and force Jones to choose to kill Smith. As it so happens,
Jones never considers his alternatives, and his desire to kill Smith
causally determines that he chooses to kill Smith, and he does. (Hunt,
2005)

Pereboom's Tax Evasion case:

Joe believes that he can get away with cheating on his taxes, but that
doing so would be wrong. His strong desire to advance his self
interest will causally determine him to cheat on his taxes unless he
chooses otherwise. However, he cannot choose otherwise on a whim;
he knows a prerequisite for him to choose otherwise is for him to
freely raise his moral attentiveness level through the use of his
libertarian free will. If he raises it enough, he will be able to use his
libertarian free will to reconsider; however he might then freely
choose act either in his self interest, or act as he believes is moral.
Unbeknownst to Joe, Black has implanted a device in his brain that is
triggered by him reaching the appropriate level of moral attentiveness.
When triggered, the device robs him of his libertarian free will and
causally determines him to cheat on his taxes. As it so happens, Joe
never uses his libertarian free will to raise his moral attentiveness
level "and he chooses to evade taxes while the device remains idle."
(Pereboom, 2008)

'* See Hunt 2005, Pereboom 2001, 2005, 2008.
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Jones and Joe are supposed to be uncontroversially morally responsible for
their actions, and both have the ability to do otherwise - Jones can freely
consider not killing Smith (which would prompt Black to intervene and rob
him of his free will), while Joe can freely raise his moral attentiveness level
(which would trigger Black's device and rob him of his free will). The
primary difference between these cases and Frankfurt's original is that in the
original, Frankfurt admits Jones can act virtuously - he can act in such a way
that would counterfactually lead to him choosing not to kill Smith - and in
doing so be prima facie praiseworthy; however in Hunt and Pereboom's
cases, the best Jones can do is to freely consider not killing Smith, while the
best Joe can do is raise his attentiveness level to consider not cheating on his
taxes. Because after this consideration, Jones and Joe could go on to freely
act immorally, they do not consider the alternate possibility to consider doing
otherwise as a robust alternate possibility, where an alternate possibility is
robust if and only if an agent knew she would be differently morally
responsible if she chose that action.

Hunt and Pereboom contend that Jones and Joe, respectively, are morally
culpable for their actions, despite lacking robust alternate possibilities and if
this is the case RPAP is false. The problem for this account is that both Jones
and Joe know that considering alternatives and raising one's moral
attentiveness level, respectively, are necessary, but not sufficient, conditions
for freely choosing to do otherwise.”> While it is true that the needlessly
complicated (and evolutionarily deficient) buffer-step that Hunt and
Pereboom incorporate into their agents' decision making process might lead
to either a morally praiseworthy or blameworthy decision by that agent, both
agents know that this step is a necessary prerequisite to doing what they
believe is right.'

If one has a moral obligation to do something y, and x is a necessary, but
not sufficient, step for obtaining y, one has a moral obligation to do x. As
such Jones and Joe are each morally obligated to take this step; Jones has a
moral obligation to freely consider his alternatives, and Joe has a moral
obligation to raise his moral attentiveness level.  Although Black's

' In Hunt and Pereboom's original cases they fail to specify whether Jones or Joe have sufficient
working knowledge of their bizarre mental faculties to know the steps they need to take to act
otherwise. This article stipulates that they have this knowledge, because if they were ignorant of
such things it would be absurd to expect them to do otherwise as they would have no reason to
do so, and thus absurd to hold them morally accountable for failing to take the steps to change
their minds.

'% See Simkulet 2014a.
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monitoring makes it impossible that Jones can ever freely choose not to kill
Smith, and Black's device makes it impossible that Joe can ever freely choose
not to cheat on his taxes; both Jones and Joe know that they have a strong
moral obligation to do otherwise, and fail to do so. Implicit in the idea of a
moral obligation is that if one fails, one is differently morally responsible
than if one succeeds. As such, the buffer-step that Hunt and Pereboom
construct constitutes a robust alternate possibility - if Jones and Joe take this
step intending it to be the first step in avoiding a blameworthy action (killing
Smith, cheating) in favor of a praiseworthy action (not killing Smith, not
cheating), they are inherently praiseworthy for doing so.

I've argued that Jones and Joe have a strong moral obligation to engage in
the steps they believe are necessary prerequisites for freely choosing to do
what each thinks is right - not killing Smith, and not cheating on taxes,
respectively - and that if they do these prerequisites for these reasons, they
are morally praiseworthy for doing so. However, it is possible that Jones and
Joe engage in these steps for other reasons. Suppose that Jones knows that
unless he considers his alternatives, he will be causally determined to kill
Smith, but that Jones wants Smith to experience worse, say by letting Smith
live and systematically killing everyone and everything Smith loves. By
stipulation, Jones knows the only way he can choose to do such a thing is to
freely consider his alternatives. If, intent upon getting his revenge, Jones
considers his alternatives (with the hope of choosing this long drawn out
torture over a swift death), Black will intervene and rob Jones of his free will
and causally determine that he kills Smith then and there. If this were the
case, it doesn't make sense to say that Jones is morally blameworthy for
Smith's death... but he is blameworthy for something. He is blameworthy for
freely acting in such a way that he believes is a necessary prerequisite for his
murdering Smith's friends and loved ones to bring about that very
consequence.

Although critics of Neo-FSCs could focus on demonstrating the prima
facie praiseworthy possibilities of Jones or Joe acting otherwise, it is clear
that whether they would be praiseworthy or blameworthy for their alternate
possible actions depends upon the intentions they take those actions with.'’

"7 1t strikes me as possible that a well-intentioned Jones might still freely choose to either kill
Smith, or get revenge on Smith by killing Smith's friends and family; however such a Jones
would still be prima facie praiseworthy for acting in a manner such that he believed was
necessary for him to do what is right. He is, however, blameworthy for his latter, wrong, free
choice.
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Rather than demonstrate the falsity of RPAP, it seems as though Neo-FSCs
actually demonstrate its truth; an agent's beliefs about the moral character of
their possible intentional actions play a vital role in determining her degree of
moral responsibility. If Jones were to consider his alternatives hoping to do
worse than kill Smith, he would be blameworthy for doing so (and blameless
for being forced to kill Smith by Black), while if Joe were to raise his moral
attentiveness level in hopes of doing the right thing, he would be praise-
worthy for doing so (and as Pereboom contends Joe's choice to cheat on his
taxes is the result of his being determined to act in his self interest, Joe would
be blameless for being caused by his beliefs about his self interest to cheat on
his taxes as a result).

III. Why Neo-Frankfurt-Style Cases are Irrelevant

In the previous two sections I've argued that traditional FSCs fail to
demonstrate the falsity of SPAP, and Neo-FSCs fail to demonstrate the falsity
of RPAP. The goal of this section is to compare the implications of a
hypothetically successful traditional FSC with those of a hypothetically
successful Neo-FSC.

For our purposes a successful traditional FSC is stipulated to have the
following characteristics: The agent, Jones*, is actually and uncontro-
versially truly morally blameworthy for his free choice, s, and he is
blameworthy to non-zero degree d for s. Jones*'s moral responsibility for s is
not derivative of some prior act » that preceded it. Jones* could not do
otherwise; by this I mean that from the moment that immediately preceded
Jones*'s deliberative process in which he chose s, there was only one possible
way in which he could choose s and no possible way that he could choose
other than s. There was no way such that he could choose s and be morally
blameworthy in any other degree than d.

A successful traditional FSC would be a decisive counterexample to both
SPAP and RPAP, directly demonstrating the falsity of the principles. Jones*
would be morally responsible despite lacking the ability to do otherwise, but
even if he had the ability to do otherwise it would be irrelevant to explaining
how morally responsible he is. This case does not show that moral
responsibility is impossible within an indeterministic universe, but it would
demonstrate the truth of compatibilism. "

'8 Note that a successful Fischer-style interpretation of a FSC would prove the truth of
compatibilism. It strikes me that such a successful case would also undermine the majority of
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For our purposes, a successful Neo-FSC is stipulated to have the
following characteristics: The agent, Joe*, is actually and uncontroversially
truly morally responsible for something, his free choice ¢, and he is
blameworthy to degree b for c¢. Joe* had alternate possibilities, but these
alternate possibilities are not relevant to explaining his moral responsibility
for c to degree b. By this I mean that Joe* has a set of alternate possibilities
a, composed of one or more alternate possibilities, and that had he had acted
on any of the alternate possibilities within set a, he would still have been
blameworthy to degree b.

A successful Neo-FSC demonstrates the falsity of RPAP; Joe* would be
morally responsible despite lacking robust alternate possibilities because the
alternate possibilities within set ¢ would be irrelevant to explaining Joe*'s
blame. However, at least as formulated above, a successful Neo-FSC is not a
counterexample to SPAP, Joe* is stipulated to have alternate possibilities. If
this were the case, then it is still possible that there is some connection
between moral responsibility and indeterministic metaphysics, such that
compatibilism is false.

Assuming the existence of a successful Neo-FSC, critics of SPAP have
two options to attack SPAP: First, they might revise the successful Neo-FSC
such that Joe* would be blameworthy to degree b for choice ¢ regardless the
size of the set of alternate possibilities he has, such that if Joe* had no
alternate possibilities (an empty set e), Joe* would be blameworthy to degree
b for choice ¢ in the same exact way as if he had alternate possibilities. If
successful, all this approach does is turn the Neo-FSC into a traditional FSC,
which by assumption would be a counterexample to SPAP.

The second way in which a critic might argue against SPAP, given a
successful Neo-FSC, is to argue that our belief in SPAP is contingent on our
belief in RPAP. This style of argument is similar to Frankfurt's original
assertion that our commitment to the truth of PAP is based, at least in part, on
our commitment to the coercion principle. I don't see how this argument
could gain any traction among proponents of SPAP. The appeal of SPAP is
that alternate possibilities serve as signposts that indicate an agent might have
the kind of control over their actions necessary for moral responsibility. In
contrast, the truth of RPAP might actually be a problem for incompatibilists;
the thought that such alternate possibilities might play a role in determining
an agent's moral responsibility is actually quite troubling, raising the specter

our beliefs about moral responsibility and undermine the idea that commonsense moral intuitions
could be a reliable guide to either metaphysical or moral truth.
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of moral luck."” Analytically, the truth of RPAP necessitates the truth of
SPAP; but proponents of SPAP leery of the problem of moral luck are far
more likely to reject RPAP than attribute their belief in SPAP to it.*

Not only would a successful Neo-FSC fail prove the falsity of SPAP, but
there is no reason to think that a Neo-FSC's proving RPAP false would give
us any reason to rethink our commonsense commitment to SPAP. To my
knowledge, proponents of Neo-FSCs don't argue RPAP is connected to our
beliefs about any other principles relevant to the free will debate; and thus 1
have to conclude that a hypothetically successful Neo-FSCs would be silent
on the issues relevant to the debate over free will; in contrast a successful
FSC would have substantial implications for the debate, demonstrating the
truth of compatibilism. This is not to say that a successful Neo-FSC would
be irrelevant; quite the contrary. A successful Neo-FSC would seem to show
that some actions have fixed moral value; for example maybe killing Smith
always wrong to the exact same degree and always wrong in the same
manner. On this view, killing Smith for embarrassing you at a party might be
as wrong and equally as bad as killing Smith because it is the only way to
stop him from murdering thousands of helpless newborn infants.

If that sounds wrong, it's probably because it is. ['ve argued there are no
successful traditional FSCs and that there are no successful Neo-FSCs.
Rather than demonstrate the falsity of RPAP, I've argued (unsuccessful) Neo-
FSCs demonstrate its truth; killing Smith out of revenge is prima facie
blameworthy; however killing Smith because it is the only way to prevent
him from murdering infants is prima facie praiseworthy. The reason why
killing Smith in the former case is morally abhorrent is because there are
better alternatives; the reason it is morally necessary in the second is because
there are no better alternatives. However all of this is quite beside the point;
what this article set out to show was that while a successful traditional FSC
would have substantive implications for the free will debate, a successful
Neo-FSC would do nothing of the sort; I believe it has succeeded in this goal.

1 For more on moral luck see Nagel 1976, Zimmerman 2002, 2006, Simkulet 2014b.

% Moral luck would occur if and only if something outside of an agent's control would determine
their moral responsibility; however as demonstrated in Hunt and Pereboom's cases, the existence
of alternate possibilities don't determine the moral responsibility of either Jones or Joe; however
the agent's beliefs about their alternate possibilities plays a vital role in explaining why they are
morally culpable to the degree in which they are, much as Frankfurt argues that an agent's beliefs
and intentions surrounding a coercive threat determines how morally culpable they are for acting
in accordance with that threat, because of the threat, or indifferent to the threat.
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